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Abstract: We propose a framework, CGT, for semi-supervised learning (SSL) that involves a unification of multiple
image-based augmentation techniques. More specifically, we utilize Mixup and CutMix in addition to intro-
ducing one-sided stochastically augmented versions of those operators. Moreover, we introduce a general-
ization of the Mixup operator that regularizes a larger region of the input space. The objective of CGT is
expressed as a linear combination of multiple constituents, each corresponding to the contribution of a dif-
ferent augmentation technique. CGT achieves state-of-the-art performance on the SVHN, CIFAR-10, and
CIFAR-100 benchmark datasets and demonstrates that it is beneficial to heavily augment unlabeled training
data.

1 INTRODUCTION

Obtaining a fully labeled dataset for training deep
models is known to be expensive and time-
consuming. SSL aims to leverage a large amount
of unlabeled data along with a small number of la-
beled data to improve the model performance. In
recent years, various SSL approaches have been de-
veloped and have shown remarkable results on differ-
ent benchmark datasets (Tarvainen and Valpola, 2017;
Luo et al., 2018; Ke et al., 2019; Qiao et al., 2018;
Verma et al., 2019b; Ghorban et al., 2021; Li et al.,
2019; Xie et al., 2019).

Perturbation-based methods, a dominant approach
in SSL, are inspired by the smoothness assumption
which states that points from high-density regions in
the data manifold that are close to each other are likely
to share the same label. These approaches require
consistency of predictions under different perturba-
tions. The perturbations used in recent works can
be categorized into image- and model-based pertur-
bations. In the first case, perturbations are applied to
input samples whereas in the second case the hidden
layers in the model induce perturbation, i.e., two eval-
uations of the same input yield different results.

The procedure we propose in this work relies on
unifying multiple advanced data augmentation meth-
ods that have shown to work well. In our frame-
work, we utilize Mixup (Zhang et al., 2018) and Cut-
mix (Yun et al., 2019) operators besides introducing
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augmented versions of those operators in addition to
a generalization of the Mixup operator. These aug-
mented versions apply a set of common augmentation
transformations stochastically on one of the inputs to
those operators. The objective of our framework is a
linear combination of multiple constituents, each be-
longing to a different augmentation transformation.

The remainder of this work is organized as fol-
lows. In Sec. 2, we review relevant and related
consistency-based and augmentation approaches.
Section 3 briefly introduces and discusses the image
augmentation operations that we use for developing
our approach which we introduce in Sec. 4. Finally,
in Sec. 5, we present and discuss our results on three
different datasets and give a conclusion in Sec. 6.

2 RELATED WORK

In this section, we briefly discuss works in SSL that
are closely related to ours. We focus on works that
conceptually follow the approach of enforcing con-
sistency on unlabeled data points, i.e., penalize in-
consistent predictions of a data point under differ-
ent transformations. Furthermore, we review recently
proposed augmentation methods.

In Π-model (Laine and Aila, 2016), each sam-
ple undergoes two different perturbations that are as-
sumed to not change the data identity. For each pair
of perturbed data points, any inconsistency in predic-
tions is penalized. TE (Laine and Aila, 2016) fol-
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lows the same concept with the difference that the tar-
gets are constructed via exponential moving average
(EMA) of previous model predictions. In MT (Tar-
vainen and Valpola, 2017), targets are generated by an
EMA model constructed via EMA of previous model
weights. The aforementioned consistency regulariza-
tion methods consider only perturbations around sin-
gle data points. SNTG (Luo et al., 2018) considers the
connections between all data points and regularizes
the neighboring points on a learned teacher graph.

Recently, interpolation-based regularization meth-
ods (Zhang et al., 2018; Tokozume et al., 2018;
Verma et al., 2019a) have been proposed for su-
pervised learning, achieving state-of-the-art perfor-
mances across a variety of tasks. This regularization
scheme requires the use of the Mixup operator (Zhang
et al., 2018). Similar to data augmentation, Mixup is
a way of artificially expanding the volume of a train-
ing set and thus increasing data diversity. Mixup cre-
ates new training samples by linearly combining two
samples and their corresponding labels. The regular-
ization of interpolating between distant data points
via Mixup affects large regions of the input space.
Thus, this regularization scheme became successfully
adopted in SSL (Verma et al., 2019b; Ma et al., 2020;
Berthelot et al., 2019; Nair et al., 2019; Berthelot
et al., 2020).

