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Abstract:  Monthly precipitation forecasts are important in water resources management. In this study, the monthly 
precipitation forecasts of the future 1-6 months generated by five different national weather services are 
corrected by Bayesian Joint Probability (BJP) method and merged by Bayesian Model Averaging (BMA) 
method. The predictive performance of corrected and merged forecasts is evaluated and compared with the 
climatology forecasts in 26 meteorological stations in Guangdong, China. The results demonstrate that the 
BJP-corrected forecasts are more reliable and narrower than the climatology forecasts and The BMA 
method can further improve the forecasting reliability and accuracy in the BJP-BMA framework. The 
forecasting skill of the BJP-BMA framework varies significantly with different forecast lead time (FLT). 
When FLT is 1 month, the raw forecasts are informative, and the BJP-BMA framework can generate 
significantly better forecasts than the climatology forecasts with respect to the forecasting accuracy, 
reliability and sharpness. When FLT is greater than 1, the information contained in raw forecasts are 
limited, but the BJP-BMA can still generate narrower and more reliable forecasts. In summary, the proposed 
BJP-BMA framework can extract useful information in the raw forecasts and generate more practical 
monthly precipitation forecasts. 

1 INTRODUCTION 

Monthly precipitation forecasts are of great 
importance in hydrological forecasts, water 
resources management and decision making in many 
climate-sensitive sectors (Li et al., 2021; Wang et al., 
2019a). Many studies demonstrate that the climate 
change has resulted in the increasing frequency of 
extreme rainfall and extreme drought, which further 
enhances the demands for reliable and high-
resolution monthly precipitation forecasts (Kao and 
Ganguly, 2011; O’Gorman, 2015; Schepen et al., 
2018).  

The methods used to generate monthly 
precipitation forecasts can be broadly divided into 
two groups: 1) data-driven models and 2) general 
circulation models (GCMs) (Li et al., 2021). The 
data-driven models are often proposed to model the 
relationship between climate factors and monthly 
precipitations (Li et al., 2021; Peng et al., 2014). 
However, the forecasts obtained from data-driven 
models are often deterministic, which are inadequate 

in comparison with the ensemble forecasts (Duan et 
al., 2019; Li et al., 2019). In comparison with data-
driven models, GCMs, which produce monthly 
outlooks of atmospheric and oceanic conditions and 
fluxes, are proposed by many national weather 
services (NWSs) (Johnson et al., 2019; Molteni et 
al., 2011; Saha et al., 2014; Zhao et al., 2017). For 
example, the European Centre for Medium-Range 
Weather Forecasts (ECMWF) operated its System 4 
in 2011 and has operated the newest Seasonal 
Forecast System 5 (SEAS5) since 2017 (Wang et al., 
2019a). Though the GCMs can produce ensemble 
forecasts, they have their own deficiencies, which 
make them unsuitable for practical application. For 
example, the forecasts generated by GCMs are 
usually biased and not always “skillful” (Zhao et al., 
2017).  Therefore, many post-processing methods 
are applied and obtained good performance (Wang 
et al., 2019a; Wang et al., 2019b; Zhao et al., 2017). 

Many NWSs have operated their seasonal 
forecast systems and the post-processed forecasts are 
skillful and useful (Bennett et al., 2016; Crochemore 
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et al., 2016). Current post-processing methods are 
always used to process forecasts generated from one 
NWS, but different NWSs may offer different 
forecasting information (Mohanty et al., 2021; Zhou 
et al., 2020). Therefore, how to combine the 
strengths of individual models still needs to be 
investigated in order to achieve better forecasting 
performance. In this study, a post-processing 
framework, which can combine the forecasts from 
different NWSs, is proposed to correct and merge 
forecasts of different NWSs. The framework is 
applied and evaluated in terms of its predictive 
performance in Guangdong, China. 

2 STUDY AREA AND DATA 

2.1 Study Area and Observed Data 

In order to evaluate and compare the predictive 
performance of post-processed monthly precipitation 
forecasts from different models (i.e. different 
NWSs), the forecasting precipitation products during 
future 1-6 months are post-processed and evaluated 
over 26 meteorological stations in Guangdong, 
China. The 26 meteorological stations are shown in 
Figure 1. The locations and names of the stations are 
shown in Table 1. 

