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Abstract: African Swine Fever Virus (ASFV) is a dsDNA virus causative of the African Swine Fever (ASF) in wild and 
domestic hogs. ASF is characterized by hemorrhagic fever, high mortality, and transmissibility. The binding 
of the DNA to the pA104R protein mediates viral replication and genome packaging. In the present study, we 
generated nine (9) reference compounds that exhibited high docking affinities through de novo computer-
aided drug design (CADD). These compounds were then used as query molecules to find commercially 
available drug-like compounds using ligand-based virtual screening (VS). We were able to retrieve 900 hit 
compounds that exhibited the same pharmacophoric activities. Then, these hit compounds were subjected to 
drug-likeness filtration to identify the most likely to be developed as commercial drugs based on established 
parameters. We identified sixty-two (62) drug-like molecules. Molecular docking was then performed to 
determine the top five compounds with the highest binding affinities against the target protein. ADME/T 
profiling was done on these compounds to assess their pharmacokinetic properties. Compound 8.45 performed 
best based on our devised scoring system. This paper shall serve as a good reference in the discovery and 
development of anti-ASFV therapeutics.

1 INTRODUCTION 

The African Swine Fever Virus (ASFV) is a highly 
transmissible virus causative of the African Swine 
Fever (ASF) in wild and domestic hogs. Apart from 
its swift spread, ASF is characterized by high 
mortality rates, to which death is usually observed a 
week after the onset of the disease. The identification 
of the viral infection is of little difficulty due to the 
readily observable symptoms in infected pigs that 
include (1) high fever, (2) reduced locomotor 
movements, (3) lack of appetite, (4) huddling, (5) 
conjunctivitis, (6) diarrhea and vomiting, (7) 
somnolence, (8) dyspnea, (9) seizures, and (10) skin 
hemorrhages (Blome et al., 2020). This virus's 
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transmission and promulgation rely on vector species 
such as ticks that primarily target boars found in the 
wilderness. ASFV has evolved from a very mild 
strain into a highly transmissible virus that threatens 
today's swine population (Chen et al., 2021). 
Although tremendously virulent to hogs, there is no 
risk of this virus being transmitted to humans and 
cause the same threats that it poses for pigs. The virus 
indirectly impacts society through the economy since 
the meat of the domesticated pigs is often a central 
ingredient in making food from all ranges of cuisine. 
It is therefore of great importance to develop 
therapeutics that could eliminate this virus. Up to this 
date, there is no commercially available vaccine or 
drug to combat ASF in infected animals. The 
scientific community has only relied on control 
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strategies to confine the virus and prevent its further 
spread. 

Regarding its structure, ASFV is classified as a 
nucleocytoplasmic large DNA virus (NCLDV), 
having a genome size of 180,916 base pairs (Alonso 
et al., 2018) and an overall virion diameter of 175-215 
nm with a 70-100 nm diameter nucleoprotein core 
(Blome et al., 2020). The core is surrounded by: (1) 
an internal lipid layer, (2) an icosahedral capsid that 
is composed of 1892-2172 capsomeres, and (3) the 
dispensable lipid envelope (Alonso et al., 2018). This 
virus is highly stable in environmental settings and 
thrives in most and protein-rich areas. Furthermore, it 
can survive in raw meat products at variable 
durations. The structure and architecture of the virus 
have not been fully elucidated.  However,  the 
pA104R protein of the ASFV has successfully been 
studied (Urbano & Ferreira, 2020), and its 
crystallographic structure is available (Liu et al., 
2020). This macromolecule is a DNA-binding protein 
essential for viral replication and transcription 
(Frouco et al., 2017b). ASFV enters the host cell 
through endocytosis and micropinocytosis. Then, the 
virus uses the pA104R to interact with the host cell's 
DNA, leading to the mass manufacture of the viral 
parts via gene editing and the completion of the 
replicative cycle of the ASFV (Galindo & Alonso, 
2017). The structure of the pA104R is characterized 
as histone-like since it shares conserved sequence 
homology with the other histone-like proteins derived 
from bacteria (Frouco et al., 2017a).  

In a study by Liu et al., the researchers 
successfully elucidated the structure and determined 
the binding properties of the pA104R  to the host 
DNA (i.e., pA104R-DNA complex). Their findings 
illustrated the unique binding pattern of pA104R as it 
uses its β-ribbon arm and inserts it in the major 
groove of the DNA. Furthermore, the researchers 
evaluated the ability of the stilbene derivatives, SD1 
and SD4, to inhibit viral replication by disrupting the 
pA104R-DNA binding in swine macrophages (Liu et 
al., 2020). Zhu et al. utilized protein-protein 
interaction (PPI) networks to determine the ASFV-
interacting proteins and assessed some commercially 
available drugs, such as Polaprezinc and 
Geldanamycin, that could potentially bind to some 
viral proteins to inhibit the action of the ASFV (Zhu 
et al., 2020). A similar study by Mottola et al. helped 
unmask the antiviral activity of fluoroquinolones 
against the virus (Zhu et al., 2019). Recently, there 
have been explorations on the potential of 
antimicrobial peptides (AMPs) and their effect on 
porcine viruses, including their mechanism of action 
(Pen et al., 2020);  however, the AMPs used were 

already existing ones, and therefore, further 
exploration on more efficient peptides must be done. 
Although the research on ASF has reached great 
strides in the past years, there is still no potential 
candidate to eliminate or inhibit the effects of the 
virus in question. It is therefore imperative to devise 
new strategies that could identify compounds that 
could neutralize ASFV.  

