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Abstract: With an ever increasing number of connected devices, network intrusion detection is more important than
ever. Over the past few decades, several datasets were created to address this security issue. Analysis of
older datasets, such as KDD-Cup99 and NSL-KDD, uncovered problems, paving the way for newer datasets
that solved the identified issues. Among the recent datasets for network intrusion detection, CIC-IDS2017
is now widely used. It presents the advantage of being available as raw data and as flow-based features in
CSV files. In this paper, we analyze this dataset in detail and report several problems we discovered in the
flows extracted from the network packets. To address these issues, we propose a new feature extraction tool
called LycoSTand, available as open source. We create LYCOS-IDS2017 dataset by extracting features from
CIC-IDS2017 raw data files. The performance comparison between the original and the new datasets shows
significant improvements for all machine learning algorithms we tested. Beyond the improvements on CIC-
IDS2017, we discuss other datasets that are affected by the same problems and for which LycoSTand could be
used to generate improved network intrusion detection datasets.

1 INTRODUCTION

We live in a world where interactions with connected
devices are ubiquitous. Computers, smartphones, IoT,
connected cars are used every day. But this connected
world is under threat from cyberattacks making net-
work security more important than ever. The impacts
of computer network intrusions can be severe. This is
typically the case when healthcare infrastructures are
blocked or when hackers remotely take control of a
connected vehicle.

Such cyberattacks can be prevented by the use
of Network Intrusion Detection Systems (NIDS). To
study network intrusion detection, KDD-Cup99 (Lee
et al., 1999) was one of the earliest publicly avail-
able datasets, released in 1999, and has been widely
used. An initial review of this dataset (McHugh,
2000) has put in light some issues that were fur-
ther analyzed (Tavallaee et al., 2009). A derived
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dataset referred to as NSL-KDD addresses some of
the shortcomings of KDD-Cup99. Subsequently, sev-
eral datasets were published by the Canadian In-
stitute for Cybersecurity (CIC), University of New
Brunswick, Canada, such as CIC-IDS2017 (Cana-
dian Institute for Cybersecurity, 2017b), CSE-CIC-
IDS2018 and CIC-DDOS2019 (Sharafaldin et al.,
2019). These datasets present the advantage of being
available in two forms: a record of Ethernet frames
in Packet CAPture (PCAP) files and a list of net-
work flow characteristics extracted from the Ethernet
frames in CSV files.

Our main contributions consist of four parts. First,
we present an in-depth analysis of CIC-IDS2017
showing some inherent issues in its CSV files. Five
classes of problems were identified: feature dupli-
cation, feature calculation errors, erroneous proto-
col detection, inconsistent TCP termination flows and
doubts on labels. Second, since this dataset is not
provided with the tool to put labels, we propose a
new network flow extractor called LycoSTand work-
ing with a labelling solution specific to this dataset.
LycoSTand solves all the issues discovered during
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our analysis. CIC-IDS2017 PCAP files were pro-
cessed with our tools to generate a new dataset called
LYCOS-IDS2017. The tools and the resulting dataset
are publicly available: http://lycos-ids.univ-lemans.
fr/. Then, Machine Learning (ML) algorithms were
used to measure performance of both datasets. We
show that the corrections provided by LycoSTand im-
prove standard metrics for all the tested algorithms.
At last, we considered four other recent datasets based
on the same features extractor as CIC-IDS2017. We
found several artifacts in each showing that they suf-
fer from the problems identified on CIC-IDS2017.
All these datasets could very likely be enhanced by
using LycoSTand to extract features from available
PCAP files.

This paper presents in Section 2 works related to
IDS. A comprehensive analysis of CIC-IDS2017 is
provided in Section 3. Section 4 presents our tools
used to create LYCOS-IDS2017, a corrected dataset
detailed in 5. The performance impacts of all the cor-
rection we brought are provided in Section 6. A short
analysis in Section 7 shows that several other CIC
datasets are affected by the issues identified in this
paper and could benefit from feature extraction with
LycoSTand. Finally, Section 8 concludes this paper
and identifies ideas for future work.

2 RELATED WORK

With the rise of computer networks and the Internet,
many research have been conducted on network in-
trusion detection using different datasets. KDD-Cup
dataset has been used since 1999 and still appears in
recent publications. However, it presents several is-
sues (McHugh, 2000). To enable researchers to in-
vestigate new IDS models, a part of its shortcom-
ings were solved in a new dataset called NSL-KDD
(Tavallaee et al., 2009). This dataset contains selected
records from its predecessor to remove redundant
records and to better balance the size of classes by
difficulty level. Although it does not address all prob-
lems of KDD-Cup99, NSL-KDD is a better dataset.

Several other IDS datasets have been created.
University of Twente proposed a dataset (Sperotto
et al., 2009) aiming to be representative of real traffic
and complete from a labelling perspective. UNSW-
NB15 (Moustafa and Slay, 2015) is a simulation-
generated IDS dataset containing modern attacks
grouped into nine different attack families. Although
the tool generating the traffic is based on informa-
tion about real attacks listed in security vulnerability
website (CVE), the simulation may not perfectly re-
flect the network traffic generated by the tools used by

hackers.
Many IDS datasets were reviewed and evaluated

against 11 criteria (Gharib et al., 2016). These
characteristics were used to create CIC-IDS2017
(Sharafaldin et al., 2018), a new dataset released by
the Canadian Institute for Cyber Security (CIC) at
the University of New Brunswick. This dataset con-
tains traffic recorded for 5 days, including normal
traffic and attacks launched by machines running Kali
Linux with its set of penetration testing toolset. CIC-
IDS2017 is now widely used to study performance of
machine learning algorithms in network intrusion de-
tection (Gamage and Samarabandu, 2020; Yang et al.,
2021; Ho et al., 2021; Maseer et al., 2021).

