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Abstract: In this study, we proposed a hybrid modelling processor to generate highly performed streamflow forecasts. 
As a demonstrated case, the extreme gradient boosting (XGB) algorithm was firstly employed to forecast 
monthly streamflow series of the Huangzhuang hydrological station located in Hanjiang River Basin, China. 
To further improve the forecast accuracy and quantify the uncertainty, model conditional processor (MCP) 
approach was then used to postprocess the forecasts produced by the XGB model. The findings reveal that: 
(1) the XGB algorithm performed well for simulating and forecasting monthly streamflow series, (2) The 
median forecasts generated by the MCP approach exhibited smaller errors than the deterministic results of 
XGB model. (3) The 90% confidence interval was reasonable and reliable as most of observations lied 
within the prediction bounds. 

1 INTRODUCTION 

Over the past few decades, climate change and 
human activities have intensified extreme 
hydrological events such as frequent storm, flooding 
and drought, which are often accompanied by the 
life loss and damage to the infrastructures and the 
environment (Hirabayashi et al., 2013). To solve this 
problem, hydrologists and water resources 
researchers have proposed many measures to 
promote the disaster resilience and reduce losses. 
Amongst, long-term streamflow forecasting exerts 
an important effect in flood and drought control and 
water resources system planning and management. It 
has received tremendous attention of researchers due 
to the resulting forecasts with a longer lead time, 
which leaves enough time for effective responses 
(Huang et al., 2019). 

Various approaches have been proposed to 
simulate and forecast the long-term streamflow series 
based on either physical laws or system theoretic 
approaches. The former approaches, such as 
conceptual models or physically based models, were 
designed to replicate the hydrological processes 
(Devia et al., 2015). It is challenging to apply these 
models for predicting long-term streamflow series as 

they require complex mathematical tools, a large 
amount of observed data and some practical 
experience about the model. In recent years, with the 
advance of artificial intelligence & data mining (AI 
& DM) techniques, numerous machine learning 
algorithms emerged and become more popular for 
forecasting streamflow due to the advantage of 
parsimonious data requirements and time-saving 
procedures. Those AI & DM techniques, including 
support vector machine (SVM), random forest (RF), 
gradient boosting decision tree (GBDT), artificial 
neural networks (ANN) and adaptive neuro-fuzzy 
inference systems (ANFIS) have shown strong 
abilities to produce reliable and accurate streamflow 
forecasts (Yang et al., 2017, Ni et al., 2020, Pramanik 
and Panda, 2009). 

Although machine learning algorithms have been 
widely applied for streamflow forecasting, few 
studies assessed the uncertainties risen from the 
input, model parameters and structures. The forecast 
accuracy rapidly deteriorates as the lead time 
increases, especially for long-term forecasting. 
Therefore, it is important to identify and estimate the 
uncertainties to ensure the resulting forecasts are 
reasonable. Two primary approaches have been 
developed for evaluating uncertainty, i.e., “error 
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analysis” methods or “element coupling” methods. 
Error analysis methods directly estimate all 
uncertainties in the forecasting process by 
quantitatively establishing the relationship between 
predictions and observations. Examples for such 
methods include hydrologic uncertainty processor 
(HUP) and model conditional processor (MCP) 
(Krzysztofowicz and Herr 2001, Todini 2008). In 
contrast, element coupling methods identify 
different types of uncertainties associated with the 
input data, model parameters and structures, 
separately. Example for these methods include 
rainfall calculation uncertainty (RCU), Bayesian 
model averaging (BMA) and Bayesian total error 
analysis (BATEA) (Hoeting et al., 1999, Kavetski et 
al., 2006, Jiang 2019). 

In this paper, we developed a hybrid modelling 
processor by coupling the extreme gradient boosting 
(XGB) algorithm and model conditional processor 
(MCP) approach and applied it to the Hanjiang 
River. The entire works entail: (1) selecting 

predictors from numerous climate indices; (2) 
generating deterministic forecasts using the XGB 
model; (3) post-processing and assessing forecast 
uncertainty using MCP approach. To test the model 
performance, the deterministic result and the 90% 
confidence interval were evaluated by different 
performance indices. 