 

Figure 1: Study area and meteorological stations. 
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Table 1: The locations and names of meteorological stations. 

Station 
Abbreviated 

name 
Longitude Latitude Station 

Abbreviated 
name

Longitude Latitude 

Xuwen XW 110.18 20.33 Zengcheng ZC 113.83 23.33 

Zhanjiang ZJ 110.3 21.15 Fogang FG 113.53 23.87 

Dianbai DB 111 21.5 Shaoguan SG 113.6 24.68 

Xinyi XY 110.93 22.35 Nanxiong NX 114.32 25.13 

Yangjiang YJ 111.97 21.83 Lianping LP 114.48 24.37 

Luoding LD 111.57 22.77 Dongyuan DY 114.73 23.8 

Shangchuandao SCD 112.77 21.73 Huiyang HY 114.42 23.08 

Taishan TS 112.78 22.25 Shanwei SW 115.37 22.8 

Gaoyao GY 112.45 23.03 Wuhua WH 115.77 23.93 

Guangning GN 112.43 23.63 Meixian MX 116.1 24.27 

Lianxian LX 112.38 24.78 Huilai HL 116.3 23.03 

Guangzhou GZ 113.33 23.17 Shantou ST 116.68 23.4 

Shenzhen SZ 114 22.53 Nan'ao NA 117.03 23.43 

 
The observed daily precipitation of the 26 

meteorological stations are obtained online 
(http://data.sheshiyuanyi.com/WeatherData/) and 
processed to monthly data. The data are all available 
from 1984 to 2019 and the data from 1993 to 2016 
are used in this study in order to consist with the 
forecasts data.  

2.2 Monthly Precipitation Forecasts 

In seasonal forecast systems, the models are 
initialized with the initial conditions of the earth 
system. However, due to the imperfect knowledge of 
the initial conditions, many approximations are 
made and result in uncertainties, which are 
dependent on the choice of model. Therefore, 
different models may have different predictive skills. 
In order to combine outputs from several models, the 
Copernicus Climate Change Service (C3S) provides 
a multi-system seasonal forecast service, where data 
are obtained from several state-of-the-art seasonal 
prediction systems developed, implemented and 
operated at forecast centers in several countries. The 
centers include ECMWF, The UK Met Office 
(UKMO) and Météo-France (MF), Deutscher 
Wetterdienst (DWD), Centro Euro-Mediterraneo sui 
Cambiamenti Climatici (CMCC) and so on. In these 
studies, the forecasting precipitations for the future 
1-6 months from 1993 to 2016, which are generated 
by ECMWF, UKMO, MF, DWD and CMCC, are 
used. The data can be obtained on  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/se
asonal-monthly-single-levels?tab=form.  

3 METHODOLOGY 

3.1 Modelling Framework 

Based on the observed data and the monthly 
precipitation forecasts, the post-processing and 
merging methods are applied in the way shown in 
Figure 2. Firstly, due to the forecasts are gridded 
data, the forecasts over 26 specific stations are 
computed by a two-dimensional interpolation 
method. Moreover, due to the post-processing 
method will generate ensemble forecasts, the means 
of the original forecasts are used in the post-
processing process. Then, the Bayesian Joint 
Probability (BJP) method is used to correct the 
original forecasts based on the observations and 
generate corrected ensemble forecasts. Finally, the 
corrected forecasts are merged by the Bayesian 
Model Averaging (BMA) method. In order to assess 
the impact of the BJP and BMA methods, the 
climatology forecasts, which are randomly sampled 
from the observations month by month, are 
employed as reference forecasts. It should be noted 
that the models operated by five NWSs are denoted 
by CMCC, DWD, MD, UKMO and ECMWF 
models in Figure 2 and following contents. 

 

WRE 2021 - The International Conference on Water Resource and Environment

78



 

Figure 2: Modelling framework. 

3.2 Bayesian Joint Probability  

Many studies have demonstrated that the post-
processing can improve the reliability and accuracy 
of precipitation forecasts (Bennett et al., 2016; 
Crochemore et al., 2016; Wang et al., 2019a). 
Among the post-processing methods, the BJP 
method has been widely used because it can not only 
correct the bias but also ensure the corrected 
forecasts are not worse than the climatology 
forecasts (Robertson and Wang, 2012; Schepen and 
Wang, 2014; Wang, 2008; Wang et al., 2009; Zhao 
et al., 2016). In this study, the BJP is also employed. 