Drug discovery and development is defined as the 
process of identifying chemical entities that have 
potential therapeutic effects (Mohs & Greig, 2017). 
Over the years, this process has undergone radical 
changes with the further integration of biology, 
chemistry, physics, mathematics, and computer 
science (Umashankar & Gurunathan, 2015). The 
pipeline (i.e., drug discovery and development) 
involves a multistage process that should be strictly 
followed before a novel chemical entity is 
commercially available for public consumption 
(Mohs & Greig, 2017).  Until the late 1980s, drug 
discovery was solely based on blind screening and 
serendipity (Kiriiri et al., 2020). This was changed 
upon introducing high-throughput screening (HTS) 
and combinatorial chemistry, allowing scientists to 
discover and synthesize many compounds 
(Umashankar & Gurunathan, 2015). However, the 
methods above were very costly and could be 
described as "brute force" approach as finding lead 
candidates is dependent on the initial library of 
compounds (Polanski, 2020). A further refinement of 
the pipeline has emerged with the introduction of the 
in silico approach. Such a strategy uses computational 
methods to predict the binding properties of the 
compound of interest to the biological target. The 
Boston Consulting Group estimated that integrating 
in silico practices in the drug discovery pipeline could 
save 14% of the total cost (Agarwal et al., 2017). 

Herein, we identified potential drug-like 
compounds that can be utilized to treat African Swine 
Fever (ASF) mainly through the inhibition of the 
pA104R-DNA binding. To accomplish this, de novo 
methods and a ligand-based virtual screening 
approach were employed. The binding affinities of 
the generated and retrieved compounds were 
determined through molecular docking studies.  
Finally, the pharmacokinetic properties of the 
identified drug-like compounds were ADME/T 
studies. This study shall only entail the identification 
and pharmacokinetic characterization of the possible 
hit compounds. 
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2 METHODOLOGY 

2.1 Protein Preparation 

The crystallographic structure of ASFV pA104R in 
complex with dsDNA was obtained from Protein 
Data Bank (accession number: 6LMH). Protein 
visualization and refinement were conducted in the 
Biovia discovery studio visualizer (DASSAULT 
SYSTEMES, 2020). pA104R contains two chains: A 
and B (i.e., AHR and BDR, respectively). In this 
study, only the AHR was considered, and so the chain 
B was removed. The heteroatoms (i.e., dsDNA and 
water molecules) were deleted and polar hydrogen 
was added for the subsequent analyses. The pA104R-
DNA complex active site residues were shown in 
Table 1. 

 

 
Figure 1: In silico experimental design. 

2.2 In Silico De Novo Synthesis of 
Reference Molecules 

To our knowledge, there has been no definitive report  

of possible drug-like DNA-binding inhibitors of the 
African swine fever virus. As such, we opted to 
perform a de novo drug design approach to generate 
potential ligands. This strategy uses computational 
algorithms to build molecules that exhibit specified 
properties. e-LEA3D (https://chemoinfo.ipmc.cnrs 
.fr/LEA3D/index.html) is an online tool that enables 
users to perform computer-aided de novo drug design 
efficiently.  This web server creates diverse 
molecules through a genetic algorithm that evolves 
fragments based on mutation and crossover operators 
(Douguet, 2010). 

The prepared protein structure was loaded to the 
server. Then, the desired molecular properties of the 
output molecules were selected using default 
parameters. e-LEA3D uses the PLANTS docking 
program to assign scores in the generated molecules. 
The parameters used in this function were as follows: 
binding site radius = 40, binding site residue = 
LYS89, weight in final score = 1. The server returned 
10 'reference' compounds that have a high binding 
affinity towards pA104R. The experimental design 
employed in this study was shown in Figure 1. 

2.3 Ligand-Based Virtual Screening 
(LBVS) 

The de novo approach has one major flaw: molecules 
generated through this strategy are hard to synthesize 
(Mouchlis et al., 2021). To make up for this 
drawback, we adapted ligand-based virtual screening 
that could be used to search for commercially 
available active compounds from several enormous 
libraries of molecules. This approach is usually done 
when there is no prior knowledge of the 3D structure 
of the target protein (Hamza et al., 2012). 
Nonetheless, ligand-based VS could also be 
employed when searching for new ligands with 
similar chemical and biological activities.  