In ICT (Verma et al., 2019b), authors apply Mixup
on labeled and unlabeled data points by replacing the
missing labels with predictions of an EMA model and
show impressive improvement over previous meth-
ods. AdvMixup (Ma et al., 2020) applies Mixup reg-
ularization on real and adversarial samples (Good-
fellow et al., 2015; Miyato et al., 2018). Mix-
Match (Berthelot et al., 2019) and RealMix (Nair
et al., 2019) present holistic approaches that combine
various dominant SSL approaches with Mixup. More
concretely, to name some, (Berthelot et al., 2019) uses
sharpening and label average over multiple augmen-
tations and interpolates samples between labeled and
unlabeled data points. PLCB (Arazo et al., 2020)
proposes the use of pseudo-labeling and demonstrates
that enforcing interpolation consistency helps to pre-
vent an overfit to incorrect pseudo-labels. ReMix-
Match (Berthelot et al., 2020) is the direct descendant
of MixMatch and extends its holistic approach by the
concepts of distribution alignment and augmentation
anchoring. Augmentation anchoring differs from the
label average over multiple augmentations in the as-
pect that it requires predictions of strong augmenta-
tions of a sample to be close to the prediction of a
weakly augmented version of that sample. Moreover,
the authors use an extended set of augmentations that
originates from AutoAugment (Cubuk et al., 2018).

Common data augmentations have recently gained
attention in various vision domains (Ghorban et al.,
2018; Zhong et al., 2020; Ghiasi et al., 2018;
Hendrycks* et al., 2020; Cubuk et al., 2018; Cubuk
et al., 2020) and have shown to be an important com-
ponent in SSL. These augmentations can dramati-
cally change the pixel content of a sample. AutoAug-
ment (Cubuk et al., 2018) learns optimal augmenta-
tion strategies from data using reinforcement learning
to choose a sequence of operations as well as their
probability of application and magnitude. Authors
in (Lim et al., 2019; Ho et al., 2019) optimize the Au-
toAugment algorithm to find more efficient policies.
RandAugment (Cubuk et al., 2020) is a simplification
of AutoAugment with a significantly reduced hyper-
parameter search space.

3 PRELIMINARIES

Consider a training set that consists of N samples, out
of which L have labels and the others are unlabeled.
Let L = {(xi,yi)}L

i=1 be the labeled set and U =
{xi}N

i=L+1 be the unlabeled set with yi ∈ {0,1}K being
one-hot encoded labels and K the number of classes.
Considering consistency regularization in SSL, the
objective is to minimize the following generic loss

L = LS +w LC, (1)

where LS is the cross-entropy supervised learning
loss over L , and LC is the consistency regularization
term weighted by w. LC penalizes inconsistent pre-
dictions of unlabeled data.

3.1 Augmentation Techniques

There exist a variety of augmentation techniques and
recent literature has demonstrated their success in su-
pervised learning (DeVries and Taylor, 2017; Zhang
et al., 2018; Yun et al., 2019; Hendrycks* et al., 2020;
Ghiasi et al., 2018; Zhong et al., 2020). In this sec-
tion, we briefly discuss four of these techniques from
which three are key contributors to our approach.

Let xi ∈ RW×H×C and yi denote a training im-
age and its one-hot encoded label, respectively. Let
(x1,y1) and (x2,y2) denote two given pairs of samples
and their labels.
Mixup. Mixup (Zhang et al., 2018) is able to create
an infinite set of new pairs using a linear combination
defined via the following operator(

Mixupλ(x1,x2) = λx1 +(1−λ)x2,

Mixupλ(y1,y2) = λy1 +(1−λ)y2

)
, (2)
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Figure 1: Visualizations of inputs and outputs of Mixup (a),
Cutmix (b), and Cutout (c) augmentation techniques.

where λ is a randomly sampled parameter from the
distribution Beta(β,β) with β being a hyperparameter.
Cutmix. Cutmix (Yun et al., 2019) relies on generat-
ing new pairs from two input pairs where a rectangu-
lar part of x1 is replaced by a rectangular part of the
same size cropped from x2. It is defined as(