Although CIC-IDS2017 was intended to address
the issues of previous IDS datasets, a very limited
number of study have been conducted to identify po-
tential problems. A detailed analysis of this dataset
(Panigrahi and Borah, 2018) revealed four shortcom-
ings of different importance. CIC-IDS2017 data is
scattered in many files, meaning that users have to ag-
gregate all files to use them. This generates a dataset
that is huge and heavy to process. These first two
problems are rather common in machine learning and
do not affect performances of intrusion detection. It is
also reported that many samples have missing values
and that classes are highly imbalanced. Another study
(Rosay et al., 2021) identified that some features ex-
tracted from PCAP files are poorly computed. One
can expect these issues to impact the performance of
ML algorithms. Other issues covering several aspect
were found (Engelen et al., 2021): attack simulation,
feature extraction, flow construction and labelling.

It should be noted that a vast majority of pub-
lications rely on the CSV files provided by CIC
to study the performance of machine learning algo-
rithms. Based on the problems mentioned above, it is
natural to wonder whether the findings remain valid if
the CSV are badly generated.

We propose to go further in the analysis to pro-
vide more insights about the flow construction issue,
to highlight more problems affecting CIC-IDS2017
and to provide our solution as open source software to
generate a corrected dataset from the raw data avail-
able in the PCAP files of CIC-IDS2017 and some
other dataset released by the CIC. In addition, we pro-
pose a benchmark of machine learning algorithms to
compare CIC-IDS2017 and LYCOS-IDS2017.

3 COMPREHENSIVE ANALYSIS

A first step of the analysis consists of understanding
how the dataset was created and its content. Then,
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in an attempt to reproduce the flow-based features of
CIC-IDS2017 from the PCAP files, we discovered
several problems both in the original CSV files and
CICFlowMeter (Canadian Institute for Cybersecurity,
2017a), the tool generating the features.

3.1 CIC-IDS2017 Description

The dataset was recorded on a real network whose
infrastructure is divided into two parts. The first one
contains 4 machines launching the attacks towards the
second one containing 10 victim machines. 50 GByte
of raw data in PCAP files are provided together with
a set of 84 features in CSV files. Network traffic was
recorded for 5 days, resulting in a total of 2,830,743
instances.

The network traffic is classified into 15 classes.
One of them corresponds to normal traffic, while the
others 14 are different attacks.

Features were extracted from the PCAP files with
a tool called CICFlowMeter (formerly ISCXFlowMe-
ter) (Canadian Institute for Cybersecurity, 2017a;
Draper-Gil. et al., 2016; Lashkari et al., 2017). The
source code of this tool is available. The tool can gen-
erate up to 84 features related to bidirectional flows.
Forward and backward directions are defined by the
source and destination of the first packet of a flow.
Flows are identified by a source IP and port, a destina-
tion IP and port, and a protocol forming the FlowID.
Some characteristics such as packet length or inter-
arrival time generate statistical features: minimum,
maximum, mean, standard deviation and variance val-
ues in both directions. In a Transmission Control
Protocol (TCP) connection, synchronization (SYN),
acknowledgment (ACK), finish (FIN) or reset (RST)
flags are used to indicate the status of the connection.
Some other flags like push (PSH) or urgent (URG)
provide additional useful information. Statistics on
these flags are used as features of the dataset. Flow
duration is measured between SYN and FIN flags for
most TCP connections. In case of User Datagram
Protocol (UDP), the end of a flow is a timeout, as
for some TCP communications. The exhaustive list
of features generated by CICFlowMeter is presented
in (Rosay et al., 2021).

3.2 Discovered Issues

The CICFlowMeter source code has evolved over
time without a clear version tag, making it impossible
to know the exact version to use to reproduce the fea-
tures extracted from the dataset. However, all avail-
able versions of the tool generate files with a suffix
"_Flow.csv" while the CSV files of the dataset were

generated with a different suffix "_ISCX.csv". This
suffix corresponds to an earlier version of the tool that
is not available in the source code. Therefore, it is im-
possible to reproduce the CSV files from the provided
PCAP files.

Comparisons between the CSV files generated by
CICFlowMeter, hereafter referred to as CFM files,
and the original CSV files, hereafter referred to as
ISCX files, revealed some discrepancies. We found
that some issues appear in both CFM and ISCX files,
while others appear only in one of them. They are
classified into five categories: feature duplication,
feature miscalculations, wrong protocol detection, in-
adequate TCP session termination and labelling issue.