In this study, the USR-VS web server 
(http://usr.marseille.inserm.fr/) was used. This tool 
implements Ultrafast Shape Recognition (USR) and 
Ultrafast Shape Recognition with CREDO Atom 
Types (USRCAT) algorithms to screen a library for 
similar compounds relative to the pharmacophoric 
properties of the query molecule (Schreyer & 
Blundell, 2012). Currently, the USR-VS screening 
library is comprised of 23 million molecules with 
over 94 million low-energy conformers. To conduct 
the virtual screening, the structure data files (SDF) of 
the nine (9) reference molecules were retrieved from 
the e-LEA3D webserver.  
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The screening process was straightforward. The 
SDF files were uploaded into the webserver. Then, 
the desired scoring algorithm (i.e. USR and 
USRCAT) was selected. We used USRCAT since it 
has been reported that this algorithm outperformed 
USR in retrospective screening (Schreyer & Blundell, 
2012). Clicking 'submit' initiates the virtual screening 
that will only take milliseconds. Each query (i.e. 
reference) molecule generated 100 hits.  Once the 
screening was finished, the results were displayed in 
a separate internet tab and the SDF for each hit 
compound was downloaded. 

2.4 Drug-likeness Filtration 

Drug-likeness filters are important aspects of drug 
discovery. These parameters determined the 
likelihood of a compound to exhibit therapeutic 
effects while being biologically safe based on its 
molecular structure. Moreover, applying filters to a 
large library of compounds could eliminate the non-
drug-like molecules, thus saving operation time and 
cost (Shen et al., 2012). In this study, a total of 900 
hit compounds were identified through ligand-based 
virtual screening. Five drug-like filters were 
employed for the analysis (Table S1). The filtration 
process was conducted using the SwissADME 
website (http://www.swissadme.ch/index.php). This 
tool is a versatile free-of-charge webserver for 
determining the physicochemical properties, 
lipophilicity, water-solubility, pharmacokinetics, 
drug-likeness, and medicinal chemistry of small 
molecules (Daina et al., 2017).  

SwissADME only accepts chemical structures in 
SMILES format (i.e. .smi extension). Thus, the hit 
compounds (i.e., in SDF format) must be converted 
into the acceptable file format before executing the 
filtration process. To do this, the OpenBabel widget 
of the PyRx version 0.8 (The Scripps Research 
Institute, 2008) was used. After the said conversion, 
the SMILES were uploaded to the webserver. All 
compounds that passed the five filtration parameters 
without any violations were selected for the 
subsequent analyses. Sixty-two (62) unique drug-like 
compounds were identified. 

2.5 Molecular Docking Studies 

The 62 drug-like compounds were subjected to 
molecular docking studies to determine their affinity 
for binding against pA104R. DockThor 
(https://dockthor.lncc.br/v2/) is a user-friendly 
webserver for receptor-ligand docking developed by 
the GMMSB group (Santos et al., 2020). This tool 

performs molecular docking through flexible-ligand 
and rigid-receptor strategies based on the MMFF94S 
force field (Guedes, Costa, et al., 2021). The docking 
procedure is a three-step process. First, the prepared 
protein (i.e. protonated) in PDB format was uploaded 
to the server. Since no cofactors were considered in 
this study, the 'do not use cofactor' function was 
selected. Then, the 62 drug-like compounds in SDF 
format were docking program requires the user to 
upload the protonated version of the ligands. For 
convenience, DockThor is embedded with an 'add H' 
function. The submitted protein and ligand structure 
were processed after clicking 'send'.  A checkmark 
appeared which indicated that the input molecules 
were valid and recognized by the force field. The final 
step involves setting up the docking configuration. 
The user could choose from blind docking or user-
defined docking. Since the binding site was already 
determined (Table 1), we performed user-defined 
docking. DockThor utilizes a genetic algorithm to 
determine the optimal poses for flexible ligand 
docking (De Magalhães et al., 2014). Furthermore, 
the platform allows the user to customize the 
algorithm parameters, but the 'standard algorithm' 
was selected for this study. Table S2 shows the 
different parameters used in the docking experiment. 
The webserver ranked the 62 drug-like compounds 
based on their binding affinities. The chemical 
structure (i.e., in .mol2 format) of the best docking 
pose for each input molecule was obtained. The 3D 
and 2D protein-ligand interactions were visualized 
using Biovia discovery studio. 