Before the BJP, the data need to be transformed 
into normalized data and the log-sinh transformation 
is implemented (Wang et al., 2019b). The log-sinh 
transformation can be expressed as in Equation (1). 

 

 �̂�
1
𝜆

log sinh ℇ
𝜆𝑧
𝑐

 (1) 

 
where 𝑧  and �̂�  are original and transformed data 
respectively, ℇ and 𝜆 are transformation parameters, 
𝑐 is a scaling factor used to make the scaled 𝑧 /𝑐 has 
a similar range in different applications. After the 
transformation, the data should follow a normal 
distribution and the maximum likelihood method 
can be applied to optimize the parameters given a 

dataset (Wang et al., 2019b). After the parameters 
optimization, the data can be transformed by 
Equation (1) and back-transformed by the following 
Equation (2): 
 

 𝑧
𝑐
𝜆

arcsinh exp 𝜆�̂� ℇ  (2) 

 
Denoting the original forecasting precipitation as 

𝑦 , the corresponding observation as 𝑦 , the BJP is 
used to obtain the corrected 𝑦  based on the prior 
and posterior information included in the original 
forecasts and observations. Through the data 
transformation, 𝑦  and 𝑦  are transformed to 
normalized 𝑧  and 𝑧 . Assuming 𝑧  and 𝑧  are 
normally-distributed and the 𝒛  𝑧  𝑧  is drawn 
from a bivariate normal distribution as in Equation 
(3). 

 

 𝒛
𝑧
𝑧 ~𝑁 𝝁, 𝚺  (3) 

where 𝝁  is the mean values of two transformed 
variables and 𝚺 is a covariance matrix.  

Given a transformed dataset 𝑫 𝒛 𝑡 , 𝑡
1,2, … 𝑛 , where n is the number of samples, the 
posterior of the model parameters can be written as 
the following Equation (4) according to Bayes’ 
theorem. 

 

 𝑝 𝝁, 𝚺|𝑫 ∝ 𝑝 𝝁, 𝚺 𝑝 𝑫|𝝁, 𝚺 𝑝 𝝁, 𝚺 𝑝 𝒛 𝑡 |𝝁, 𝚺  (4) 
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where 𝑝 𝝁, 𝚺  is the prior and 𝑝 𝑫|𝝁, 𝚺  is the 
likelihood. Due to the posterior in equation (4) is not 
a standard distribution and does not allow analytical 
integration, the technique of Markov Chain Monte 
Carlo sampling is used to draw parameter values. In 
this study, the Gibbs MCMC sampling is used to 
draw 1000 sets of parameter values (Wang et al., 
2019a). 

Given a transformed forecasting value 𝑧 𝑡∗  at a 
specific time 𝑡∗, a corrected forecasting value 𝑧 𝑡∗  
is obtained by sampling from 𝑝 𝑧 𝑡∗ |𝑧 𝑡∗ , 𝝁, 𝚺 . 
Then, the sampled value are back-transformed to 
original value by Equation (2). For each set of 
parameters, one value is sampled and therefore there 
are 1000 values in the ensemble forecasts generated 
from BJP.  

3.3 Bayesian Model Averaging 

The BMA, which gives greater weights to better 
models based on their probabilistic forecasting 
performance, is a method used for merging forecasts 
from multiple models. The detailed procedure of 
BMA can be found in previous studies (Bennett et 
al., 2016; Schepen et al., 2016; Wang et al., 2012). 
The probabilistic forecasting performance is 

evaluated by the predictive density at the observed 
value.  

Given a group of models 𝑀  (𝑘 1,2, … , 𝐾), the 
predictive density after BMA is a weighted average 
of predictive densities of K models as in Equation 
(5). 

 𝑓 𝑌 𝑤 𝑓 𝑌 |𝑀  (5) 

where 𝑤  is the weight of kth model, 𝑌  is the 
observed value at ith sample point, and 𝑓 𝑌 |𝑀  is 
the predictive density of model 𝑀 .  

