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Abstract: This paper discusses the influence of random delay on the travel behavior of subway commuters in the peak 
hour. We consider the situation that commuters need to take bus to complete the rest of the journey after 
getting off the subway. We assume that the buses have random delay T  that follows a uniform distribution 
in the range bT 0 . And it is found thatT has an impact on the commuting model. It is shown that with 
the increase ofb , three different scenarios emerge. The start time and end time of the peak hour, the expected 
value of travel cost, and the queuing time have been derived under the three scenarios. It is shown that the 
start time of rush hour monotonically decreases (i.e., the start time becomes earlier and earlier) and the travel 
cost monotonically increases with the increase of b . 

1 INTRODUCTION 

Subway is becoming more and more popular among 
people, especially commuters, as a comfortable and 
punctual means of transportation. However, as the 
number of commuters increases, the subway has 
become increasingly congested during the rush hour. 
Since Vickrey proposed the classic bottleneck model 
to characterize the commute behavior (Vickrey 1969), 
many extensions and applications of the model have 
been made (Arnott 1990, Laih 2004, Lindsey 2012), 
considering, e.g., elastic demand and general queuing 
networks (Braid 1989, Arnott 1993, Yang 1998), the 
uncertainty of road bottleneck capacity (Xiao 2015, 
Zhu 2019).  

The bottleneck model has also been used to study 
the subway commuting behavior. For example, Kraus 
and Yoshida (Kraus 2002) investigated the optimal 
fare and service frequency to minimize the long-term 
system cost. Yang and Tang (Yang 2018) proposed a 
fee feedback mechanism to manage the passenger 
flow during peak hours and minimize the system cost 
while ensuring the same revenue for the authorities. 

However, in the vast majority of cases, the 
subway does not go directly to a commuter's place of 
work. Passengers often need to take a bus to reach 
workplace after getting off the subway. During the 
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morning rush hour, a random delay of buses is very 
common. Motivated by the fact, this paper studies the 
impact of random delay on commuters' travel 
behavior and travel cost. 

The paper is organized as follows. Section 2 
introduces the subway bottleneck model considering 
random delay and derives the commuter travel cost in 
user equilibrium. Section 3 discusses the impact of 
random delay on commuters' departure time choice 
and travel cost. Section 4 summarizes the paper. 

2 THE TRAFFIC BOTTLENECK 
MODEL CONSIDERING 
RANDOM DELAY 

2.1 Symbol Definition 

 : the unit cost of queuing time 
 : the unit cost of early arrival 

 :  the unit cost of late arrival 

 : the unit cost of random delay on the bus 
)(mq : Queuing time of taking the m th train 

)(me : Early arrival delay for commuters on the

m th train 
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)(ml : Late arrival delay for commuters on the m
th train 

mt  : The moment the m  th train arrives at the 

destination station 
M : Total number of trains )2( M  

N :  Total number of commuters 

s :    Capacity of a train 

L :   Length of the peak period 
h :   train departure interval 
T :   random delay on the bus 
b :   Maximum random delay( 0b ) 

*t :   Commuter's work starting time 

1m  : The last train that commuters must arrive 

early 

2m : The first train that commuters must be late 

)]([ mtCE : The expected travel cost of commuters 

taking train m  

TTC: Expected cost of the system 

AEC: Expected travel cost of the commuters 

0p : Uniform fare on the subway 

1p : The bus fare 

2.2 Introduction of the Model 

Assuming that an urban rail line connects a single 
origin and destination, there will be a bottleneck in 
the early rush hour. Every day there are a total number 
of N  passengers who take M  trains during the 
morning rush hour. Train departure interval is h , and 
each train capacity is s . Due to the limit capacity of 
the trains, the station becomes a bottleneck and 
passengers need to wait at the station. We denote the 

commuter’s work starting time as *t , and the time 
when each train arrives at the destination station as 

mt  , Mm ,....3,2,1  , thus the length of the morning 

rush hour is hML )1(  , see Figure 1. 

We assume that after getting off the subway, the 
commuters take a bus to the workplace. The traveling 
time of the bus is set to TT 0  , where 0T   is free 

traveling time and T  is random delay. Without loss 
of generality, we set 00 T . Moreover, it is assumed 

that T  follows a uniform distribution in the range 
bT 0 .  

In this model, a passenger on the m  th subway 
will encounter a queuing time on the station )(mq ,  a 

uniform fare on the subway 0p  , the bus fare 1p  ,  a 

random delay T , an early arrival time )(me or a late 

arrival time )(ml  . His/her total travel cost can be 

expressed as follows: 

10)()()()()( ppmtmlmemqmc    (1) 

Here ,  ,  ,   are the unit cost of queuing 

time at the station, arriving early, arriving late and 
random delay on the bus, respectively. It is assumed 
that   . 

 

Figure 1: Bottleneck model of subway in rush hours. 