2.6 ADME/T Studies 

Compounds must undergo ADME/T studies to 
determine their pharmacokinetic properties and 
safety level. The 62 drug-like compounds and the 9 
reference molecules were then subjected to ADME/T 
studies. To do so, we used pkCSM 
(biosig.unimelb.edu.au/pkcsm/prediction), a web-
based tool commonly used to calculate the 
pharmacokinetic properties of small-molecule drugs, 
such as the compounds involved in this study. This 
application allows for the fast development of 
predictive models of central ADMET properties via 
graph-based signatures (Pires et al., 2015). Since the 
pkCSM webserver only accepts entries in the 
SMILES format, we first converted the available files 
to the .smi format via the OpenBabel widget of the 
PyRx software, similar to the earlier method. 
Subsequently, the compounds were uploaded to the 
web-based server for the prediction of their 
pharmacokinetic properties 
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3 RESULTS AND DISCUSSION 

3.1 The pA104R: A Therapeutic Target 
for ASF 

DNA packaging is a vital process in the life cycle of 
double-stranded DNA (dsDNA) viruses. Packaging 
proteins bind with the DNA and initiates 
conformational changes that cause it to bend and be 
organized into densely packed chromatin structures 
(Urbano & Ferreira, 2020). Failure of these proteins 
to promote condensation and packaging will 
inevitably cause DNA damage, ultimately leading to 
apoptosis (J. Y. J. Wang, 2001). Therefore, targeting 
the proteins involved in the said process is an 
attractive approach to design therapeutics against 
viruses.  DNA-packaging proteins have been reported 
for a wide range of organisms. For instance, the 
packaging proteins in bacteria are the histone-like 
proteins belonging to the HU/IHF superfamily 
(Swinger & Rice, 2004). In relevance to the ASFV, 
p10 and pA104R are the major DNA-packaging 
proteins in mature ASFV (Andrés et al., 2002). 
However, a more recent study using small interfering 
RNA (siRNA) has shown that pA104R has a 
profound role in DNA replication, transcription, and 
packaging of ASFV (Frouco et al., 2017a). 

 
Figure 2: The structure of (A) DNA-pA104R complex 
(PDB accession code:6LMJ) and (B) apo-pA104R (PDB 
accession: 6LMH). 

pA104R is a homodimer that significantly 
resembles other bacterial HU/IHF homologs (Liu et 
al., 2020). The crystallographic structures of the apo-
pA104R and DNA-bound pA104R were shown in 
Figure 2. The protein folds into two domains, namely 
the "body" AHR(i.e., alpha-helical region) and the 
"arms" BDR (i.e., β-strand DNA binding region). As 
shown in Fig 2B, the DNA interacts predominantly 
with pA104R via the BDR arm. The surface of this 
region is saturated with positively charged, making it 
an attractive binding site for the negatively charged 
DNA molecule (Liu et al., 2020). Thus, the 
subsequent analyses were simplified by focusing on 
the BDR. To design an effective inhibitor, the key 

amino acid residues within the binding site must be 
identified. Thus, the active site amino acid residues in 
the DNA-pA104R complex were determined using 
the Biovia Discovery Studio (Table 1). As 
hypothesized, the key amino acid residues in the BDR 
arm are mostly positively charged at physiological 
pH. HIS78, LYS89, and LYS91 are all positively 
charged. Meanwhile, PRO80 is an aliphatic amino 
acid making it nonpolar and hydrophobic. This 
residue interacts with the DNA strand, but the nature 
of its interaction is not electrostatic since it is 
nonpolar at physiological pH. Further studies are 
encouraged to uncover the linkages between this 
residue and the target DNA strand. 

Table 1: Interacting amino acid of DNA-pA104R complex. 
Only the AAs in the BDR were considered. 

pA104R domain Active residues 

AHR 

LYS 63 
LYS98 

ARG100 
LEU102 
LYS103 

BDR 

HIS78 
PRO80 
LYS89 
LYS91 

3.2 De Novo CADD of ASFV DNA 
Binding Inhibitors 

There is only a handful of literature dedicated to 
searching for possible DNA-binding inhibitors in 
AFSV. Liu et al. reported that SD1 and SD4 (i.e., 
stilbene derivatives) had inhibitory effects on the 
DNA-pA104R binding. Such results were evident by 
their ability to repress the ASFV replication (Liu et 
al., 2020). To our knowledge, these are the only 
molecules known to have therapeutic potential 
against African swine fever. It is of great importance 
to increase the number of viable ligands. De novo 
computer-aided drug design (CADD) approach in 
drug discovery enables the generation of novel 
ligands based on defined scoring functions (Douguet, 
2010). To that end, e-LEA3D, a de novo drug design 
tool, was employed in this study. This program uses 
a genetic algorithm that evolves molecular fragments 
and optimizes the combination of these fragments 
(Douguet et al., 2005). Once a library of optimized 
molecules is generated, they are assigned a score 
based on docking fitness calculated by the PLANTS 
program.  As shown in Table 2, e-LEA3D generated 
nine molecules. ref1 has the highest score (i.e., 
91.25%), implying that this compound has the best 
docking conformation from all the generated 
molecules using the program's algorithm. However, 
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this does not bear weight on the binding affinity of the 
ligand to pA104R since its primary purpose is to rank 
the solutions. 

Table 2: Reference molecules generated using e-LEA3D. 