3.2.1 Feature Duplication

We identified 4 duplicated features in ISCX files. The
first duplicated feature is the average packet length
per flow which is calculated for both features: "Aver-
age Packet Size" and "Packet Length Mean". Then,
the average forward packet length in the flow "Fwd
Packet Length Mean" which is the same as what is
called segment in "Fwd Segment Size Avg". The
same thing is observed in the opposite direction with
"Bwd Packet Length Mean" and "Bwd Segment Size
Avg". The fourth duplicated feature in ISCX files,
corrected in CICFlowMeter code, is the "Fwd Header
Length" with "Fwd Header Length.1". Since the code
used to generate ISCX files is not available, we will
only explain the remaining miscalculations in CFM
files using CICFlowMeter code.

3.2.2 Feature Miscalculations

We found 34 miscalculated features in ISCX files.
Most likely due to updates in the CICFlowMeter
code, some features were corrected in the latest ver-
sion of the tool (downloaded on 03-23-2021) on
which we based our study. We found 23 remaining
mistakes in feature calculation, this number lowers to
21 if we keep only the non-duplicated features.

• The most common mistake is due to a type issue
in calculation (integer division instead of floating-
point division). This affects 11 features: 6 related
to bulks, 4 related to subflows and 1 to down-
link/uplink ratio.

• For each new packet, backward bulk features are
updated, independently from the packet direction.
The same way, forward bulk features are never
updated. This leads to erroneous values for all 6
bulk-related features.

• The subflow count is updated depending on a test
on timestamp values. Due to misplaced parenthe-
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sis, the test is always true and so the subflow count
is increased for each new packet received.

• The first packet of each flow is used twice to up-
date the packet length features, this impacts 3 fea-
tures which are the mean, standard deviation and
total packet length.

• TCP-related features contain errors. The SYN and
PSH flag counts are inverted, as are the FIN and
URG flag counts. Both forward and backward
counts for PSH and URG are never updated. The
initial TCP window size in backward direction is
updated with each packet received and therefore
contains the last value instead of the initial one.

3.2.3 Wrong Protocol Detection

CICFlowMeter processes packets according to the
protocol that is detected. Unfortunately, the tool
sometimes fails to detect it. We observed two types
of protocol detection issues due to poor analysis of
the Ethernet frames.
• A first level of detection should depend on the

Ethertype field of the Ethernet header. CI-
CFlowMeter assigns all packets in the PCAP file
to IPv4 or IPv6. Instead of using the Ethertype
field, the tool checks whether the packet contains
an IPv4 or IPv6 header. If a sequence of bytes
in the payload looks like an IPv4 or IPv6 header,
the packet is classified accordingly, whatever the
Ethertype field. An analysis of the PCAP file
contents shows that Address Resolution Protocol
(ARP), Link Layer Discovery Protocol (LLDP)
and Cisco Discovery Protocol (CDP) packets are
present and misclassified. To illustrate this, some
ARP packets are interpreted as IPv4 packets with
IP addresses 8.0.6.4 and 8.6.0.1 corresponding to
values of the ARP header fields.

• A second level of analysis should be based on
the protocol field of the IPv4 header. Simi-
larly to IPv4 or IPv6 detection, CICFlowMeter
checks whether the packet contains a TCP or UDP
header. A sequence of bytes in the payload can
be misinterpreted as a TCP or UDP header. If
the tool does not detect TCP or UDP, the packet
is classified in another group that does not corre-
spond to any IPv4 protocol. The analysis shows
that the PCAP files contain Internet Control Mes-
sage Protocol (ICMP), Internet Group Manage-
ment Protocol (IGMP) and Stream Control Trans-
mission Protocol (SCTP) packets. TCP and UDP
packets are classified according to IANA proto-
col numbers while most other packets are asso-
ciated with a ’0’ protocol. We observed that CI-
CFlowMeter classifies ICMP packets sometimes

Figure 1: TCP sequence diagram.

as TCP, sometimes as UDP and sometimes as nei-
ther. Another side effect appears with fragmented
frames. UDP fragments are not recognized as
UDP and are treated like other protocols with a
’0’ tag, except for the first packet that contains the
UDP header.

3.2.4 Inconsistent TCP Termination Flows

In CICFlowMeter, flows are closed either when the
duration exceeds a predefined timeout of 120s, or
if the received packet carries a ’FIN’ flag. TCP is
a connection-oriented protocol with handshakes. A
typical example is depicted in Figure 1.

When a new TCP communication is started, a first
flow is created. It will contain all the packets from the
3-way handshake and the data transfer. This flow is
closed when the first packet of the final 4-way hand-
shake is received. A second flow is created containing
the second and third packets of this handshake. Fi-
nally, the last packet will create a third flow. The TCP
state machine is complex and many other session ter-
mination cases can occur. This behavior causes three
problems:

• If no other communication using the same ad-
dresses/ports is started, this third flow will be
closed by timeout. Otherwise, the last packet of
the flow will be aggregated with those of the new
communication.

• Since the flow-based features are similar for four-
way handshakes under normal and attack traffic,
they may negatively impact the performance of
machine learning depending on the label attached
to the second and third flows. In addition, we ob-
served inconsistency in the attack labels in ISCX
files: some second and third flows are labelled as
benign while others are labelled as attacks, creat-
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ing even more confusion for ML algorithms.

• If a TCP communication is aborted by a ’RST’
flag, CICFlowMeter does not consider it as clos-
ing the flow. Any further communication with the
same identifier will be merged into the flow that
should have been closed by the ’RST’ flag.