The weights in BMA can be optimized by the 
maximum a posterior method (Bennett et al., 2016; 
Wang et al., 2012). Denoting the weights as 𝒘
𝑤 , 𝑤 , … , 𝑤 , the posterior is as follows in 

Equation (6). 

 𝑝 𝒘|𝒀, 𝑴 ∝ 𝑝 𝒘 ∗ 𝑝 𝒀|𝒘, 𝑴  (6) 

where 𝑝 𝒘  is the prior, 𝑝 𝒀|𝒘, 𝑴  is the likelihood, 
𝒀 is the observation vector and 𝑴 is the set of all 
models. The symmetric Dirichlet distribution prior is 
employed and the likelihood can be calculated by 
the following Equation (7). 

 

 𝑝 𝒀|𝒘, 𝑴 𝑓 𝑌 𝑤 𝑓 𝑌 |𝑀  (7) 

 
where n is the number of sample points. Based on 
the prior and likelihood, the posterior in Equation (6) 
can be calculated. Then the weights can be 
optimized by an iterative expectation-maximization 
algorithm. Noted that the sum of the weights is 1, 
the merged forecasts can be obtained by sampling 
from the ensemble forecasts from different models 
by their weights.  

3.4 Evaluation Criteria 

In this study, a leave-one-month-out cross-validation 
procedure is used to generate corrected results by 
BJP and merged results by BMA. The forecast 
performance of the corrected and merged results are 
evaluated in different aspects in this 
study(Crochemore et al., 2016; Wang et al., 2019a): 
1) the continuous ranked probability score (CRPS), 
which reflect the overall accuracy of the ensemble 
forecasts(Gneiting et al., 2005; Renard et al., 2010); 
2) the score based on the probability integral 
transform (PIT) diagram (PITS), which reflect the 
reliability and is obtained by calculating the area 

between the PIT diagram and the 1:1 diagonal 
(Jordan et al., 2017); and 3) the score calculated by 
averaging the 90% interquantile range (i.e. the 
difference between the 95th and 5th percentiles) 
(IQRS), which reflect the sharpness (Crochemore et 
al., 2016). The detailed calculating procedure can be 
found in corresponding studies and not listed here. 

Forecast skill of the corrected and merged 
forecasts is assessed by comparing the forecast 
performance of a given system with the performance 
of a reference forecast. The skill score is calculated 
by the following Equation (8). 

 𝑆𝑘𝑖𝑙𝑙 1
𝑆𝑐𝑜𝑟𝑒
𝑆𝑐𝑜𝑟𝑒

100% (8) 

where 𝑆𝑐𝑜𝑟𝑒  is the CRPS, PITS or IQRS of the 
given system (i.e. BJP or BMA) and 𝑆𝑐𝑜𝑟𝑒  is the 
score of the reference forecasts. The forecast skill 
corresponding to CRPS, PITS and IQRS are noted 
CRPSS, PITSS, IQRSS. 
 

WRE 2021 - The International Conference on Water Resource and Environment

80



 

Figure 3: CRPSS of the BJP corrected ensemble forecasts. 

 

Figure 4: PITSS of the BJP corrected ensemble forecasts. 

 

Figure 5: IQRSS of the BJP corrected ensemble forecasts. 

4 RESULTS AND DISCUSSION 

4.1 Forecast Performance of the 
Corrected Ensemble Forecasts by 
BJP 

As introduced above, the BJP method is used to post-
process the raw forecasts. In order to evaluate the 

forecast performance of the BJP corrected ensemble 
forecasts, the skill scores (CRPSS, PITSS, IQRSS) 
are calculated with the climatology forecasts as 
reference forecasts. The CRPSS, PITSS, and IQRSS 
results are shown in Figure 3, Figure 4 and Figure 5 
respectively. In addition, the statistics of these three 
scores over 26 stations are shown in Table 2.  

