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Abstract: This paper presents the joint work from the “HORIS” project, with a focus on pedestrian detection at bus-
stops by radar sensors mounted in the infrastructure to support future autonomous driving and protecting 
pedestrians in critical situations. Two sensor systems are investigated and evaluated. The first based on single 
radar sensor phase-sensitive raw data analysis and the second based on sensor data fusion of cluster data with 
two radar sensors using neural networks to predict the position of pedestrians. 

1 INTRODUCTION 

Nowadays, in automotive and infrastructure radar 
sensors, LiDAR sensors and camera-based solutions 
are used to increase the safety of the traffic and enable 
smart city solutions (Kumar, 2021). To increase the 
security level especially for vulnerable road users 
(VRU’s) like pedestrians or cyclists, sensors are used 
in driver assistance systems in the car and in future 
also in infrastructural applications, e.g., automatic 
traffic light management systems. Every sensor has 
its advantages and drawbacks. In contrast to camera, 
whose strength lies in the classification, the strengths 
of the radar sensor are in the accuracy of the distance 
measurement and the extraction of the velocity 
directly from the utilization of the Doppler Effect. On 
the other hand, the strength of the LiDAR sensor is in 
between, as it can be used as output for a good 
classification due to its dense point cloud and it can 
provide a very precise spatial resolution of the point 
cloud (Yeong, 2021). Nevertheless, the LiDAR 
sensor is currently relatively expensive compared to 
cameras and radar sensors. Another advantages of 
radar sensors are that they have high reliability in bad 
weather conditions (e.g., rain, fog, snow, etc.) as well 
as in night detection. In addition, radar data are 
uncritical regarding privacy: No sensitive personal 
data are measured, i.e., the data are completely 
anonymous in contrast to camera data. For this 
reason, radar sensors are an integral part of a wide 

variety of applications and therefore the focus in this 
paper is on the pedestrian detection using radar 
sensors in the infrastructure, but the presented use 
case could also be carried out by Camera or LiDAR. 
In previous related works on pedestrian detection the 
localization and classification are carried out by some 
state-of-the-art methods like Micro-Doppler (Lam, 
2016), methods based on doppler spectrum and range 
profiles (Rohling, 2010), utilization of the range 
azimuth map to estimate the dimensions of an object 
(Toker, 2020), etc. In this paper, two different 
approaches using the variance by utilizing the raw 
data and using neural networks by utilizing the high-
level data, with different sensor systems for detecting 
pedestrians on bus-stops with high accuracy in a joint 
Fraunhofer project “HORIS” will be presented. First, 
the project and the used sensor systems will be 
described. Next, the two sensor systems are discussed 
in more detail and the working principle of the 
algorithms is presented. Finally, the performance of 
the detection capability of the two systems is 
evaluated and compared. 

2 PROJECT PRESENTATION 
HORIS 

At this point the project HORIS is presented in which 
the results for this paper were generated. Project 
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HORIS stands for "High Resolution Radar Sensors in 
the Infrastructure", which is a joint Fraunhofer project 
(sponsored by CCIT-COMMs) of the following 
institutes: 
 Fraunhofer FHR, 
 Fraunhofer IIS, 
 Fraunhofer IVI. 

The applicational focus on this paper is on a bus-
stop, where the sensors are mounted in a fixed 
distance to each other on the opposite side of the road 
and observed will be a crowd of people. A trigger 
event is provided if a person starts crossing the street 
and enters the danger zone e.g., to catch the bus on 
the opposite side of the road. In this scenario, the 
objects are roughly in 5-15m distance away from the 
sensor system. Once a person entering the danger 
zone, a message via Car2X communication can be 
sent to alert the surrounding vehicles. However, the 
paper focuses on the radar technology, whereas the 
communication via Car2X is not discussed any 
further. A schematic representation of the use case 
can be seen in Figure 1.  

 

Figure 1: Radar sensors, locating on the opposite side of the 
road, detects a pedestrian, which is leaving the static group 
while crossing the street. Car2X message is sent out from 
central unit to warn the surrounding traffic. 