3.2.5 Doubts About Labelling

A comparison between the information available on
the website presenting CIC-IDS2017 data (Canadian
Institute for Cybersecurity, 2017b) and the dataset
content revealed some discrepancies, raising doubts
about the correctness of the dataset labelling. This
point can be illustrated by portscan attacks.

• The website mentioned that portscan attacks oc-
cur with and without firewall enabled while all
portscan attacks in ISCX use the firewall IP ad-
dress (172.16.0.1).

• Some flows using the attackers IP address when
the firewall is disabled (205.174.165.73) are la-
belled as benign. These flows were analyzed with
Wireshark and the traffic pattern is very similar
to the portscan attack: many short flows on many
different ports and terminating with a TCP reset.
This seems to confirm that the information on the
website is correct but that some of the labels are
wrong.

A CIC-IDS2017 author confirmed that if there are dis-
crepancies between the website and the ISCX labels,
priority should be given to the labels. He also con-
firmed that the labelling was achieved using a pro-
prietary package that is not publicly available. Al-
though the patterns in PCAP files clearly show that
some flows labelled as benign correspond to portscan
behaviour, it is not possible to formally confirm the
labelling issue.

In summary, the aggregation of packets to cre-
ate flows is incorrect due to poor protocol detection.
Many features are miscalculated. Improper termina-
tion of TCP sessions creates similar flows with differ-
ent labels. These major problems impact the perfor-
mance of machine learning algorithms that are com-
monly used for network intrusion detection.

4 LycoSTand: A NEW
FLOW-BASED EXTRACTOR

Given all the problems to be resolved and the lack
of a clear baseline for CICFlowMeter, we decided to
create and publicly release a C program called Lyco-
STand so that it could be used to reproduce our results

or to process PCAP files from other datasets as an al-
ternative to CICFlowMeter. It relies on the libpcap li-
brary to parse Ethernet packets. This tool was devel-
oped and validated on Ubuntu 18.04, using libpcap-
dev version 1.8.1-6ubuntu1.18.04.2 and gcc compiler
version 7.5.0.

This program takes the PCAP files, analyzes the
packets and calculates 82 flow-based features. We
mainly reused the features from CIC-IDS2017 except
for the miscalculations mentioned in Section 3.2.2. It
creates one CSV file containing all the features for
each PCAP file. The complete list of features is de-
scribed at http://lycos-ids.univ-lemans.fr/.

A major difference between LycoSTand and CI-
CFlowMeter is the handling of TCP session termina-
tions. UDP flows are exclusively closed with a time-
out of 120s (configurable in LycoSTand). For TCP,
we decided to close flows as soon as a packet with
the ’RST’ or ’FIN’ flag is received. In such a case,
the flowID is stored in a ’TCP_terminated’ list. When
a TCP packet is received, we check if its flowID is
in this list. If it is in the TCP_terminated list, packets
belonging to the TCP session termination are dropped
until a packet with a ’SYN’ flag is received, indicat-
ing that a new flow is starting. The ’TCP_terminated’
list is cleaned up with each new packet by comparing
the timestamp difference with the maximum duration
of a TCP session termination. The packet processing
is described in Algorithms 1 and 2.

When a flow begins, all its features are initialized
to 0. They are updated when a subsequent packet be-
longing to the same flow is received. The computation
of the running statistics is based on the incremental
technique originally proposed by Welford (Welford,
1962).

The protocol detection is based on the Ethertype
extracted from the Ethernet header and the IP protocol
field extracted from the IPv4 header. This solves the
issues described in Section 3.2.3.

The current version of LycoSTand is publicly
available at http://lycos-ids.univ-lemans.fr/. It gener-
ates flows from IPv4 packets but it could be extended
to process other packet types such as IPv6, ARP or
LLDP. Another limitation of our tool is related to run-
time. Our focus was on creating reliable datasets, not
on being time-optimized. Attacks such as portscan
or DoS/DDoS create many flows in a short period of
time, and due to the use of singly linked lists, the
amount of time it takes to search through the lists is
in O(n), where n is the number of ongoing flows. We
ran LycoSTand on a laptop based on an Intel Core
i7-8750H processor with 16GByte of RAM and the
analysis of CIC-IDS2017 PCAP files took about 16
hours. A future version of the tool could use other
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Algorithm 1: Packet processing.
while True do

wait for next packet
clean TCP terminated list
extract flow identifiers from received packet
search flow in list of flows
if IPv4 packet then

if flow is not in list of flows then
if TCP packet then

if flow is not in TCP terminated
list then

if packet hasn’t ’FIN’ nor
’RST’ flag then

create new flow
calculate its initial

statistics
else

add ID to TCP
terminated list

else
if packet has ’SYN’ flag
then

create new flow
calculate its initial

statistics
remove ID from TCP

terminated list

else
create new flow
calculate its initial statistics

else
if flow not terminated then

update running statistics
else

terminateFlow(packet, flow)

data structures such as the hashmap to reach an amor-
tized research duration in O(1).