It can be seen from Figures 3-5 and Table 2 that 
the corrected forecasts generated by BJP can 
outperform the climatology forecasts in most cases 
and the improvement is especially significant when 
FLT is 1 month. The mean values of PITSS and 
IQRSS are greater than 0 for all models and all FLTs, 
which means the corrected forecasts are more 
reliable and narrower. However, the mean values of 
CRPSS are less than 0 for corrected forecasts based 
on MF and UKMO models with all FLTs and for 
those based on CMCC, DWD and ECMWF models 
with FLT greater than 1, which means the BJP-
corrected forecasts are less accurate. Figure 4 
displays the PITSS in different forecasting cases. It 
is obvious that in most cases the PITSS is greater 
than 0, which means the corrected forecasts are more 
reliable than the climatology forecasts. However, in 
some stations (FG, WH, ST), the forecasting 
reliability decreases. Figure 5 shows that the IQRSS 
is greater than 0 in most cases, which means that the 
information included in the raw forecasts can narrow 
the forecasting width, which makes the forecasts 
more practical. In terms of the comparison of 
different models, it is also obvious that the ECMWF 
model has an overall better performance with respect 
to the CRPSS and IQRSS. When FLT is 1 month, 
the mean CRPSS and IQRSS are 8.10% and 12.73% 
for ECMWF-based corrected forecasts, which 
outperforms those based on other models.  

In summary, the BJP corrected ensemble 
forecasts are more reliable and practical than the 
climatology forecasts. With respect to the 
forecasting accuracy, the CMCC, ECMWF-based 
corrected forecasts are more accurate when FLT is 1 
month. In terms of the comparison of different 
models, the ECMWF models are more skillful than 
the other models when FLT is 1 month. In terms of 
the FLT, it can be found that the improvement of 
forecasting performance is more significant when 
FLT is 1 month. 
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Table 2: Mean values and standard deviations of CRPSS, PITSS and IQRSS after BJP over all stations. 

Scores NWS 
FLT: months

1 2 3 4 5 6

CRPSS: % 

CMCC 3.09±2.16 -2.43±2.05 -2.40±0.98 -1.90±1.22 -3.14±1.09 -2.92±0.94

DWD 0.22±1.29 -2.72±1.33 -1.51±1.69 -2.29±1.20 -2.53±0.99 -2.94±0.87

MF -1.24±1.49 -1.68±1.86 -0.90±1.43 -2.93±1.20 -1.00±1.42 -2.52±1.39

UKMO -1.76±1.47 -2.72±2.37 -6.17±3.87 -2.87±1.30 -1.39±1.04 -2.73±1.31

ECMWF 8.10±2.95 -2.45±1.84 -1.80±1.27 -1.82±1.39 -3.07±1.00 -1.94±1.26

PITSS: % 

CMCC 33.2±22.1 16.9±36.5 16.8±27.8 18.4±27.1 15.6±30.2 17.7±29.1

DWD 26.6±26.6 20.0±26.8 24.3±20.1 14.8±31.9 10.8±32.2 24.4±24.6

MF 32.6±20.4 20.3±25.2 18.2±24.5 14.9±33.5 12.0±35.5 11.3±29.1

UKMO 33.0±17.6 18.7±26.2 16.8±29.3 18.8±28.9 20.7±25.5 22.7±24.2

ECMWF 25.3±29.8 27.7±26.9 18.0±29.6 14.3±36.0 8.7±42.8 25.4±26.8

IQRSS: % 

CMCC 8.30±1.65 4.08±1.66 3.81±0.97 2.67±1.38 2.63±1.20 2.90±1.28

DWD 5.17±1.12 3.79±1.33 3.61±1.47 2.84±1.52 2.87±1.50 2.59±1.51

MF 4.33±1.31 3.95±1.52 4.41±1.38 2.60±1.37 3.84±1.83 3.38±1.90

UKMO 3.83±1.47 3.59±2.39 1.24±2.01 1.67±1.32 2.99±1.62 2.73±1.55

ECMWF 12.73±2.55 3.43±1.68 3.90±1.25 2.97±1.63 2.93±1.38 3.42±1.05

  
4.2 The Impact of the BMA Method 

The BMA method is used to merge the corrected 
forecasts generated by CMCC-BJP, DWD-BJP, MF-
BJP, UKMO-BJP and ECMWF-BJP models, each of 
which means the combination of a NWS model and 
the BJP method. In order to evaluate the impact of 
the BMA method, the merged forecasts of the BJP-
BMA framework are compared with the BJP 
corrected forecasts. The CRPSS, PITSS, and IQRSS 
results are shown in Figure 6, Figure 7 and Figure 8 
respectively. The statistics of these three scores over 
26 stations are shown in Table 3. 