Cutmixλ(x1,x2) = Mλ� x1 +(I−Mλ)� x2,

Mixupλ(y1,y2) = λy1 +(1−λ)y2

)
, (3)

where Mλ ∈ {0,1}W×H is a binary mask filled with
ones for the cropping region and zeros otherwise. I is
a binary mask filled with ones, and � is the elemen-
twise multiplication operator. The rectangle coordi-
nates defined as (rx,ry,rw,rh) are uniformly sampled
as

rx ∼U(0,W ),W
√

1−λ = rw ∼U(0,w),

ry ∼U(0,H), H
√

1−λ = rh ∼U(0,h), (4)

with λ being sampled from Beta(β,β) and corrected
so that the cropped area ratio becomes rw×rh

W×H = 1−λ.
w and h denote hyperparameters.
Cutout. Cutout (DeVries and Taylor, 2017) can be
considered as a special case of Cutmix and can be ap-
plied using Eq. 3 with x2 being replaced by a zero

matrix of the same dimension. However, in contrast
to Cutmix and Mixup, Cutout does not apply any op-
eration on the targets.

Visualizations of the inputs and outputs of the
Mixup with λ = 0.4, Cutmix with 1−λ = 0.25, i.e.,
rw = rh = 16, and Cutout operations are shown in
Fig. 1.
RandAugment. RandAugment (Cubuk et al., 2020)
uses a set of 14 traditional augmentation transforma-
tions. Essentially, it uses two parameters, N and M,
where N is the number of augmentation transforma-
tions to apply sequentially on an image and M is the
magnitude of the different transformations.

3.2 Consistency Regularization

Augmentation methods discussed in Sec. 3.1 were ini-
tially introduced in the context of supervised learning
for enhancing the generalization capability of deep
models. Recently, ICT (Verma et al., 2019b) has
adapted interpolation consistency to semi-supervised
learning by using guessed labels of an EMA model.
The consistency term for unlabeled data becomes

LC = Exi,x j∈U Eλ∼Beta(β,β)

l
(
Cθ(Mixupλ(xi,x j)),Mixupλ(Cθ′(xi),Cθ′(x j))

)
,

(5)

where Cθ and Cθ′ refer to the classifier and EMA mod-
els parameterized by θ and θ′, respectively, and l is a
measure of distance. For the supervised part, a similar
objective applies to the labeled data

LS = E(xi,yi),(x j ,y j)∈L Eλ∼Beta(β,β)

l
(
Cθ(Mixupλ(xi,x j)),Mixupλ(yi,y j)

)
. (6)

We reproduce ICT without changing any setting
using Tensorflow (Abadi et al., 2016). However, for
our baseline which is practically a duplicate of ICT,
we apply two changes. First, we omit the ZCA trans-
formation of the input data and only normalize the
samples to lie in the range [0,1]. Second, we rectify
a discrepancy in the target calculation in Eq. 5, i.e.,
while authors apply Mixup on the logits of Cθ′ to feed
the softmax function and calculate the targets, we ap-
ply Mixup directly on the softmax outputs. We notice
that these changes lead to a slight improvement in per-
formance.

Table 1 compares ICT to our adaptation of it,
ICT∗. Moreover, since our framework allows the
replacement of the Mixup operator through any in
Sec. 3.1 discussed augmentation methods, Tab. 1
shows a comparison between the three related meth-
ods Mixup, Cutmix, and Cutout on CIFAR-10 test set
using 4000 labeled samples, see Sec. 5.1. For Cut-
mix and Cutout, we use w×h = 16×16 cropped area
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Table 1: Comparison between test error rates [%] of ICT and our implementation of it (ICT∗) on CIFAR-10 using 4000 labels.
Errors for Cutmix, Cutout, and the two linear combinations (shown at the last two coloums) are obtained by adapting them
into ICT∗ while replacing Mixup. Results are averaged over three runs using the CNN-13 architecture (Laine and Aila, 2016).

CIFAR-10, L = 4000

ICT Mixup (ICT∗) Cutmix Cutout Mixup&Cutmix Mixup&Cutmix&Cutout

7.39±0.11 6.90±0.16 6.73±0.20 8.22±0.09 6.23±0.016.23±0.016.23±0.01 6.53±0.06

size as suggested by the authors in (Yun et al., 2019;
DeVries and Taylor, 2017).