5 LycoS-IDS2017: A CORRECTED
DATASET

To confirm the corrections made on the feature extrac-
tor have an impact on machine learning, we created a
new dataset by processing the PCAP files from CIC-
IDS2017 with LycoSTand. Since the original dataset
was labelled with a proprietary package, we devel-
oped our own solution. This program is written in
Python. Our labelling solution relies on the traffic

Algorithm 2: Flow termination.
Procedure terminateFlow(packet, f low)

close existing flow
if flow ended by timeout then

if TCP packet then
if packet has ’FIN’ or ’RST’ flag

then
add ID to TCP terminated list if
it is not there yet

else
create new flow
calculate its initial statistics

else
create new flow
calculate its initial statistics

else
add ID to TCP terminated list if it is not
there yet

return

analysis we carried out with Wireshark, which re-
vealed that labels can be assigned using source and
destination addresses and ports coupled with times-
tamps. We did not use time information provided on
CIC website but adjusted time according to the traffic
analysis.

The resulting dataset and program are publicly
available at http://lycos-ids.univ-lemans.fr/. We use
different techniques to attach a label to each flow:

• The reference (Canadian Institute for Cybersecu-
rity, 2017b) provides information about the time
period and the addresses or ports involved in the
various attacks.

• We analyzed the PCAP files with Wireshark to
confirm the labels. By observing the attack pat-
terns, we were able to adjust the duration of the
attacks.

• We found out that a lot of flows recorded on
Thursday afternoon were labelled as benign in
CIC-IDS2017, while the pattern is most likely a
portscan attack. As it corresponds to infiltration
attacks, this behavior can be explained by the fact
that this attack is composed of two phases. As ex-
plained in (Sharafaldin et al., 2018), a file contain-
ing a vulnerability is downloaded and then, the
attacker runs a portscan attack. We believe that
CIC-IDS2017 authors labelled the second phase
as benign traffic. In the absence of detailed in-
formation from the authors, it is impossible to
identify with absolute certainty which flows are
truly benign traffic and which should have been
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Table 1: CIC-IDS2017 traffic instances.

Traffic CIC-IDS2017 LYCOS-IDS2017

BENIGN 2,273,097 1,395,659
Bot 1,966 735
DDoS 128,027 95,683
DoS GoldenEye 10,293 6,765
DoS Hulk 231,073 158,988
DoS Slowhttptest 5,499 4,866
DoS Slowloris 5,796 5,674
FTP-PATATOR 7,938 4,003
Heartbleed 11 11
Infiltration 36 0
PortScan 158,930 160,106
SSH-PATATOR 5,897 2,959
WebAttack BruteForce 1,507 1,360
WebAttack SQL Injection 21 12
WebAttack XSS 652 661

Total 2,830,743 1,837,500

labelled infiltration. To avoid errors in our la-
bels, we decided to drop all packets from Thurs-
day afternoon. Consequently, LYCOS-IDS2017
does not contain any infiltration attacks.

The list of attacks and the number of instances
for each dataset is presented in Table 1. We observe
that almost every label has less instances in LYCOS-
IDS2017 than in CIC-IDS2017. It is consistent to
have less instances for the majority of labels basically
because of the TCP session terminations discarded.

For Portscan, there is a certain amount of TCP ses-
sions that end with a ’RST’ flag and then another one
begins with a ’SYN’ flag for the same flowID, this be-
havior leads to more flows in the Lycos file than in the
ISCX file.

An uncertainty remains for our labelling program
in one specific case. The number of WebAttack XSS
in Lycos file is surprisingly high compared to ISCX.
We suspect that CIC-IDS2017 contains some benign
traffic using the same IP addresses and ports as the
attack. Here again, we regret not having access to
the original labelling package. Despite doubts about
our labels for this attack, we decided to keep it in
the dataset. By publishing our tools, we hope that
more people can investigate and potentially improve
our work.

6 PERFORMANCE IMPACTS
FOR INTRUSION DETECTION

As explained in Section 5, LYCOS-IDS2017 is cre-
ated from the CIC-IDS2017 PCAP files to solve the
identified issues. In this section, we define an experi-
mental setup to compare performance of both datasets
with several ML algorithms. The creation of training,
cross-validation and test sets is explained in Section

6.1. In a second step, we detail the ML algorithms
in Section 6.3. Then, the metrics used to evaluate the
performance are developed in Section 6.3. Finally, the
performance comparison between CIC-IDS2017 and
LYCOS-IDS2017 is presented in Section 6.4.

6.1 Data Preparation

This section presents the different steps to prepare the
data injected as input to our model. After data clean-
ing, flows from different classes are sampled in train-
ing, cross-validation and test sets. Then, a feature se-
lection is applied before a standardization step.

6.1.1 Data Clean-up

CIC-IDS2017 contains more than 280,000 instances
with all empty features. These unwanted samples
were removed. A negligible number of instances con-
taining ’NaN’ or ’Infinity’ were dropped. Due to the
miscalculation of features, some features are always
null. This is the case for ’Bwd PSH Flags’, ’Bwd
URG Flags’, ’Fwd Avg Bytes/Bulk’, ’Fwd Avg Pack-
ets/Bulk’, ’Fwd Avg Bulk Rate’, ’Bwd Avg Bytes-
/Bulk’, ’Bwd Avg Packets/Bulk’, ’Bwd Avg Bulk
Rate’. Therefore, we decided to remove these fea-
tures. Finally, we removed infiltration because this
attack is not available in LYCOS-IDS2017.