It can be seen from Figures 6-8 and Table 3 that 
the BJP-BMA framework outperforms a single 
model in most cases. It is clear that the CRPSS is 
greater than 0 is most cases (Figure 6), which means 
the BMA can improve the forecasting accuracy. 
However, the mean CRPSSs are near 0 (Table 3), 
which means the improvement is not significant. 
The BMA has different impact for different FLTs. 
When FLT is 1 month, the BJP-BMA framework 
has better performance than the CMCC-BJP, DWD-
BJP, MF-BJP and UKMO-BJP models but worse 
than the ECMWF-BJP. When FLT is greater than 1, 
the BJP-BMA has better performance than all five 
BJP-based models. In terms of the predictive 

sharpness, the merged forecasts are narrower than 
the corrected forecasts of four model (CMCC-BJP, 
DWD-BJP, MF-BJP, UKMO-BJP), which can be 
seen in Figure 8. In addition, the merged forecasts 
are more reliable than the corrected forecasts in most 
cases (Figure 7).  

 

Figure 6: CRPSS of the BMA merged forecasts based on 
the corrected forecasts. 
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Figure 7: PITSS of the BMA merged forecasts based on 
the corrected forecasts. 

Due to the different performance of five BJP-
based models with different FLTs, the impact of 
BMA varies significantly for different FLTs. When 
FLT is 1 month, the BMA can improve the 
forecasting accuracy and narrow the forecast width 
of four models (i.e. CMCC-BJP, DWD-BJP, MF-
BJP and UKMO-BJP models) but has opposite 
impact when compared with the ECMWF-BJP 
model. This is because the ECMWF-BJP model has 
significantly better performance than the other four 

models (Table 2) and and the other four models 
cannot offer more information to the merged 
forecasts. When FLT is greater than 1 month, due to 
the five models have similar performance in terms of 
the accuracy and sharpness, the BMA widen the 
forecasts and improve the forecasting accuracy. But 
the mean values of CRPSS and IQRSS are near 0, 
which means the change is not significant. With 
respect to the reliability, the BMA can significantly 
improve the forecasting reliability in most cases.  

 

Figure 8: IQRSS of the BMA merged forecasts based on 
the corrected forecasts. 

Table 3: Mean values and standard deviations of CRPSS, PITSS and IQRSS after BMA over all stations. 

Scores Base model 
FLT: months 

1 2 3 4 5 6 

CRPSS:  

% 

CMCC-BJP 4.49±1.99 1.80±2.07 1.88±1.46 0.55±1.46 2.40±1.48 1.46±1.79 

DWD-BJP 7.24±2.73 2.10±1.88 1.01±1.52 0.94±1.27 1.81±1.36 1.49±1.37 

MF-BJP 8.65±3.01 1.09±1.73 0.42±1.49 1.55±1.34 0.33±1.07 1.09±0.99 

UKMO-BJP 9.02±3.30 2.08±2.06 5.27±3.27 1.49±1.48 0.71±1.41 1.29±1.35 

ECMWF-BJP -0.74±1.74 1.83±2.05 1.31±1.28 0.48±1.21 2.33±1.41 0.52±1.38 

PITSS:  

% 

CMCC-BJP 4.3±17.7 3.6±19.7 3.8±18.3 6.7±17.7 1.9±18.0 0.1±19.6 

DWD-BJP 13.2±15.9 2.6±17.5 -4.5±20.3 9.3±19.5 7.3±16.4 -7.3±19.3 

MF-BJP 6.4±18.4 2.5±17.2 2.7±17.3 9.6±17.9 5.2±17.5 8.5±15.6 

UKMO-BJP 5.4±24.5 4.3±17.1 3.3±20.2 6.1±18.8 -3.3±18.3 -5.2±18.8 

ECMWF-BJP 13.4±16.1 -8.2±15.2 2.3±17.4 10.0±14.6 6.7±18.9 -9.4±18.7 

IQRSS:  