We observe that Cutmix and Mixup achieve com-
parable performances and significantly outperform
Cutout. As discussed before, Cutout can be con-
sidered as a special case of Cutmix, however, while
Cutmix crops a region of an image and proportion-
ally adjusts the targets of the remaining patch, Cutout
omits this target adjustment. In (Yun et al., 2019), au-
thors are able to enhance the performance of Cutout
by combining it with label smoothing. Therefore, we
think that label smoothing may also help in our set-
ting. Furthermore, we observe that the two straight-
forward combinations, i.e., linear combinations of
the corresponding objectives, shown in the last two
columns, not only outperform all three basic augmen-
tation methods but Mixup&Cutmix also outperforms
more advanced and recent methods such as (Berthelot
et al., 2019; Nair et al., 2019; Ma et al., 2020), see
Tab. 2. This observation together with the simplic-
ity of those augmentation techniques motivated us to
further explore and develop this framework.

4 CGT FRAMEWORK

Our framework unifies several of the previously men-
tioned augmentation techniques, namely Mixup, Cut-
mix, RandAugment, and 3-Mixup which we describe
in detail in the following section. For applying the
augmentations on unlabeled data, as for ICT, we rely
on guessed labels obtained using an EMA model, Cθ′ .
Moreover, we propose a procedure that slightly im-
proves the performance of ICT and its derivatives,
mentioned in the previous section, in the final stage
of the training.

4.1 Augmentation Operators

In this section, we introduce our augmented Mixup
and Cutmix operators in addition to the 3-Mixup op-
erator which is an extension of the Mixup operator
and regularizes a larger region of the input space.

Let B = {(xi,yi)}B
i=1 ≡ (X ,Y ) be a batch of B

samples, X , and their corresponding true or guessed

labels depending on whether xi ∈L or xi ∈U. We de-
note two random permutations of (X ,Y ) as (X ,Y )′

and (X ,Y )′′ and in order to distinguish between them
elementwise, we use the following notation

(X ,Y )′ ≡ (X ′,Y ′) ≡ {(x′i,y′i)}B
i=1,

(X ,Y )′′ ≡ (X ′′,Y ′′)≡ {(x′′i ,y′′i )}B
i=1. (7)

Accordingly, the following refers to the operators ap-
plied on the samples of a batch

Mixupλ(X ,X ′)≡{Mixupλ(xi,x′i)}B
i=1,

Cutmixλ(X ,X ′)≡{Cutmixλ(xi,x′i)}B
i=1. (8)

We define the following augmented Mixup and Cut-
mix operators as

Mixupζ

λ
(X ,X ′)≡ {Mixupλ(xi,ζ(x′i)}B

i=1, (9)

Cutmixζ

λ
(X ,X ′)≡ {Cutmixλ(xi,ζ(x′i)}B

i=1. (10)

Algorithm 1: Consistency Guided Training (CGT) Al-
gorithm.

Input:
Nepoch, Nbatch: #epochs, #batches
B: batch size
L , U: labeled and unlabeled sets
Cθ, Cθ′ : models with parameters θ and θ′

λSλSλS,λCλCλC: supervised and consistency weights
w(t) ∈ [0,wmax]: ramp-up function
τ: starting epoch for overwriting θ

β: coefficient for Beta distribution
α: rate of EMA

for e = 1, ...,Nepoch do
for b = 1, ...,Nbatch do

Bl ←{(xi,yi)}B
i=1, (xi,yi) ∈ L

Bu←{(xi,Cθ′(xi))}B
i=1, xi ∈U

λ,λλλ = (λi)
3
i=1, λ,λi ∼ Beta(β,β)

LS← lS(Bl ,θ,λ,λSλSλS) . Eq. 15
LC← lC(Bu,θ,λ,λλλ,λCλCλC) . Eq. 18
t← e+b/Nbatch
θ ← SGD(θ,LS +w(t)LC)
θ′← αθ′+(1−α)θ . apply EMA

end
if e≥ τ then

θ ← θ′ . overwrite θ

end
end
return θ′
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Figure 2: (a) illustrates the composite function, ζ, that applies a series of augmentation transformations stochastically with
a maximum length of d. (b) and (c) visualize our augmented Mixup and Cutmix operations, respectively. (d) visualizes the
3-Mixup operation.