For LYCOS-IDS2017, we only removed the three
URG flag related features that are always null as all
the other features deleted from CIC-IDS2017 were
due to calculation errors and they become informa-
tive in LYCOS-IDS2017. A cross-check in the PCAP
files confirmed that URG flag is not set in any packet.

Time information in a dataset can be useful for
concept drift analysis but knowing that the Ethernet
frames were recorded for 5 consecutive days, this
dataset is not suitable for studying concept drift. In
addition, since we do not want the model to learn
when an attack occurs, the ’Timestamp’ feature can-
not be considered informative.

Each instance is characterized by its source and
destination ports and IP addresses, its protocol and all
these information gathered in a flowID. As the flow
identifier is redundant with other features, it was re-
moved from the dataset. We also decided to drop the
source and destination IP addresses and source port
because these features are not relevant in a generic
intrusion detection system and can be learned by the
IDS.
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Table 2: Dataset split.

Traffic Training set Cross-validation set Test set

benign 220,316 110,158 110,158
bot 367 183 183
ddos 47,841 23,920 23,920
dos_goldeneye 3,382 1,691 1,691
dos_hulk 79,494 39,747 39,747
dos_slowhttptest 2,433 1,216 1,216
dos_slowloris 2,837 1,418 1,418
ftp_patator 2,001 1,000 1,000
heartbleed 5 2 2
portscan 79,465 39,732 39,732
ssh_patator 1,479 739 739
webattack_bruteforce 680 340 340
webattack_sql_injection 6 3 3
webattack_xss 317 158 158

Total 440,632 220,312 220,312

6.1.2 Creation of Training Set, Cross-validation
Set and Test Set

As shown in Table 1, the datasets are highly imbal-
anced at two different levels. First, the normal traffic
(BENIGN) represents ∼80% of the whole traffic and
second, some attacks (Heartbleed, Infiltration, We-
bAttack SQL injection) are represented by a very lim-
ited number of instances. This is known to be a chal-
lenge for supervised learning. The general idea is to
build training and test sets by randomly selecting 50%
of each attack for the training set, 25% for the cross-
validation set and 25% for the test set, ensuring that
each instance is used only once. Since CIC-IDS2017
and LYCOS-IDS2017 do not contain exactly the same
number of attacks, we tuned the composition of train-
ing and test sets to obtain the same number of in-
stances and allow for a fair comparison. Then, each
set is supplemented with randomly selected instances
of normal traffic without replacement. The result is
a dataset that is balanced in term of normal traffic
versus attacks, but still imbalanced in terms of at-
tack types. Only training and cross-validation sets are
used during the training phase. Final performance is
measured with data from the test set that was never
used during the training. The exact composition of
the training, cross-validation and test sets is provided
in Table 2.

6.1.3 Data Pre-processing

Data pre-processing is essential to prepare the
datasets for an efficient training. In particular, the
neural network learns best when all features are scaled
to the same range. This is especially useful when the
inputs are at very different scales. In our implemen-
tation, Z-score normalization was selected as it has
better results than min-max scaling on the selected
dataset. Since some features may contain high val-
ues, the relevant information may be compressed by

the min-max scaler into a narrow range, negatively
impacting the classifier performance. For each feature
F j, the transformation of each xi value to its standard-
ized value xn,i is given by (1) where µ(F j) and σ(F j)

are respectively the mean and standard deviation val-
ues of feature F j.

x
(F j)
n,i =

x
(F j)
i −µ(F j)

σ(F j)
(1)

6.2 Algorithms

The performance of the datasets is evaluated on tradi-
tional ML algorithms and a simple neural network.

6.2.1 Classical Machine Leaning

The same training, cross-validation and test sets were
used for various classical ML algorithms available
in the scikit-learn Python library: i) Decision Tree,
ii) Random Forest, iii) k-nearest neighbors, iv) Lin-
ear Discriminant Analysis, v) Quadratic Discriminant
Analysis, vi) Support Vector Machine.

The Decision Tree (DT) classifier is based on
CART algorithm which produces a binary tree. The
gini criterion is used to measure impurity. Ran-
dom Forest (RF) contains 100 trees and the classifier
also uses gini impurity to split the data. K-Nearest
Neighbors (k-NN) is configured to sort data based
on the five nearest neighbors using the Euclidean
distance. Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA) are classi-
fiers able to generate linear and quadratic boundaries
between classes respectively. Due to the size of the
training set, it would not be adequate to use a non-
linear kernel. Therefore, we used linear Support Vec-
tor Machine (SVM).

6.2.2 Neural Network

Multi-layer perceptron (MLP) is a fully connected,
feed-forward neural network classifier. Our MLP
takes as inputs the normalized values of the selected
features and contains two hidden layers of 256 nodes
with SELU (Klambauer et al., 2017) activation func-
tion. The output layer is composed of 14 nodes and
uses a softmax activation function.

The model was implemented in Python, using
TensorFlow-2.3 as deep learning framework. The
training set is divided into mini-batches of 32 in-
stances. MLP learns classification by adjusting the
w weights between the neural network nodes to re-
duce the cross-entropy loss function L(w) as defined
in (2) where y is the ground truth label and ŷ the pre-
dicted class. L(w) is optimized with Adam algorithm.
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Three parameters α, β1 and β2 described in (Kingma
and Ba, 2015) allow to configure this optimizer.