% 

CMCC-BJP 0.13±1.50 -1.05±1.70 -1.62±1.64 -0.78±1.01 -0.06±1.31 -0.50±1.37 

DWD-BJP 3.43±1.92 -0.75±1.85 -1.42±1.70 -0.96±0.82 -0.31±1.03 -0.18±1.18 

MF-BJP 4.27±2.05 -0.91±1.18 -2.26±1.29 -0.70±1.03 -1.33±0.74 -1.00±1.03 

UKMO-BJP 4.75±2.38 -0.55±1.65 1.01±1.25 0.24±0.93 -0.44±0.84 -0.32±1.14 

ECMWF-BJP -4.96±1.37 -0.37±1.67 -1.72±1.40 -1.10±0.98 -0.36±0.82 -1.03±1.34 
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Figure 9: CRPS, PITS and IQRS of the merged forecasts. 

4.3 The Forecasting Skill of the 
Merged Forecasts 

After the BJP and BMA, the forecasting 
performance of the merged forecasts is evaluated 
and shown in Figure 9. It is obvious that the CRPS 
and IQRS varies significantly over different stations. 
This is because the CRPS and IQRS are related with 
the range of observations and the precipitations over 
different stations are significantly different. In terms 
of the reliability, the PITS are all below 0.022, 
which means the forecasts are very reliable. 

The merged forecasts are also compared with the 
climatology forecasts and the CRPSS, PITSS and 
IQRSS are shown in Figure 10 and Table 4. It is 
obvious that the merged forecasts are more accurate 
and narrower than the climatology forecasts when 
FLT is 1 month. The mean values of CRPSS and 
IQRSS are 7.42% and 8.42% respectively. This is 
because the information included in the raw 
forecasts are useful and used in the BJP-BMA 
process. But when FLT is greater than 1 month, the 
improvement of the BJP-BMA framework is not 
significant in terms of forecasting accuracy and 
sharpness. The mean CRPSS value is near 0 and the 
mean IQRSS value is slightly greater than 0 (Table 
4). This is also supported by the results shown in 

Figure 10. In terms of the reliability, the PITSS 
values are greater than 0 in most forecasting cases 
(non-black color in Figure 10). Generally, the 
forecasting skill approximates that of the 
climatology forecasts when FLT value is greater 
than 1. The underlying reason may be that the raw 
forecasts are not informative with longer lead time. 
However, the BJP-BMA process can still improve 
the predictive reliability and sharpness, which makes 
the forecasts more practical. 

 

 

Figure 10: CRPSS, PITSS and IQRSS of the merged 
forecasts based on the climatology forecasts. 

In summary, when FLT is 1 month, the BJP-
BMA framework can extract the useful information 
contained in the raw forecasts and prune other 
information. Therefore, the forecasts generated from 
the BJP-BMA framework have a better performance 
than the climatology forecasts and a similar 
performance with the best single model (ECMWF-
BJP model). When the FLT value is greater than 1, 
though the raw forecasts cannot offer much useful 
information, the BJP-BMA framework can still 
generate narrower and more reliable forecasts than 
the climatology forecasts. 

Table 4: Mean values and standard deviations of CRPSS, PITSS and IQRSS after BJP-BMA framework over all stations. 

Scores 
FLT: months

1 2 3 4 5 6 

CRPSS: % 7.42±3.42 -0.56±2.03 -0.47±1.51 -1.33±1.62 -0.67±1.68 -1.40±1.53

PITSS: % 37.7±19.1 23.9±22.0 22.6±20.3 24.5±28.8 18.7±29.7 21.2±20.2

IQRSS: % 8.42±2.01 3.08±1.63 2.25±1.76 1.91±1.54 2.57±1.64 2.42±1.51
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4.4 Overall Comparison and Analysis 

The mean values of three criteria with different 
FLTs and different models are shown in Table 5. It 
is obvious that the model performance becomes 
worse along with the increase of FLT. When FLT is 
1 month, the CMCC, ECMWF and BJP-BMA 
models outperform the climatology model in terms 
of all three criteria. But when FLT is greater than 1 
month, all models can only outperform the 
climatology model with respect to PITS and IQRS. 
This is consistent with the previous studies, which 
demonstrate that the forecast skill can only persist at 
short lead time (i.e. small FLT value) (Bennett et al., 
2016; Crochemore et al., 2016). The underlying 

reason is that initial conditions are clearer with short 
lead time and more disturbances will be introduced 
along with the increase of lead time. 