2 STUDY AREA AND DATA USED 

The Hanjiang River is the longest tributary of the 
Yangtze River and has a length of 1577 km and a 
drainage area of 1.71 × 105 km2. This river 
originates from Panzhong Mountain in Shanxi 
Province and passes through Shanxi, Sichuan, 
Henan and Hubei Provinces before entering the 
Yangtze River in Wuhan. The characteristics of 
Hanjiang River Basin and the location of 
Huangzhuang station are shown in Figure 1. 

  
Figure 1: The map of Hanjiang River Basin. 

In this study, the monthly series from 1981 to 
2017 of the Huangzhuang station located in the 
Hanjiang River Basin were collected to calibrate and 
validate the XGB model. A total of 130 climate 
indices from 1980 to 2016 were obtained from the 
China National climate Centre. Ten predictors for 
each month were selected from all climate indices 
for the last year through a correlation significance 
test and a stepwise regression method. Selected 
predictors for each month are not shown due to the 
limited space of the paper. 

3 METHODOLOGY 

3.1 Extreme Gradient Boosting (XGB) 

XGB, introduced by Chen & Guestrin (2016), is a 
highly efficient boosting method based on the RF and 
GBDT algorithm. As an improved version of 
Gradient Boosting Machines, XGB has been 
extensively employed to solve classification and 
regression problems in many scientific fields, such as 
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bioinformatics, reservoir operation, remote sensing 
and so on. This method fits the training data by using 
an ensemble of classification and regression trees 
(CART), each of which has an independent binary 
tree decision rule structure. A more regularized 
algorithm than gradient boosting is used to prevent 
the regression model from overfitting data. In 
addition, the computational time is minimized as 
parallel calculations are automatically executed for 
the objective functions in the training stage.  Readers 
are referred to Chen & Guestrin (2016) for more 
details about the XGB model. 

3.2 Model Conditional Processor 
(MCP) 

MCP is a conditional distribution-based method that 
used for evaluating and reducing predictive 
uncertainty. As an extended alternative of HUP, it 
allows the estimation of density distribution of the 
predictand conditional on all model forecasts at the 

same time. The basic ideas of the MCP are 
summarized as follows. 

Step 1: The normal quantile transformation 
(NQT) is used to transform observations t

obsQ and 

model forecasts t
fcstQ into normally distributed 

variables separately.  

( )t
t obsNQT Q  ; ( )t

t fcstNQT Q        (1) 

Step 2: The joint bivariate normal distribution 
between transformed variables is built up, and the 
parameters (the mean vector ,   , the covariance 

matrix ,    ) presented in Equation (2) need to be 

estimated. 
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Step 3: The density of predictand conditional on a 
new forecast is derived based on the definition of the 
bivariate normal distribution. 
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Step 4: A huge number of samples can be 
generated from the conditional distribution, and 
back-transformation algorithm is used to convert the 
samples into the real world. 

 1( )mcpQ NQT                 (4) 

where mcpQ is the final forecasting result,   is the 

sample generated from conditional distribution. 

3.3 Performance Indices 

Performance indices, Nash-Sutcliffe efficiency index 
(NSE), mean absolute percentage error (MAPE) 
containing ration (CR), Average relative bandwidth 
(RB) and average relative deviation amplitude (RD) 
were used in this paper. Equations of these indices 
can be found in Huang et al (2019). 
 
 
 
 
 

4 RESULTS 

4.1 Forecasting Results of XGB Model 

The entire data set was divided into two parts, 
including training set and validation set. The training 
set was used to calibrate the XGB model, which 
consisted of hydrological data from 1981 to 2007 
and meteorological data from 1980 to 2006, and the 
validation set was used to verify the calibrated 
model, which consisted of hydrological data from 
2008 to 2017 and meteorological data from 2007 to 
2016. To avoid the problem of overfitting or 
underfitting, the cross validation technique was 
employed to calibrate the model in the training 
period. The tree booster was used in this study, and 
initial parameters was set as follows: eta=0.2, 
max_depth=10, minimum_child_weigh=1, 
subsample=0.95, alpha=0.3, gamma=1.The optimal 
XGB model for each month was determined as the 
one with the minimal MAPE value for the training 
data throughout the cross validation, and the optimal 
model was used to forecast the streamflow series for 
the validation period. 
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Figure 2: The observations and predictions from 1981 to 2017 for the XGB model. 