L(w) =− [y · log(ŷ)+(1− y) · log(1− ŷ)] (2)

The MLP was trained during 25 epochs. Potential
over-fitting of the neural network is controlled by
evaluating the cross-validation set. Dropout rate is ad-
justed so that the difference in performance between
the training and cross-validation sets remains small.
Hyper-parameters tuning is a tricky task that involves
finding the right set of values to get the highest per-
formance. A random search strategy (Bergstra and
Bengio, 2012) was applied to tune dropout rate, α,
β1 while keeping the default value β2 = 0.999. The
search was conducted in two stages. In the first phase,
we look for the best parameters in a wide range of val-
ues which are refined in a second phase. These ranges
are [0.5−0.01] for dropout_rate, [0.0001−0.002]
for α and [0.80−0.99] for β1. A second range of
parameters was tested around the best parameters ob-
served during the first phase. The procedure was used
twice to tune α and β1 at the same time, and then to
tune the dropout rate. We applied this method for both
dataset. The hyper-parameter values are given in (3)
and (4).

our dataset


α = 0.0003175219400915
β1 = 0.9158410351985389
dropout_rate = 0.1185905448

(3)

cic dataset


α = 0.0003590920789688
β1 = 0.8662527597085028
dropout_rate = 0.20886178816

(4)

6.3 Evaluation Metrics

Several key insights can be extracted by comparing
the predictions and the actual classes. True Positive
(TP) is the number of attacks correctly predicted as
attacks. True Negative (TN) is the number of normal
instances classified as normal traffic while False Pos-
itive (FP) and False Negative (FN) are respectively
the number of normal instances classified as attacks
and the number of attacks predicted as normal traf-
fic. Different metrics can be derived from the infor-
mation contained in the confusion matrix. True Neg-
ative Rate (TNR), Accuracy (Acc), Precision (Prec)
and Recall (Rec) are defined in (Maniriho and Ah-
mad, 2018). The f1 score is the harmonic mean of
Precision and Recall. False Positive Rate (FPR) in (5)
is the percentage of benign traffic classified as attacks.

FPR =
FP

T N +FP
(5)

The Matthews Correlation Coefficient (MCC) was
first introduced by B.W. Matthews (Matthews, 1975)
in the context of biomedical research. It is an in-
teresting measure taking into account all elements of
the confusion matrix in a correct way for imbalanced
dataset. In such a situation, accuracy is not adequate
because it may be a high value even if the entire mi-
nority class is misclassified. Since intrusion detec-
tion datasets are intrinsically imbalanced, MCC is an
essential metric for such an application. It is also
known as a robust metric when positive and negative
cases are of equal importance (Chicco et al., 2021).
It provides a value between −1 and +1. A perfect
prediction corresponds to MCC = 1. At the opposite,
MCC =−1 denotes a total disagreement between the
predictions and the actual classes. A random predic-
tion would correspond to MCC = 0.

6.4 Results

After training the different classifiers, the test set was
used to measure their performance as a 14-class clas-
sifier. The resulting confusion matrices were simpli-
fied by aggregating all attacks into a single class to
obtain a binary classifier. Table 3 details the com-
puted metrics for each dataset.

While classifiers differ in performance with CIC-
IDS2017, all but one reach the same level of per-
formance with LYCOS-IDS2017. The difference is
particularly important for classifiers that performed
worse with CIC-IDS2017. LDA is the algorithm that
improved the most but remains the worst. Its accuracy
increased from 88.10% to 96.93% while the false pos-
itive rate decreased from 22.08% to 6.27%. Resolv-
ing the CIC-IDS2017 problems has most likely im-
proved the possibility to linearly separate the classes,
but the dataset is still not completely linearly sepa-
rable. This hypothesis is confirmed by the improved
results of SVM using a linear kernel. QDA produces
better results than LDA. LDA assumes a covariance
matrix that is common to all classes in a dataset. Since
QDA performs better than LDA, we can conclude that
the assumption of a common covariance matrix is not
fulfilled in our dataset. The best results are obtained
with the decision tree and the random forest. These
algorithms behave like rule-based intrusion detection
systems that are known to produce good results. The
metrics of neural network are very slightly below the
best algorithms. This can be explained by the very
limited training phase, with only 25 epochs. We can
expect the MLP to get better results with a longer
training.

Table 4 presents the training duration and the time
needed to infer the complete test set which contains
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Table 3: Performance comparison.

Dataset Algorithm Accuracy (%) Precision (%) Recall (%) f1 score (%) False Positive Rate (%) MCC

LYCOS-IDS2017

LDA 96.59 94.00 99.54 96.69 6.35 0.9335
QDA 99.83 99.93 99.73 99.83 0.08 0.9966
SVM 99.50 99.61 99.40 99.51 0.38 0.9901
k-NN 99.95 99.91 99.96 99.93 0.10 0.9986
DT 99.92 99.92 99.92 99.85 0.08 0.9985
RF 99.96 99.95 99.98 99.96 0.06 0.9996
MLP 99.72 99.88 99.55 99.72 0.12 0.9943

CIC-IDS2017

LDA 88.10 81.63 98.33 89.21 22.12 0.7785
QDA 97.72 96.00 99.59 97.76 4.15 0.9550
SVM 96.98 95.78 98.30 97.02 4.33 0.9400
k-NN 99.31 98.87 98.75 98.61 1.10 0.9864
DT 99.88 99.87 99.89 99.88 0.13 0.9976
RF 99.90 99.90 99.91 99.90 0.10 0.9981
MLP 99.10 98.44 99.79 99.11 1.58 0.9821

Table 4: Execution time.