The function ζ, illustrated in Fig. 2 (a), is a composite
function that applies a series of augmentation trans-
formations stochastically and has a maximum length
of d,

ζ(x, p1, p2, · · · , pd) = od
pd

(
· · ·o2

p2

(
o1

p1
(x)
)
· · ·
)
,
(11)

where

oi
pi
(x) =

{
oi(x) if pi < ε

x otherwise,
(12)

with oi being randomly chosen from ΩAug. ΩAug is
a set of traditional augmentation transformations, ε is
a hyperparameter, and pi is sampled from a uniform
distribution U(0,1). In Eqs. 9 and 10, we drop the
parameters of ζ for brevity. Derived from the Mixup
operator, we introduce a new operator that we name
3-Mixup and define as

3-Mixupλλλ(X ,X ′,X ′′)≡ {3-Mixupλλλ(xi,x′i,x
′′
i )}B

i=1,
(13)

where new data pairs are created according to(
3-Mixupλλλ(x1,x2,x3) =

3

∑
i=1

λixi,

3-Mixupλλλ(y1,y2,y3) =
3

∑
i=1

λiyi

)
, (14)

with λλλ = (λi)
3
i=1 and λi being randomly sampled pa-

rameters from the distribution Beta(β,β) under the
condition ∑

3
i=1 λi = 1. The aforementioned operators

are visualized in Fig. 2.

4.2 Training Objectives

Our training routine unifies the augmentation opera-
tors mentioned in Sec. 4.1. The supervised loss is

given by

lS(B,θ,λ,λSλSλS) =
2

∑
i=1

λ
i
S li

S(B,θ,λ), with (15)

l1
S(B,θ,λ) =

CE
(

Cθ

(
Mixupλ(X ,X ′)

)
,Mixupλ(Y ,Y ′)

)
,

(16)

l2
S(B,θ,λ) =

CE
(

Cθ

(
Cutmixλ(X ,X ′)

)
,Mixupλ(Y ,Y ′)

)
,

(17)

where CE stands for the categorical cross-entropy
function. Our consistency loss consists of three con-
tributors,

lC(B,θ,λ,λλλ,λCλCλC) =
2

∑
i=1

λ
i
C li

C(B,θ,λ)+λ
3
C l3

C(B,θ,λλλ),

(18)
where l1,2

C are similar to l1,2
S except for three changes:

(a) we replace CE function with L2 function, (b) Y
are guessed labels obtained using Cθ′(X ), and (c)
Mixupλ(X ,X ′) and Cutmixλ(X ,X ′) are replaced with
Mixupζ

λ
(X ,X ′) and Cutmixζ

λ
(X ,X ′), respectively. In

addition, we define

l3
C(B,θ,λλλ) = L2

(
Cθ

(
3-Mixupλλλ(X ,X ′,X ′′)

)
,

3-Mixupλλλ(Y ,Y ′,Y ′′)
)
.

The total loss is then calculated via Eq. 1 with

LS =EB∈L ,λ lS(B,θ,λ,λSλSλS),

LC =EB∈U,λ,λλλ lC(B,θ,λ,λλλ,λCλCλC). (19)
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There exists a mutual influence between Cθ and
Cθ′ . In the early stages of the training, Cθ im-
proves rapidly and causes a slower improvement of
Cθ′ through EMA. However, after further training Cθ′

improves over Cθ and since Cθ′ functions as a target
generator, an improvement of Cθ′ leads to an improve-
ment of Cθ. Both models, however, reach eventually
plateaus. At that stage of the training, we notice that,
using our setting, overwriting θ with θ′ periodically
starting from epoch τ leads to further improvement in
Cθ and consequently to an improvement in Cθ′ . Algo-
rithm 1 summarizes the CGT training.

5 EXPERIMENTS

5.1 Datasets

We follow the common practice in evaluating SSL
approaches (Verma et al., 2019b; Kuo et al., 2020;
Tarvainen and Valpola, 2017; Wu et al., 2019; Kam-
nitsas et al., 2018) and report the performance of
our approach on the following three SSL benchmark
datasets.
CIFAR-10. CIFAR-10 dataset (Krizhevsky, 2009)
contains colored images distributed across 10 classes.
Those classes represent objects like airplanes, frogs,
etc. It contains 50,000 training samples and 10,000
testing samples each of the size 32×32.
CIFAR-100. CIFAR-100 dataset (Krizhevsky, 2009)
is similar to CIFAR-10 with the same number of train-
ing and testing samples, however, it contains 100
classes.
SNHN. SVHN dataset (Netzer et al., 2011) contains
73,257 training and 26,032 testing samples. The sam-
ples are colored images of the size 32× 32, showing
digits with various backgrounds.

For preprocessing, we normalize each sample so
that it is in the range [0,1]. For the three datasets, we
zero-pad each training sample with 2 pixels on each
side. We then crop the resulting images randomly at
the beginning of each epoch to obtain 32×32 training
samples. On CIFAR-10 and CIFAR-100, we horizon-
tally flip each sample with the probability of 0.5.