Code 
Molecular 
Formula 

Weight 
(g mol-1) 

Score 
(%)

ref1 C48H61N10O14S2 1066.19 91.25 

ref2 C68H86N10O17S3 1411.66 87.07 

ref3 C43H57N11O12S2 984.11 84.89 

ref4 C67H84N10O17S3 1397.64 84.31 

ref5 C67H82N14O17S3 1451.65 83.75 

ref6 C55H64N10O12S2 1121.29 83.31 

ref7 C62H82N10O17S3 1335.57 83.29 

ref8 C62H82N10O17S3 1335.57 83.23 

ref9 C49H60N10O16S3 1141.25 82.94 

3.3 Ligand-Based Virtual Screening 
(LBVS) of Molecules Based on 
Pharmacophoric Activity 

The de novo design strategy of molecules does not 
guarantee their ability to be developed into 
therapeutic agents. As mentioned, the synthetic 
accessibility of the generated compounds is one of the 
major challenges in the de novo approach (Mouchlis 
et al., 2021). A high binding affinity serves no 
purpose if the molecule is hard to synthesize. To 
address this problem, a screening process within a 
library of commercially available molecules may be 
performed. Virtual screening (VS) of prospective 
drug compounds has become the norm in the early 
stages of drug discovery. It is often regarded as the in 
silico counterpart of the tedious and expensive high-
throughput screening (HTS) (Polgar & M. Keseru, 
2011).  

The screening process is divided into ligand-based 
and structure-based approaches. The latter aims to 
determine the best ligand that will bind to the receptor 
based on surface complementarity (Maia et al., 2020). 
The pre-requisite for this type of analysis is the 
availability of the 3D protein structure. Meanwhile, 
ligand-based VS uses the pharmacophoric properties 
of a query molecule to retrieve compounds that 
exhibit similar biological and chemical activities 
from a database(Singh et al., 2021). 

In this study, we applied ligand-based virtual 
screening to obtain commercially available molecules 
based on the pharmacophores of the reference 
compounds. USR-VS is a webserver that uses 
Ultrafast Shape Recognition (USR), and Ultrafast 
Shape Recognition with CREDO Atom Types 
(USRCAT) algorithms for effective pharmacophore 

search and retrieval (Li et al., 2016). USR predicts the 
molecular shape by analyzing the relative positions of 
bonded atoms. As implied by its name, USR enables 
the user to search for molecules with a similar three-
dimensional shape at incredible speed.  USRCAT is 
an extension of USR integrated with the CREDO, a 
structural interactomics database (Schreyer & 
Blundell, 2013). This algorithm works similarly with 
USR, but it uses pharmacophoric constraints for a 
more effective similarity search. Therefore, the 
USRCAT algorithm was used in this analysis. The 
nine (9) de novo designed compounds were used as 
query molecules to the USR-VS webserver. The 
similarity search covered 23 million molecules and 94 
million low-energy conformers from the ZINC 
database. Each run returned 100 hit compounds. 
Therefore, the nine reference molecules generated 
900 hits.  

3.4 Drug-likeness Filtration of Hit 
Compounds 

It is estimated that only 40% of hit compounds can 
transition from the pre-clinical to first-in-humans 
stage due to their poor physical and chemical 
properties (Venkatesh and Lipper, 2000). Drug-
likeness filtration is one of the barriers a compound 
must overcome to advance in the late phases of drug 
discovery (Hu et al., 2018). This assesses the 
probability of a compound to be manufactured as a 
therapeutic drug based on some physicochemical 
parameters. The method of applying the drug-likeness 
filter has been an integral step in the drug discovery 
pipeline because any chemical compound may 
exhibit an excellent therapeutic effect. Still, not all 
could be transformed into viable drug.  

To eliminate the hit compounds with undesirable 
properties, drug-likeness filtration was performed 
using the SwissADME webserver. This web tool has 
been used in 2100 in silico analyses (i.e., as per the 
number of citations of the published paper of the 
developers (Daina et al., 2017) ). SwissADME uses 
five filters to assess the drug-like properties. 
Violation in any of the filters (i.e., Lipinski (Lipinski, 
2004), Ghose (Ghose et al., 1999), Egan (Egan et al., 
2000), Veber (Veber et al., 2002), and Muegge 
(Muegge et al., 2001)) disqualifies the compound 
from further analysis. By adhering to this selection 
criterion, one could ascertain the excellent drug-like 
properties of successful compounds. 
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Table 3: Drug-likeness filtration of the 900 compounds. 
(Note: For simplification, only results from five compounds 
were shown). 

Compound 
no. 