Two different sensor approaches, which operate on 
80 GHz radar technology were used. The first 
approach uses a radar sensor based on the TI chipset, 
which can quickly detect the smallest movements 
with a very high frame rate with the help of phase-
sensitive raw data analysis. Especially the 
investigation of the correlation degree of the 
movement patterns of a crowd of people with the full 
utilization of the raw data is done and will be 
discussed in more detail in section 4. The second 
approach uses two commercial radar sensors from the 
automotive industry built into the infrastructure, 
which will be fused based on neural networks (NNs). 
For the second approach, it will be investigated, 
whether the high-level cluster data output by the 
sensor results in an improvement of the detection 
accuracy with two radar sensors in contrast to one 
sensor that works based on a state-of-the-art tracking 

algorithm based on "density-based spatial clustering 
of applications with noise" (DBSCAN) (Dingsheng 
Deng, 2020). The NN approach will be discussed in 
more detail in section 5. The reason of using two 
instead of a single radar sensor with NNs is that such 
conditions were defined in this 6-month project 
before and the results of one sensor will be presented 
in a separate work. The sensors are operated with 
Robot Operating System (ROS), since this 
framework is well suited for data fusion, real time 
processing and visualization. The data collection and 
data acquisition for the development of the signal 
processing, the tracking, and the classification, as 
well as for the training, validation and test of the 
neural networks is done by an optical-based 
localization system with an accuracy of 1mm and 
using PTP software synchronization with an accuracy 
of ∆t ≤ 0.5ms provided by Fraunhofer IIS. 

3 RADAR TECHNOLOGY AND 
DATA PROCESSING 

Since the “Frequency Modulated Continuous Wave” 
FMCW radar (Skolnik, 1990) is the most used 
scheme in automotive today, the HORIS project also 
uses radar sensors, based on the FMCW technology, 
with which it is possible to achieve good spatial 
resolution with a comparatively lower transmission 
power in comparison to a pulsed radar sensor. The 
following section briefly explains how the FMCW 
radar works (Engels, 2021). The frequency bands for 
the used sensors are in the range of 77-81 GHz, which 
defines one of the most important allowed frequency 
bands for automotive. The FMCW radar sweeps wide 
radar frequency (RF) bandwidth (in GHz), while 
keeping the intermediate frequency (IF) bandwidth 
small (in MHz) and this working principle is shown 
in Figure 2.   

 

Figure 2: The radar sweeps with a defined bandwidth B for 
a chirp duration T on the carrier frequency 𝑓଴, which is in 
the range of 77-81 GHz. Multiple chirps are generated with 
this sawtooth sweep principle and send out by a frame 
containing the total N chirps. 

A simple schematic block diagram of such a FMCW 
radar can be seen in Figure 3. 
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Figure 3: The Tx antenna sends the radio wave out, which 
will be reflected by a static or moving object and the 
delayed signal will be received back by the Rx antenna. The 
frequency mixer subtracts the frequencies of the received 
signal from the generated signal, which results in the 
intermediate frequency (IF) of each transmitter & receiver 
pair. 

Since the IF is proportional to the radial distance 
between radar sensor and object, the distance can be 
calculated using the first dimension FFT of the 
received IF signal. For moving objects, the velocity 
can be calculated using the phase change across 
multiple chirps and therefore a second dimension FFT 
is performed to determine the phase change and thus 
the velocity of objects in form of a e.g., range velocity 
image. For the angle estimation of detected objects, 
the received signal is registered by multiple antennas. 
The distances of the reflected wave to the receiver 
antennas are now different with respect to the angle 
of arrival for each Rx. This results in a phase change, 
which can be estimated using the third dimension 
FFT and finally the angle of arrival can be extracted. 
Since the 1D FFT processing is done inline in the 
active transmission time of the chirps, the 2D & 3D 
FFT is processed “offline” in the inter-frame time. 
This information output is the so-called radar cube 
and is shown in Figure 4.  

 

Figure 4: The columns for the FMCW radar cube are filled 
with range, the rows with doppler velocity and the depth 
with the angle information (Sturm, 2016). 