For validation, we reserve 5,000 training samples
from each dataset. We train the models using a small
randomly chosen set of labeled samples (L) with re-
placement from the training set and the full training
set as unlabeled set (U) after discarding the corre-
sponding labels. We report our results on the test set
by averaging over three runs. For each dataset, we
measure the performance using different sizes of the
labeled set.

5.2 Settings

In order to emphasize the improvements driven by
our method, we use ICT settings with only two mi-
nor changes which concern the preprocessing and the
consistency regularization, see Sec. 3.2. More con-
cretely, parameters that originate from ICT settings
are learning rate, weight decay, Nepoch, Nbatch, B, Cθ,
Cθ′ , w(t) ∈ [0,wmax], β, and α. For the Cutmix oper-
ator, we use the parameters suggested in (Yun et al.,
2019), see Sec. 3.2.

Relying on the exhaustive evaluations in (Cubuk
et al., 2020), we define ΩAug = {autocontrast, equal-
ize, posterize, rotate, solarize, shear-x/-y, translate-
x/-y}. For the magnitudes of the different augmen-
tation transformations, we follow (Hendrycks* et al.,
2020). Our implementation differs from RandAug-
ment (Cubuk et al., 2020) in that we randomly sam-
ple M for each operation. For the hyperparameters
of the ζ function and for τ, we conduct experiments
on the validation sets in Sec. 5.1 and find that d = 4,
ε = 0.5, and τ = 3/4 ·Nepoch perform well across all
experiments.

We identify λSλSλS, λCλCλC, and wmax as hyperparameters
to be adapted to the respective datasets. We con-
duct a search in {0,1/3,0.5} for λi

S and λi
C under

the conditions that ∑i λi
S = ∑i λi

C = 1. For wmax, we
search in {25,50,75,100} for CIFAR-10 and SVHN.
For CIFAR-100, ICT does not provide any settings,
so in the following, we present our settings. We
notice that larger values for wmax seem to be re-
quired on CIFAR-100, so the search space becomes
{1000,1500,2000}. Next, we give our final settings
for the different datasets.
CIFAR-10. On CIFAR-10, for L = 4000,2000, and
1000, we use wmax = 100, λ1

S = λ2
S = 0.5, and λ1

C =

λ2
C = λ3

C = 1/3.
CIFAR-100. On CIFAR-100, we use Nepoch = 900,
where we use the CIFAR-10 setting from ICT for
the first 600 training epochs followed by 300 epochs,
where we ramp down the learning rate linearly to
a final value of 0.0015. For L = 10000, we use
wmax = 2000, λ1

S = λ2
S = 0.5, and λ1

C = λ2
C = λ3

C =

1/3. For L = 4000, we use wmax = 1500, λ1
S = 1.0,

and λ1
C = λ2

C = 0.5.
SVHN. On SVHN, for L = 1000 and 500, we use
wmax = 75, λ1

S = λ2
S = 0.5, and λ1

C = λ2
C = 0.5. For

L = 250, we use wmax = 25, λ1
S = 1.0, and λ1

C = λ2
C =

0.5. In addition, following ICT, we use β = 0.1.

5.3 Results and Discussion

We report our results in terms of error rates averaged
over three runs for SVHN and CIFAR-10 test sets in
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Table 2: Error rates [%] on SVHN and CIFAR-10 test sets. We ran three trials for CGT. Note that † refers to methods using
the WRN-28-2 architecture (Zagoruyko and Komodakis, 2016), while other methods use the CNN-13 architecture (Laine and
Aila, 2016). Both architectures are comparable in terms of size and performance as also reported in ICT (Verma et al., 2019b).

SVHN CIFAR-10

Method L = 250 L = 500 L = 1000 L = 1000 L = 2000 L = 4000

Supervised (Verma et al., 2019b) 40.62±0.95 22.93±0.67 15.54±0.61 39.95±0.75 31.16±0.66 21.75±0.46
Supervised (Mixup) (Verma et al., 2019b) 33.73±1.79 21.08±0.61 13.70±0.47 36.48±0.15 26.24±0.46 19.67±0.16