It can also be seen from Table 5 that different 
models have significantly different performance. 
ECMWF-BJP model outperforms the other four 
models (CMCC-BJP, DWD-BJP, MF-BJP, UKMO-
BJP) when FLT is 1. Therefore, the four models 
cannot offer more information other than that 
offered by the ECMWF-BJP model and the merged 
forecasts (i.e. forecasts generated by the BJP-BMA 
process) cannot outperform ECMWF-BJP model. 
When FLT is greater than 1, the five models have 
similar performance and the BMA can improve the 
forecasting accuracy and reliability. 

Table 5: Mean values of CRPS, PITS and IQRS over 26 stations. 

FLT Criteria 
Model 

Climatology 
CMCC-

BJP
DWD-

BJP
MF-BJP 

UKMO-
BJP

ECMWF-
BJP 

BJP-BMA 

1 

CRPS 54.56 52.94 54.52 55.30 55.58 50.22 50.63 

PITS 0.022 0.014 0.015 0.014 0.014 0.015 0.013 

IQRS: 
mm 

324.32 297.63 307.93 310.42 312.08 283.54 297.37 

2 

CRPS 54.66 55.94 56.14 55.64 56.30 55.98 54.98 

PITS 0.019 0.015 0.015 0.015 0.015 0.013 0.014 

IQRS: 
mm 

326.33 312.92 313.97 313.87 315.67 315.18 316.63 

3 

CRPS 54.78 56.12 55.68 55.27 58.17 55.81 55.09 

PITS 0.019 0.015 0.014 0.015 0.015 0.015 0.014 

IQRS: 
mm 

326.16 313.92 314.98 311.98 322.50 313.83 319.23 

4 

CRPS 54.97 56.03 56.26 56.59 56.53 55.99 55.72 

PITS 0.018 0.014 0.015 0.015 0.014 0.015 0.013 

IQRS: 
mm 

326.28 318.11 317.48 318.27 321.17 316.84 320.49 

5 

CRPS 54.85 56.58 56.27 55.41 55.63 56.56 55.29 

PITS 0.019 0.015 0.016 0.015 0.014 0.016 0.014 

IQRS: 
mm 

326.40 318.23 317.60 314.42 317.25 317.45 318.64 

6 

CRPS 54.96 56.56 56.61 56.38 56.48 55.99 55.77 

PITS 0.019 0.015 0.014 0.016 0.014 0.013 0.014 

IQRS: 
mm 

326.89 317.67 318.87 316.47 318.56 315.77 319.55 

 
5 CONCLUSIONS 

In this study, the BJP and BMA methods are used to 
correct and merge the monthly precipitation 
forecasts generated by five models (i.e. five NWSs) 

and the results are evaluated and compared by three 
criteria (i.e. CRPS, PITS and IQRS) and the 
corresponding skill scores (i.e. CRPSS, PITSS, 
IQRSS). The results show that the BJP and BMA 
method may have different impact on the forecast 
skill. Compared with the climatology forecasts, the 
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BJP corrected ensemble forecasts are more reliable 
and narrower, which make them more practical. 
Based on the BJP corrected forecasts from five 
models, the BMA can further improve the 
forecasting reliability and accuracy in most cases. 
The forecasts generated by the BJP-BMA 
framework are also compared with the climatology 
forecasts and the results demonstrate that the 
forecasting skill varies significantly with different 
FLTs. When FLT value is 1, the raw forecasts can 
offer enough information which makes the corrected 
and merged forecasts outperform the climatology 
forecasts significantly. When FLT value is greater 
than 1, the raw forecasts can only offer limited 
information, but the BJP-BMA framework can still 
extract the useful information and generate narrower 
and more reliable forecasts. In summary, the BJP-
BMA framework can extract the useful information 
contained in the raw forecasts and generate better or 
not significantly worse forecasts than the 
climatology forecasts in terms of predictive accuracy, 
reliability and sharpness, which makes the forecasts 
more practical in water resources management.  
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