After this data has been processed with the help of the 
so-called constant false alarm rate (CFAR) algorithm 
(Finn and Johnson, 1968), which calculates an 
adaptive threshold value due to the estimated noise 
floor to reduce the number of false detections, clutter 
and noise, the remaining data is also referred to as the 
so-called point cloud data. The sensor approach, 

presented in section 4, is based on 3D voxels in 
Cartesian coordinates, whereas the sensor system 
presented in section 5 is based on processed point 
cloud data, the so-called “cluster data”, using similar 
algorithms to DBSCAN. The radar sensor presented 
there has a limited data transfer rate, since it is 
operating with CANBUS instead of using a high 
speed ethernet interface. Since the bandwidth of the 
cluster data is very reduced (few MB/min) in 
comparison to the whole radar cube (few GB/min), 
both sensor systems, which are based on phase 
sensitive raw data analysis and cluster data analysis 
using machine learning (ML) techniques, will be 
presented in the upcoming sections. 

4 FHR RADAR SENSOR AND IT’S 
ALGORITHM 

4.1 The Sensor 

For the measurements, an integrated MIMO radar 
sensor from TI was used. This includes 3 transmitters 
and 4 receivers. Only 2 transmitters were used 
resulting in 8 antenna combinations forming a single 
line in azimuth. This allows an azimuth resolution of 
15 degrees. To get access to the raw data the 
AWR2243 BOOST board from TI was combined 
with a DCA1000 as shown in Figure 5. 

 

Figure 5: MIMO radar module used for people detection. 

The radar supports 4 GHz bandwidth. However only 
380 MHz bandwidth were used to be able to support 
a framerate of 2 kHz to monitor people with a high 
frequency to detect small movements. The raw data 
was received over Ethernet online processed on the 
PC and the result published using a ROS interface. 
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4.2 Signal Processing 

The signal processing included two major steps. First, 
the scene was captured with people standing at a 
defined distance from the radar. In that initialization 
step it was crucial to determine the position of the 
person in the scene. For test measurements people 
were standing 5m from the radar sensor. 

 

Figure 6: Range-Azimuth map of the measured scene based 
on the reflected power (left) and the variance of the 
reflection over time (right). 

As one can clearly see in Figure 6 it is hard to see the 
persons in the scene if only the magnitude of the 
reflectivity is considered. Static reflections from the 
bus stop are dominating the image. That significantly 
changes if the variance over time is taken over 5s. 
Since variance calculation includes the subtraction of 
the mean value, static targets are well suppressed. As 
shown on the right, all three persons can be seen 
standing beside each other. That allowed to monitor 
the signal phase at the voxels of relevance. However, 
the movement of each person also lead to a significant 
variance at further range bins, caused by moving 
shadows. Therefore, the phase of various voxels was 
monitored. From that range-azimuth map, it can be 
hard to distinguish individual persons. However, the 
movement within each voxel can be taken as an 
alternative feature to identify different individually 
moving objects. This is currently a subject under 
investigation. 

 

Figure 7: Temporal phase development for range bins 7-11 
for azimuth:9. Movement of pedestrian can be extracted by 
range bins 7 and 8. 

Figure 7 shows the phase of several selected voxels. 
To only select one person, only a single azimuth bin 
was chosen. The two closest range bins appear to be 
the best monitor for the movement of the person. 
Before starting to walk fluctuations can be seen 
caused by gesticulations or moving at the same 
position. Even vital parameters such as pulse and 
respiration can be extracted if the phase fluctuation is 
filtered accordingly (Rudrappa, 2020). Signals from 
range bins behind the person are far weaker, so that 
their phase fluctuation is dominated by receiver noise. 
However, range bin 8 shows the movement of the 
person with smaller latency. Since the person is first 
moving forward with its upper body before moving 
the leg (usually being in front) that is not unexpected. 
A fixed threshold was defined to cause an interrupt 
for all channels. Since the monitor of all voxels was 
combined by a logical AND the first movement 
caused the alarm, it did not make a difference where 
the first movement occurred.  