Code Formula 

No. of filter 
violations 

(i.e., Lipinski, Ghose, 
Veber, Egan, and 

Muegge) 

1 1.27 C23H30N4O2 0 
10 2.59 C19H23N3O3 0 
54 9.19 C20H31N3O2S 0 
58 9.43 C20H22N2O3 0 
62 9.92 C24H26N2O4 0 

 
Table 3 shows the summary of the results. After 

screening 900 compounds, only 62 were drug-like. 
This translates to a 6.89% success rate from hit 
identification to drug-like filtration. Lipinski's rule of 
five (Ro5) was primarily developed to assess the 
druggability of new molecular entities (Lipinski, 
2000). If a molecule fails one of the parameters of 
Ro5, then the absorption and permeability properties 
are put into question. However, Lipinski et al. stated 
that molecules that violate at least one of the said 
parameters should not be necessarily removed from 
the selection process (Petit et al., 2012). Instead, such 
molecules should be given low priority in the drug 
discovery process. Nonetheless, satisfying the Ro5 
without violation is an indicator of excellent drug-
likeness. 

3.5 Molecular Docking Studies 

Sixty-two (62) identified drug-like molecules 
underwent further screening to determine the 
compounds that exhibit high binding interactions 
with the target protein pA104R. The analysis was 
conducted through molecular docking, a structure-
based virtual screening strategy. Molecular docking 
is a computational approach to screen for ligands that 
fit the protein's ligand-binding site with high 
complementarity (i.e., geometrically and 
energetically) (Azam & Abbasi, 2013).  Docking 
tools use search algorithms to predict a ligand's best 
docking pose (Sanchez, 2013). Then, a scoring 
function calculates the binding free energy of the 
protein-ligand complex (Bissantz et al., 2000).  

In this study, DockThor, a web server for highly 
flexible ligand-docking, was used. This tool utilizes a 
dynamic genetic algorithm as a search method. Such 
an algorithm allows the intensive survey of the energy 
hypersurface to generate multiple minima solutions 
(De Magalhães et al., 2014). DockThor uses the 
DockTScore as a scoring function based on the 
MMFF94S force field (Guedes, Barreto, et al., 2021). 
The scoring function considers the intermolecular 

interactions, torsional entropy, lipophilic interaction, 
polar solvation, and nonpolar solvation. As shown in 
Table 4, the binding affinities achieved range from -
7.790 to -6.158 kcal mol-1. Compound 8.45 ranked 
first with a binding affinity of -7.790 kcal mol-1.  

Table 4: Docking results of the 62 drug-like compounds. 
(Note: For simplification, only results from five compounds 
were shown). 

Rank 
Compound 

Code 

Binding 
affinity 

 (kcal mol-1) 

Total 
energy  

(kcal mol-1) 

vdW 
Energy 

Elec. 
energy 

1 8.45 -7.790 12.623 -15.214 -11.853 

2 2.21 -7.705 36.308 -13.926 -11.001 

52 2.59 -6.817 18.362 -4.727 -19.801 

51 9.19 -6.841 -1.480 -8.951 -16.563 

62 6.45 -6.158 -7.153 -2.613 -19.790 

 
There are two amino acids critical for the binding 

of 8.45 with ASFV. GLN76 (i.e., glutamine at 
position 76) formed three hydrogen bonds, two of 
which are conventional, while the remaining is a pi-
donor hydrogen bond. The first hydrogen bond is 
formed by the interaction of the oxygen atom of the 
GLN76 to the hydrogen atom of the amino group in 
8.45. Then, the hydrogen from the GLN76 interacts 
with the carbonyl oxygen of the compound. 
Meanwhile, the glutamine's nitrogen atom forms a pi-
donor hydrogen bonding (Figure 3). HIS78 creates a 
pi-alkyl interaction with the said molecule. The 
amino acid, HIS78, is one of the active site amino acid 
residues (Table 1). Such interactions might explain 
why compound 8.45 had the highest binding affinity 
among all drug-like molecules that underwent 
molecular docking. Therefore, 8.45 could be a  
 

 

Figure 3: Molecular interactions of compound 8.45 to (top) 
GLN76 and (bottom) HIS78 of the ASFV. 
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potential DNA-binding inhibitor of pA104R solely 
based on the docking results. However, further tests 
must be conducted to determine this compound's 
potential as a therapeutic agent. 

3.6 ADME/T Profiling 

Determination of pharmacokinetic characteristics is 
one of the most critical steps to ensure that the drug 
being developed is safe to be administered during 
animal and clinical trials. The results for the ADME/T 
of the unique compounds with the highest binding 
affinities are shown in Table 5. For the absorption 
parameters, it can be observed that the intestinal 
absorption% for the drug-like compounds have a very 
high positive value, ranging from 69.985% to 
95.646%. Such results match the existing literature 
since adhering to Lipinski's Rule of Five entails that 
the drug-like compounds are likely to be well-
absorbed in the intestine (Zhao et al., 2001). Further 
supporting this idea, the range derived for the human 
intestinal absorption (HIA) % was above the optimum 
level of 30%, as shown by Wang (2016) (N. N. Wang 
et al., 2017). All the values for skin permeability of 
both the unique compounds indicate skin 
permeability because all the values were lower than -
2.5 (Hassan et al., 2018). The results are favorable 
since they signify that the drugs can be applied 
through skin contact and promote the elimination of 
these drugs to prevent the accumulation of chemicals 
in the body (Osborne & Musakhanian, 2018). This 
finding provides an alternative route of 
administration for the proposed compounds.  