2.3 Three Scenarios 

In user equilibrium, commuters on the first train and 
the last train do not encounter queues at the subway 
station, and commuters on each train have the same 
expected travel cost.  Commuters on the m th train 
may face three possible arrival states: always arrive 
early, always arrive later, and arrive either early or 
late. The expected travel cost in the three states is as 
follows: 

Expected travel cost for commuters who always 
arrive early: 
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Expected travel cost for commuters who always 
arrive late: 
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(3) 
Expected travel cost for commuters who arrive 

either early or late: 
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3 IMPACT OF RANDOM DELAY 
ON COMMUTERS’ BEHAVIOR 

In equilibrium state, the value of maximum delay b  
has a significant effect. With the increase ofb , there 
emerge three scenarios.  

3.1 Scenario 1 

when hMb )1(
2

0 




  , Scenario 1 emerges. In 

Scenario 1, commuters on train 1~1 m always arrive 

early, commuters on train Mm ~2 always arrive late, 

and commuters on train 1~1 21  mm  may arrive 

either early or late. The schematic diagram of 
Scenario 1 is shown in Fig.2.    

In order to simplify the calculation, *t is set as 0 
in this paper. In Scenario 1, the peak starts and ends 
at: 
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(5) 

In Scenario 1, 1m is the last train that commuters 

must arrive early, 2m is the first train that commuters 

must be late. The range of 1m , 2m can be expressed 

as follows: 
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If hMbh )1(
2
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can be expressed as follows: 
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The range of 1m  , 2m  can be expressed as 
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In user equilibrium, the expected system cost and 
the expected travel cost of the commuters are: 
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Where )/(     is a constant. The 

queuing time encountered by commuters taking 
service run m should satisfy the following formula: 
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Figure 2: Arrival situation of commuters in peak period in 
the first case. 
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3.2 Scenario 2 
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potentially two Scenarios 2 and 2′. In Scenario 2, 
commuters on train 1~1 m always arrive early, while 

commuters taking train Mm ~11   may arrive early 

or late, as shown in Fig.3. In Scenario 2′, the 
commuters taking train 2~1 m  arrive early or late, 

and the commuters taking train Mm ~12   always 

arrive late. In the Appendix, we show that Scenario 2' 
cannot exist.  

In Scenario 2, the peak starts and ends at: 
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In Scenario 2, 1m is the last train that commuters 

must arrive early. The range of 1m can be expressed 

as follows: 
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The range of 1m can be expressed as follows: 
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In user equilibrium, the expected system cost and 
the expected travel cost of the commuters are: 
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The queuing time encountered by commuters 
taking service run m   should satisfy the following 
formula: 
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Figure 3: Arrival situation of commuters in peak period in 
the second case. 

3.3 Scenario 3 

When



2

)1)(( hM
b


  , Scenario 3 emerges. In 

Scenario 3, all commuters may arrive either early or 
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In user equilibrium, the expected system cost and 
the expected travel cost of the commuters are: 
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The queuing time encountered by commuters 
taking service run m  should satisfy the following 
formula: 

b

hmmM
mq




2

)1)()((
)(

2


      
(28) 

 
 
 
 
 

PMBDA 2021 - International Conference on Public Management and Big Data Analysis

122



 

 

Figure 4: Arrival situation of commuters in peak period in 
the third case. 

Based on the above formula, we can make a 

simple analysis of the change trend of 1t  and TTC 

with b value. 
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increases monotonically with the increase of b
value. 
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dTTC .  So in Scenario 2, the initial time of peak 

period 1t decreases monotonically with the increase 

of b value, and the total system cost TTC increases 
monotonically with the increase of b value.
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Scenario 3, the initial time of peak period 1t
decreases monotonically with the increase of b
value, and the total system cost TTC increases 
monotonically with the increase of b value. 

4 CONCLUSIONS 

This paper extends the bottleneck model to study the 
travel behavior of subway commuters during rush 
hours. The extended model takes into account the 
situation that passengers have a random delay T  , 
which follows a uniform distribution in the range 

bT 0 , to reach their workplace after getting off 
the subway. It is shown that with the increase of b , 
three different scenarios emerge. The start time and 
end time of the peak hour, the expected value of travel 
cost, and the queuing time have been derived under 
the three scenarios. It is shown that the start time of 
rush hour monotonically decreases (i.e., the start time 
becomes earlier and earlier) and the travel cost 
monotonically increases with the increase of b . 

In our future work, we will consider how to 
manage the subway commute under random delay to 
lower down the travel cost of commuters. 
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APPENDIX  

The First Train May Arrive Early or 
Late, and the Last Train Is Always Late 

When 
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  , it is also 

possible that the commuters taking train 2~1 m
arrive early or late, and the commuters taking train 

Mm ~12  always arrive late. In this case, the peak 

starts and ends at: 
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Since commuters in the first train may be early or 
late, and commuters in the tail train are always late, 
then: 
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Because hM )1(
2
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
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 



  , Scenario 2' 

cannot exist. 
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