After the first alarm, a second alarm was defined 
at a predefined range bin. In that case, no detection 
was required. The same approach for phase detection 
was used. 

 

Figure 8: Phase tracking at position of the monitored person 
(red) and at the range bin defined to be critical (yellow) in 
comparison to the position of the person measured with an 
optical marker (blue). 

In Figure 8 the red curve shows the movement 
detected on the voxel where the person was detected 
during the initialization phase. It shows a very strong 
correlation to the movement detected by an optical 
Qualisys system. Differences are likely to be caused 
by the different parts of the body monitored with 
optical and radar system, since the marker was fixed 
on the helmet of the person. The correlation ends as 
soon as the person left the voxel under test. After 
entering the second range bin which defines the 
transition to a critical area the yellow curve follows 
the movement of the person. Now, the second alarm 
is caused before the person leaves the monitored 
voxel. For a constant monitoring the position of the 
person must be tracked so that always the correct 

SENSORNETS 2022 - 11th International Conference on Sensor Networks

92



voxel is chosen. This has not been required in that 
scenario but was also realized to measure the vital 
parameters of walking persons in as separate work 
(Rudrappa, 2020). 

5 TWO RADAR SENSOR ML 
APPROACH 

In this section the prediction of the localization of 
pedestrians with two commercial Conti ARS408-21 
automotive radar sensors, operating on raw untracked 
detections, using a neural network (NN) based on 
high-level cluster data is presented. First, the data 
processing for the training is discussed. Later the NN 
structure is presented, and the training results are 
discussed. Finally, a comparison of the localization 
capability of the two-radar sensor ML approach with 
respect to one single radar sensor operating with a 
state-of-the-art tracking algorithm, like the Hungarian 
(Kuhn, 2012) algorithm modified with a clustering 
DBSCAN algorithm is presented. 

5.1 Data Processing 

To train a NN model, it is necessary to use prepared 
data in an appropriate format as input to speed up the 
training and save computational resources. The frame 
rate of the radar sensors is approx. 14 fps and the 
cluster data are from the following shape: position 
coordinates, radial velocity, and Radar Cross Section 
(RCS). Since the internal software on the radar 
prioritize moving detections before static ones and 
therefore several static clusters will be filtered out, the 
approach presented here covers only dynamic objects, 
since for the application it is necessary to detect 
pedestrians entering the danger zone. In (Streck, 
2021) a possible solution also for static objects is 
presented. For a general use case it is reasonable to 
use a radar sensor, which has also a good static object 
detection. To obtain a proper data format for the 
training process first, a coordinate transformation for 
both radar sensors in a common coordinate frame 
(chosen as center of mass of both radar sensors) is 
made. Second, since the update rates for both sensors 
are not exactly coinciding a time synchronization for 
both sensors was performed, whereas every frame of 
sensor A should be assigned to the time nearest frame 
of sensor B. Because both radar sensors are seeing the 
same scene from different perspectives with a 
different number of reflections, it is sometimes 
necessary to throw out one frame of sensor A or 
sensor B to achieve a proper assignment of frames. 
With this simple time synchronization method, the 

maximum delay between two frames from both radars 
can be estimated to 35.7ms, which leads to an 
uncertainty of around 6cm. With this software 
synchronization algorithm, the results are acceptable 
and could be further improved using a hardware 
synchronization. Since the focus lies on pedestrian 
detection it is reasonable to filter those cluster out, 
which contributes to noise. For the training those 
cluster of non-characteristic RCS as for pedestrians 
are omitted. In general, it was found out by 
experimental measurements that the range of the RCS 
to detect pedestrians is between [-30,5] dBm². Using 
this method, the total amount of clusters could be 
reduced by roughly 40%. 