Caco-2 permeability is considered the final 
absorption parameter. It makes use of the Caco-2 cell, 
or the human colon adenocarcinoma, to model the 
intestinal absorption of many compounds 
(Matsumoto et al., 2018). The Caco-2 permeability 
values for the unique group were varying. The unique 
and reference groups yielded acceptable results as all 
values were above the reported threshold for optimum 
Caco-2 permeability value (i.e., -5.15) (N. N. Wang 
et al., 2016). This finding reinforces the results given 
by the HIA% that the compounds under study have 
adequate intestinal absorption. 

We observed that the VDss values of the unique 
group varied but were negative for all reference 
compounds for the distribution parameters. A higher 
VDss value entails better distribution into the tissues 
than in the plasma (Yates & Arundel, 2008). 
Compounds  2.2 and 9.19 had unfavorable VDss 
values because they were close to the minimum range 
(i.e., -0.15) (Firdausy et al., 2020). On the other hand, 
the drug compounds 8.45, 2.21, 8.40, 7.21, and 2.59 

displayed moderate VDss values because their values 
were between the range reported (i.e., -0.15 to 0.45) 
(Firdausy et al., 2020).  

The blood-brain barrier permeability was varying 
for the unique group but all negative for the reference 
compounds. Nevertheless, all the unique compounds 
were unable to penetrate the blood-brain barrier (i.e., 
< 0.3) (Firdausy et al., 2020). Such a result is a 
positive indication since the expected target of the 
compounds is not found within the brain. Regarding 
CNS permeability,  compound 7.21 can effectively 
penetrate the central nervous system (i.e., > -2), 
whereas the remaining unique compounds could only 
poorly penetrate the CNS (i.e., < -3) (Pires et al., 
2015).  However, even if the CNS permeability 
values were favorable for all the compounds, they 
would still not penetrate the CNS due to the blood-
brain barrier (Carpenter et al., 2014).  

The metabolism of the compounds being studied 
was dictated by their capacity to become either 
CYP2D6 or CYP3A4 (i.e., the two main subtypes of 
cytochrome P450) inhibitors (Firdausy et al., 2020). 
All of the unique compounds were not CYP2D6 
inhibitors. Meanwhile, compounds 2.2, 8.40, and 
7.21 were known to be CYP3A4 inhibitors. A 
negative result from these tests could suggest the 
excellent metabolism of the proposed drug-like 
compounds in the human body; the presence of 
inhibitors poses a threat for the body since decreased 
metabolism leads to the accumulation of the 
compounds and will thus increase the toxicity of that 
potential drug (Niel et al., 1992).  

For the excretion parameter, total clearance was 
considered. This parameter measures the compound's 
ability to be cleared from all tissues (i.e., the 
combination of renal and hepatic clearances. The 
CLtot values for compounds considered were within 
the range -0.278 to 1.449 log ml min-1 kg-1. It was 
found that the highest total clearance was achieved by 
compound 8.45, which suggests that it has the highest 
bioavailability (Firdausy et al., 2020). Meanwhile, 
compounds 7.21 and 9.19 had negative values 
indicating their poor systemic clearance.  

Finally, the toxicity of the proposed drugs was 
evaluated. The Ames test is a preliminary evaluation 
to determine the mutagenicity of drug candidates 
(Mortelmans et al., 2016). Based on the results, only 
compound 2.2 was characterized as a mutagen. There 
is a high correlation between carcinogenicity and 
mutagenicity (ca. 90%). This indicates that 
compound 2.2 could induce mutations leading to 
cancer (Mortelmans et al., 2016). It is therefore 
essential to perform other tests to determine its 
genotoxicity. 
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Table 5: ADME/T Results of the unique (i.e., drug-like) group. The top 5 compounds based on their binding affinities from 
the molecular docking studies were used. Compounds 9.19 and 2.59 were also included for the ADME/T profiling due to 
their low hepatoxicity. 

Code 

Absorption Distribution Metabolism Excretion Toxicity 

Intestina

l abs. 