MT (Tarvainen and Valpola, 2017) 4.35±0.50 4.18±0.27 3.95±0.19 21.55±1.48 15.73±0.31 12.31±0.28
TE+SNTG (Luo et al., 2018) 5.36±0.57 4.46±0.26 3.98±0.21 18.41±0.52 13.64±0.32 10.93±0.14
MUMR2 (Ghorban et al., 2021) - - 4.67±0.09 - - 9.56±0.23
DS (Ke et al., 2019) - - - 14.17±0.38 10.72±0.19 8.89±0.09
ICT (Verma et al., 2019b) 4.78±0.68 4.23±0.15 3.89±0.04 15.48±0.78 9.26±0.09 7.29±0.02
AdvMixup (Ma et al., 2020) 3.95±0.70 3.37±0.09 3.07±0.18 9.67±0.08 8.04±0.12 7.13±0.08
RealMix† (Nair et al., 2019) 3.53±0.38 - - - - 6.39±0.27
MixMatch† (Berthelot et al., 2019) 3.78±0.26 3.64±0.46 3.27±0.31 7.75±0.32 7.03±0.15 6.24±0.06
Meta-Semi† (Wang et al., 2020) - 4.12±0.21 3.92±0.11 7.34±0.22 6.58±0.07 6.10±0.10
AFDA† (Mayer et al., 2021) 3.88±0.13 - 3.39±0.12 9.40±0.32 - 6.05±0.13
PLCB (Arazo et al., 2020) 3.66±0.12 3.64±0.04 3.55±0.08 6.85±0.15 - 5.97±0.15
ReMixMatch† (Berthelot et al., 2020) 3.10±0.50 - 2.83±0.30 5.73±0.165.73±0.165.73±0.16 - 5.14±0.04
FeatMatch† (Kuo et al., 2020) 3.34±0.19 - 3.10±0.06 5.76±0.07 - 4.91±0.18
UDA† (Xie et al., 2020) 5.69±2.76 - 2.46±0.24 - - 4.88±0.18
FixMatch† (Sohn et al., 2020) 2.64±0.642.64±0.642.64±0.64 - 2.36±0.192.36±0.192.36±0.19 - - 4.31±0.154.31±0.154.31±0.15

CGT (ours) 2.93±0.13 2.71±0.072.71±0.072.71±0.07 2.65±0.09 6.24±0.27 5.61±0.235.61±0.235.61±0.23 4.73±0.09

Tab. 2 and for CIFAR-100 test set in Tab. 3.
Methods reported in Tab. 2 use either the

CNN-13 (Laine and Aila, 2016) or the WRN-28-
2 (Zagoruyko and Komodakis, 2016) architecture.
Both architectures are comparable in terms of size
and performance as also reported in ICT (Verma et al.,
2019b). For our experiments, we use the CNN-13 ar-
chitecture.

On all datasets, the test errors obtained by CGT
are competitive with other state-of-the-art SSL meth-
ods.

On SVHN, we observe that CGT results in at least
a five-fold reduction in the test error of the super-
vised learning algorithm (Verma et al., 2019b). On
SVHN and CIFAR-10, CGT performs ∼ 1 percent
point (pp) better than ICT using only one-fourth of the
maximum used labels, e.g., on CIFAR-10 using 1000
labels we achieve 6.24± 0.27% while ICT achieves
7.29± 0.02% using 4000 labels. This improvement

Table 3: Error rates [%] on CIFAR-100 test set. We ran
three trials for CGT. All methods use the CNN-13 architec-
ture (Laine and Aila, 2016).

CIFAR-100

Method L = 4000 L = 10000

MT (Tarvainen and Valpola, 2017) 45.36±0.49 36.08±0.51
LP (Iscen et al., 2019) 43.73±0.20 35.92±0.47
WA (Athiwaratkun et al., 2018) - 33.62±0.54
PLCB (Arazo et al., 2020) 37.55±1.09 32.15±0.50
Meta-Semi (Wang et al., 2020) 37.61±0.56 30.51±0.32
FeatMatch (Kuo et al., 2020) 31.06±0.4131.06±0.4131.06±0.41 26.83±0.04

CGT (ours) 31.88±0.62 26.74±0.2526.74±0.2526.74±0.25

Table 4: Ablation study on CIFAR-10 using 4000 labeled
data points. Error rates [%] are reported across three trials.
d = i refers to applying i randomly chosen augmentation
transformations from ΩAug (see 5.2) sequentially on one of
the input arguments of Mixup and/or Cutmix.