5.2 Neural Network Structure and 
Training 

As mentioned above, the model respects only 
dynamic objects, since static ones with a lower RCS 
(especially for pedestrians, which are enveloped by 
the bus-stop) cannot be detected in every frame 
constantly. This lack of detection causes a problem 
for the training. The input for the training is extracted 
from the whole data set, which includes 160k samples 
(static & dynamic objects) and is of the size of 23k 
effective sample frames. Additional data was also 
created by mirroring the data with respect to the x-
axis (radar coordinate frame). In the following, 
TensorFlow 2.1 (Abadi, 2015) and Keras (Chollet, 
2015) were used as the python library for the training 
and evaluation of the NNs. Since the trained 
cooperative sensor system will be operating in the 
infrastructure mounted at a fixed place, without loss 
of generality, a region of interest (ROI) was chosen 
as a surface, spanned by 15m x 18m in the lateral and 
longitudinal direction, respectively, which starts 1m 
from the common sensor system coordinate frame. 
The shape of the input and output data for the NN is 
chosen as a pixel representation of the ROI, in which 
the algorithm should perform for a variable number 
of detected pedestrians. For simplicity the ROI is 
divided into three different pixel size models. These 
different models, together with the resolution for each 
pixel cell, as well as its probability of the prediction 
of a pedestrian using the test-set evaluation is shown 
in table 1, whereas the NN structure achieving these 
probabilities will be discussed later in this sub-
section. One can also see that the probabilities are 
smaller the larger the pixel model gets, which is 
reasonable, since with greater pixel models the 
prediction of the exact pixel localization of a 
pedestrian gets much harder. 
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Table 1: Overview of test probabilities of corresponding 
pixel resolutions. 

Model Pixel Size [m] Probability
5 x 6 3.0 0.90

15 x 18 1.0 0.73
75 x 90 0.2 0.36

The whole data used for the training is separated in 
0.44, 0.22 and 0.33 for train-, validation- and test-set, 
respectively. The features of the input vector for the 
NN are defined as the frequency of occupancy of the 
clusters for each pixel cell, the radial velocity of the 
pixel cell and their corresponding RCS value. These 
three features are representing a pixel, where its 
values are divided into the color-coded range of 
[0,255]. The output array for localization can be 
represented as 

yሬ⃗ ൌ ൮

𝑙଴,଴ 𝑙଴,ଵ ⋯ 𝑙଴,௡

𝑙ଵ,଴ 𝑙ଵ,ଵ ⋯ 𝑙ଵ,௡

⋮ ⋮ ⋱ ⋮
𝑙௠,଴ 𝑙௠,ଵ ⋯ 𝑙௠,௡

൲, (1)

where 𝑙௜,௝  is the pixel occupancy for sample i and 
pixel j, counting from the left upper corner of the 
pixel representation of the ROI, which is 

𝑙௜,௝ ൌ ൜
1 , 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑗 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑     
0 , 𝑒𝑙𝑠𝑒.                                 

 (2)

For further discussion of the architecture and the 
training the (90x75)-model is selected, which defines 
the size of the input image as total 6750 pixels plus 
three-color channels for the input parameter, since 
this representation is the most accurate one for the 
presented use case. For this purpose, a DNN (Huang, 
2016) architecture was used. The reason why for the 
training a DNN instead a CNN was chosen is, since 
the density of the cluster data is much lower than that 
of a point cloud, the dynamic objects doesn’t show 
such good shapes and features which could be 
detected nicely by the CNN, therefore a simple fully 
connected NN with more training parameters was 
chosen. This model takes as input a picture of size 
(90x75) with three color-channels and flatten these 
inputs to get an array with the length of 20250. This 
is the input for the next dense layer of size 6750, 
which represents the total number of all pixels, since 
the output in the end predicts the occupied pixels in 
the ROI. After the dense layer a “tanh” (Hyperbolic 
Tangent) (Nwankpa, 2018) activation function was 
applied because it can integrate non-linearities into 
the model much easier than the “relu” activation 
function in comparison. Due to the enormously large 
input for the last dense layer, the total number of 
parameters increases up to 136,694,250.  

 

Figure 9: Training (red) and validation (green) accuracy of 
the trained dynamic model with following settings: 
RMSprop as optimizer, batch normalization, batch size of 
256 and learning rate of 0.000774 found using the 
ReduceLROnPlateau. 