Skin 

permeability 

Caco-2 

permeability 
VDss 

BBB 

permeabili

ty 

CNS 

permeabi

lity 

CYP 2D6 

inhibitor 

CYP 3A4 

inhibitor 

Total 

Clearance 

Ames 

Toxicity 

Hepato

toxicity 

LD50 

(mg kg-1) 

8.45 89.927 -2.849 0.794 0.361 -0.569 -2.641 No No 1.022 No Yes 695.29 

2.21 91.148 -3.022 0.811 0.395 -0.802 -2.653 No No 0.808 No Yes 911.54 

2.2 82.316 -2.741 0.158 -0.182 -1.053 -2.42 No Yes 0.109 Yes Yes 1056.52 

8.40 92.54 -3.069 0.662 0.221 -0.955 -2.974 No Yes 0.248 No Yes 1081.99 

7.21 92.942 -3.246 0.703 0.126 -0.183 -1.953 No Yes -0.317 No Yes 793.17 

9.19 91.444 -3.869 0.878 -0.087 -0.375 -2.918 No No -0.278 No No 390.81 

2.59 88.437 -2.863 0.987 0.105 -0.836 -2.44 No No 0.438 No No 2583.83 

 

Meanwhile, a hepatotoxicity test was also 
performed to determine whether the drug could cause 
significant liver injury. This stage of the development 
process greatly impedes the translation of a substance 
into a commercial drug  (Björnsson, 2016). Based on 
the results, only compounds 9.19 and 2.59 were not 
hepatoxic. This result signifies that these are the only 
compounds from the unique group that causes 
minimal harm to the human liver.  

The final parameter considered is the rat oral acute 
toxicity (LD50) of the proposed drug candidates. This 
parameter determines the amount of the substance 
that could kill 50% of the test animal population 
(Adamson, 2016). The higher the LD50 value of the 
compound, the less toxic the substance is when taken 
orally by the individual. The resulting LD50 of the 
unique group compounds ranged from 2.121 to 2.985. 
Based on the Hodge and Sterner scale, all compounds 
except 9.19 are considered only slightly toxic, with a 
toxicity rating of 4 (ca. 500-5000 mg kg-1 ) (Ahmed, 
2015). Meanwhile, compound 9.19 is considered 
moderately toxic since its LD50 value falls under a 
toxicity rating of 3 (ca. 50-500 mg kg-1). The 
remaining compounds had relatively low LD50 that is 
indicative of their high toxicity. Therefore, caution 
must be exercised when deriving the optimum dosage 
of these drug candidates. 

To identify the most suitable compounds among 
the unique group, we devised a scoring system that 
consisted of the molecular docking rank and the 
ADME/T score. The top five compounds from the 
molecular docking studies were analyzed for 
ADME/T profiling. However, we also considered 
compounds 9.19 and 2.59 even though they ranked 
51st and 52nd, respectively. These two were the only 
non-hepatoxic compounds; therefore, we opted to 
include them in the scoring system. For the ADME/T 
scoring, each parameter violation was awarded one 
point. The compound with the lowest score was 

deemed to have the most favorable ADME/T 
properties. Based on the results, compound 2.59 
performed best on the ADME/T studies (Table 6). 
Meanwhile, compound 2.2 had the most number of 
parameter violations.  

Table 6: Summary of docking and ADME/T performance. 
For ADME/T profiling, violation in any of the parameters 
is rewarded one point. The final score is the average of the 
docking and ADME/T scores. 

Code 
Docking 
Rank/Score

ADME/T Score Final Score 

8.45 1 2 1.5 

2.21 2 2 2 

2.2 3 4 3.5 

8.40 4 3 3.5 

7.21 5 3 4 

9.19 51 2 26.5 

2.59 52 1 26.5 

 
The docking score and the ADME/T score were 

averaged to calculate the final score. Compound 8.45 
had the lowest score (ca. 1.5), signifying its excellent 
binding affinity against pA104R and favorable 
pharmacokinetic properties. Although compound 
2.59 ranked first in the ADME/T studies, it fell short 
of its molecular docking ranking resulting in a low 
final score (ca. 26.5). Compounds 2.21, 2.2, 8.40, and 
7.21 had relatively good final scores. Such results 
implied their superior properties similar to compound 
8.45. Additional tests must be conducted on these 
compounds to determine their capabilities as 
therapeutic agents against ASF. Particularly, 
bioassays such as the haemadsorption test (HAT) are 
useful in exploring the efficiency of the compounds 
as ASFV therapeutics (Fischer et al., 2020). 
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4 CONCLUSION 

In this paper, the identification and characterization 
of potential drug candidates for the treatment of ASF 
were conducted. We were able to characterize the 
structure of the pA104R protein with visualization 
software. The DNA binding site of the pA104R was 
determined. Nine (9) de novo reference compounds 
were generated. Of these compounds, 900 
commercially available drug-like small molecules 
were retrieved through ligand-based virtual screening 
using pharmacophoric similarities.  

Drug-likeness filtration was done to determine the 
compounds with excellent druggability properties. 
Sixty-two (62) drug-like compounds were subjected 
to molecular docking and ADME/T studies. Of these 
filtered drug-like molecules, compound 8.45 
achieved exceptional docking rank (ca. 1) and 
ADME/T score (ca. 2), earning the lowest final score. 
The other drug-like molecules (i.e., 2.21, 2.2, 8.40, 
and 7.21) also performed well.  Compounds 9.19 and 
2.59 had the best ADME/T profile but performed 
poorly in the molecular docking studies. Further 
experiments must be performed to identify their 
potential as anti-ASF therapeutics.  
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