Aspect, CIFAR-10, L = 4000

Mixup Cutmix 3-Mixup d = 2 d = 4 ζ θ ← θ′ Error rate [%]

X - - - - - - 6.90±0.16
- X - - - - - 6.73±0.20
X X - - - - - 6.23±0.01
X X X - - - - 6.02±0.13
X X X X - - - 5.17±0.01
X X X - X - - 5.20±0.04
X X X - - X - 4.93±0.11
X X X - - X X 4.73±0.09

is achieved through CGT’s improved loss calculation
and augmentation methods. Note that CGT’s bare-
bone, as described in Sec. 3.2 and Sec. 5.2, is ICT.
This demonstrates that CGT uses, through the intro-
duced modifications, the available labels more effi-
ciently than ICT.

We observe that CGT seems to be less sensitive
to the size of the labeled set compared to our base-
line ICT. A comparison to the recent methods pre-
sented in Tab. 2 reveals that our approach is able to
achieve state-of-the-art performance on SVHN and
CIFAR-10. FixMatch (Sohn et al., 2020) which
scores slightly higher than our method requires above
1 million training steps to fully converge while our
method requires only 200 thousand training steps. In
addition, FixMatch and UDA (Xie et al., 2020) utilize
7 times more unlabeled than labeled data in each step,
which further increases the training time.
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Figure 3: A comparison of the evolutions of the supervised
(solid) and consistency (dotted) losses recorded over the
training epochs for our baseline, ICT∗, and CGT on CIFAR-
10 using L = 4000.

Table 3 compares our results to recent methods
on CIFAR-100. Here we compare only to methods
that use the CNN-13 (Laine and Aila, 2016) archi-
tecture. Also here, we observe a competitive per-
formance of our approach when compared to recent
methods. Note that FixMatch (Sohn et al., 2020) is
not included since it reports results on CIFAR-100
using WRN-28-8 which is much larger and thus not
comparable to the above-mentioned architectures.

As described in Sec. 4, our approach in com-
posed of multiple components. In Tab. 4, we show
the contribution of each component by decomposing
our method and conducting an ablation study. We ob-
serve that applying augmentation transformations, es-
pecially through the function composite ζ has a sig-
nificant contribution to the final performance gain.

In order to determine the improvement that comes
with overwriting θ with θ′ during training, we stored
each experiment from Tabs. 2 and 3 at its correspond-
ing epoch τ and continued training without overwrit-
ing θ. The achieved error rates are shown in Tab. 5.
Overwriting θ comes at virtually no additional com-
putational cost and improves the performances across
all the above experiments.

The supervised contribution to the loss function
strives to minimize the entropy of predictions while
the consistency contribution can practically lead to a
trivial solution which corresponds to a maximized en-
tropy, i.e., a zero consistency loss with θ∗ for which
Cθ∗(xi) = (1/K, ...,1/K) for any xi. Considering the
loss composition, the question arises: How should

Table 5: The effect of periodically overwriting θ with θ′

starting from epoch τ.

SVHN CIFAR-10 CIFAR-100

L = 250 L = 1000 L = 1000 L = 4000 L = 4000 L = 10000

2.99±0.10 2.69±0.10 6.43±0.28 4.93±0.11 32.31±0.54 27.25±0.20

the consistency contribution behave in comparison to
the supervised one for obtaining an optimal solution
θ? Although we do not explicitly seek to answer this
question, we show in the following a related observa-
tion that we assume to be relevant for further inves-
tigation. In ICT, we notice that the supervised con-
tribution largely guides the training, i.e., it remains
higher than the consistency contribution. CGT, how-
ever, has a lower supervised contribution and a signif-
icantly higher consistency contribution. Furthermore,
the consistency contribution in CGT exceeds its su-
pervised one, see Fig. 3, seemingly without having
any negative effect on the performance.

6 CONCLUSION

In this work, we have presented a simple yet efficient
SSL algorithm, Consistency Guided Training (CGT).
The CGT framework unifies multiple existing image-
based augmentation techniques, namely the Mixup
and CutMix operations. In addition, it utilizes new
augmented versions of these operators where aug-
mentations are stochastically applied to one side of
the inputs of the Mixup and CutMix operators. More-
over, CGT involves a new generalization of the Mixup
operator on unlabeled samples to regularize a larger
region of the input space. The supervised and con-
sistency losses in our framework are expressed as lin-
ear combinations of multiple constituents, each corre-
sponding to a different augmentation transformation.
Furthermore, our CGT framework has demonstrated
to be benefitting from heavy augmentations of the un-
labeled training data which enabled it to achieve state-
of-the-art performance on three challenging bench-
mark datasets.
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