Figure 9 shows the training performance, where a 
modified MSE loss function was used, which 
regulates the predictions based on the weighting for 
neighbor predictions as a kind of penalty mechanism. 
This controls somehow the maximum number of 
predictions. As already stated in table 1, the final test 
accuracy for the corresponding trainings accuracy of 
0.87, is 0.36. Unfortunately, one can clearly see, that 
the system was learned due to the clear signs of 
overfitting. This problem will be overcome when 
larger amount of data, as well as more general data 
for the training will be measured. Also, a possible 
improvement of the model might be the extension of 
the input space. Nevertheless, this model is chosen for 
the final evaluation of the results. 

5.3 Localization Results 

At this point the localization capability of the NN 
approach in comparison with the single-radar sensor 
system, based on DBSCAN algorithm, mentioned at 
the beginning of this section, will be presented. For 
the bus-stop use case, the mean absolute error was 
used   to   analyse   the   localization   accuracy.  The  

 

Figure 10: Evaluation of the mean absolute error of the 
localization for the single radar system, using tracking 
algorithm. In total 40796 frames were evaluated, and the 
histogram was normalized due to this value. 
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evaluation of the single-radar sensor approach is 
shown in Figure 10, whereas one can see, that approx. 
44% of the total amount of predictions are within 
0.4m accuracy. 
The evaluation of the two radar NN approach is 
shown in Figure 11 and one can see, that 66% of the 
predictions are within 0.4m accuracy.  

 

Figure 11: Evaluation of the mean absolute error of the 
localization for the NN approach of total 7666 frames, and 
the histogram was normalized due to this value. 

Since the resolution of the used radar sensors is 
anyway 0.4m, this value is used as a reference. In both 
histograms one can also see that outliers for larger 
deviations of 0.4m can occur. In Figure 10 these false 
positives are the detections of incorrect objects by the 
used tracking algorithm, while noise is likely to be 
detected as an object that clearly doesn’t match the 
reference data and therefore represents false 
detections for the single radar system. In Figure 11 
these deviations come from the forecast of the NN, 
which sometimes predicts several ghost targets, since 
the total number of pedestrians in the scene is 
unknown for the NN. 

6 COMPARISON & OUTLOOK 

For the time evaluation of both presented sensor 
models in section 4 and 5, a set of photoelectric 
barriers was placed approx. 30cm in front of the 
pedestrian, which defines start of movement into 
danger zone and one in front of the entrance to the 
danger zone. Figure 12 and 13 show the comparison 
of the detection time delay of both sensor systems 
w.r.t. the photoelectric barriers.  

 

Figure 12: Comparison of the detection delays of the phase-
sensitive evaluation (red), NN approach (blue) and a single 
sensor tracking algorithm (green) for the start of the motion 
of a pedestrian. 

 

Figure 13: Comparison of the detection delays of the phase-
sensitive evaluation (red), NN approach (blue) and a single 
sensor tracking algorithm (green) for the entrance into the 
danger zone. 

In both measurements one can see that the 
performance of the phase sensitive solution using raw 
data performs around 1s better than the NN approach 
with two commercial radar sensors, operating on 
cluster data. The negative value in Figure 12 of the 
FHR detection comes from the fact that for the 
demonstration the light barrier was placed a bit too far 
from the pedestrian which initialized the movement. 
For the comparison also the time performance of the 
single-radar solution is plotted, which for the entrance 
into the danger zone performs around 300ms faster 
and for the detection of the motion around 150ms 
delayed in comparison to the NN solution. This is due 
to the fact, that the single-radar approach works with 
a tracking algorithm based on establishing the track 
by comparing frames of the past. So, this system 
needs an initialization time which is around 450ms to 
track the pedestrian. To increase the performance of 
the NN approach and to overcome the overfitting 
problem and to achieve a better prediction accuracy, 
the net could be retrained using more training data. 
Also, for reduction of false positives more 
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generalized data should be collected, as well as the 
setup parameters (e.g., angles and position of the 
sensors with respect to each other) should be 
calibrated better. Nevertheless, the NN approach 
looks promising and should be further investigated 
because even with the actual simple overfitting 
model, location performance could be substantially 
improved as opposed to a single radar approach. 
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