Algorithm Training (s) Inference (s)

LDA 4.874 0.933
QDA 3.138 2.782
SVM 336.908 0.071
k-NN not applicable 1,519.312
DT 9.879 0.036
RF 64.731 1.850
MLP 231.748 0.801

220,312 instances.
Among the algorithms achieving the best metrics,

we observe that k-NN is the worst in term of inference
time. This is explained by the nature of the algorithm.
k-NN is a lazy classifier that does not need a training
phase but measure the distance between the instance
to be classified and all other instances in order to find
the majority class of k nearest neighbors. This algo-
rithm is not suitable for big datasets. Clearly, Ran-
dom Forest requires more time than Decision Tree,
both for training and for inference. Since these al-
gorithms perform similarly, there is no need to use
RF. The longest training is observed with the neural
network. Nevertheless, as more and more comput-
ers contain hardware accelerators for neural network,
the inference time might be significantly reduced and
MLP could remain an interesting alternative to other
algorithms.

7 BEYOND CIC-IDS2017

The CIC website contains 19 datasets. CI-
CFlowMeter has been used to generate 5 of them:
(1) CIC-IDS2017, (2) CIC-AndMal2017 (Lashkari
et al., 2018), (3) CSE-CIC-IDS2018, (4) CIC-

InvesAndMal2019 (Taheri et al., 2019) and (5) CIC-
DDoS2019 (Sharafaldin et al., 2019). We have shown
that the features extracted from the PCAP files for (1)
are affected by the problems we have identified. One
can expect the same issues to be present in all datasets
generated by CICFlowMeter. A complete analysis of
the PCAP files for each of these datasets would be
an overwhelming task. We preferred to focus on the
detection of four artifacts in the CSV files.

• The first artifact corresponds to the presence of
a constant value for the bulk features, indicating
miscalculation.

• Another marker is the detection of the IP address
8.0.6.4 as explained in Section 3.2.3, indicating
that ARP packets are classified as IP packets con-
firming Ethertype detection problems.

• All flows indicating an IP protocol, source and
destination ports equal to 0 but not having an IP
address 8.0.6.4 are IP packets that are neither TCP,
nor UDP. This situation corresponds to an erro-
neous protocol detection.

• The fourth artifact corresponds to the presence of
a flow having two packets with a FIN flag that are
sometimes classified as benign and sometimes as
an attack. This indicates inconsistent TCP termi-
nation flows.

We found that all datasets containing CSV files
generated by CICFlowMeter contain these artifacts.
This confirms that CICFlowMeter is the source of
the issues. Since the authors of these datasets pro-
vided raw data, LycoSTand presents an interesting al-
ternative to extract flow-based features from existing
PCAP files.
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8 CONCLUSION

Having a reliable and publicly available IDS dataset
is an important concern for researchers in this do-
main. The Canadian Institute for Cybersecurity is a
major provider of IDS datasets. We analyzed one of
them and identified the key issues. Some features are
not calculated correctly, the protocols are partly in-
correct, and the way TCP packets are grouped into
flows is not suitable for machine learning processing.
Next, we proposed LycoSTand as a tool for process-
ing PCAP files and generated a new dataset from the
CIC-IDS2017 PCAP files. The tool and dataset are
publicly available so that they can be used to replicate
and improve our results.

A fair comparison of the original dataset with
LYCOS-IDS2017 demonstrated that the corrections
made by our tool have a positive impact on all tested
machine learning algorithms. Metrics such as accu-
racy, precision and recall are above 99.5% for all al-
gorithms, with the exception of LDA, which, in any
case, improves significantly from 88% to 96%. The
best results are obtained with Random Forest which
outperforms all other algorithms for all metrics. Fi-
nally, we observe that SVM or QDA that do not rank
well for CIC-IDS2017 become interesting algorithms
for LYCOS-IDS2017. This shows that a corrected
dataset may help researchers to reconsider the choice
of algorithms in their IDS studies.

The issues we identified in CIC-IDS2017 only ex-
ist in CSV files. This shows how important it is to
provide raw data along with the flow-based features.
Problem markers were found in all five datasets gen-
erated with CICFlowMeter. However, they are still
interesting because their PCAP files can be processed
with LycoSTand to obtain better flow-based datasets.
Because most of the publications related to these
datasets rely on algorithms processing the CSV files,
it is important to make available a corrected version
so that findings of research work are not impacted by
the erroneous CSV files.

Future work could be considered on the datasets
published by CIC and listed in section 7 with the goal
to confirm suspected issues. In addition, with the
rise of IoT devices, it would be interesting to study
how such devices can be protected from network in-
trusions. We intend to improve LycoSTand execution
time, deploy the model on a resource-constrained sys-
tem and replicate attacks to investigate whether the
training on the dataset can detect intrusion attacks
launched with a penetration testing toolset. Such re-
search could highlight some limitations of the ML-
based IDS solution for embedded system and deter-
mine if the current dataset is prone to concept drift.
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