The comparison and relationship between the 
observed and predicted monthly streamflow series 
for calibration and validation periods are shown in 
the Figure 2. Predicted streamflow series of the 
XGB model exhibit a good agreement with the 
observed streamflow series, where the lower flow 
points are dense and close to the diagonal line as 
shown in the Figure 2(b). Compared with lower flow 
points, higher flow points are more scattered and 
more distant from the diagonal line. This finding 
emphasizes the difficulty of predicting the extreme 
values. Table 1 shows performance indices for the 
results of the XGB model. The values of NSE and 
MAPE are 0.91 and 15.3 in the training period, and 
0.83 and 20.3 in the validation period, respectively, 
reaffirming that the XGB algorithm is highly 
effective for simulating and forecasting monthly 
streamflow series of the Huangzhuang station. 

Table 1: Performance indices of XGB and XGB-MCP.  

 
Calibration Validation

NSE MAPE NSE MAPE
XGB 0.91 15.3 0.83 20.3

XGB-MCP 0.93 14.3 0.85 19.1

4.2 Postprocessing and Uncertainty 
Analysis 

To further enhance predictive accuracy and estimate 
associated uncertainties quantitatively, the MCP 
approach was employed to postprocess the 
deterministic results from the XGB model. Again, 
all data from 1981 to 2007 was used to train the 
MCP model and estimate all parameters, and the 
remaining data from 1981 to 2007 was used to 
assess the model performance. The comparison 
between the observations and ensemble forecast 
medians was shown in Figure 3, and the 

performance indices of ensemble forecast medians 
were shown in Table 1. 

Compared with the results in Figure 2, the points 
in Figure 3(b) are closer to the diagonal line, 
especially for the ones ranging from 4500 to 7000 
m3/s. Referring to Table 1, the NSE and MAPE 
values of XGB-MCP are larger and smaller than 
those of XGB model for both training and validation 
periods, respectively. It also indicates that the 
ensemble forecast medians generated by the XGB-
MCP model are more accurate than the simulated 
results from the XGB model. These findings suggest 
that the MCP approach has a strong ability to 
remove the bias and error associated with the 
deterministic forecasts produced by the XGB model. 

To investigate the reliability of the forecasts 
generated by the MCP approach, the probability 
integral transform (PIT) plots were used in this 
paper, and the results are shown in Figure 4. All 
points in Figure 4 are visually close to the diagonal 
line and lie within the Kolmogorov 5% significance 
bands. However, for the validation period, the points 
are more distant away from the diagonal line than 
those of calibration period. In Figure 4(b), the points 
with uniform variate ranging from 0.125 to 0.35 are 
distributed under the diagonal line, and the points 
with uniform variate ranging from 0.7 to 0.85 are 
above the diagonal line. This indicates that the 
forecasts generated by the MCP approach is slightly 
over-estimated compared with observations. 
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Figure 3: The observations and ensemble forecast medians from 1981 to 2017 for the XGB-MCP model. 

 
Figure 4: PIT uniform probability plots for XGB-MCP model.  

The 90% confidence intervals (90% CI) ranging 
from 5% to 95% quantiles were also derived based 
on the conditional distribution generated by the 
MCP approach. Table 2 shows all performance 
indices of the 90% confidence intervals for both 
calibration and validation periods, and the 90% 
confidence interval for validation period is presented 
in Figure 5. It is found that more than  85% of 
observations lies in the intervals with a relatively 
narrow bandwidth, and the middle points between 
prediction bounds are closer to the observations than 
the results from the XGB model. All these findings 
suggest that the 90% confidence intervals are 
reasonable and reliable. 

 
 

Table 2: Performance indices of 90% confidence intervals 
generated by XGB-MCP model. 

 
Calibration Validation

CR RB RD CR RB RD
XGB-
MCP

0.93 0.65 0.15 0.85 0.67 0.20 
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Figure 5: The 90% confidence interval of the XGB-MCP model for the validation period. 

5 CONCLUSIONS 

In this paper, the XGB model was employed to 
simulate and predict monthly streamflow series of 
the Huangzhuang station. To further enhance the 
accuracy and eliminate uncertainties, the MCP 
approach was used to postprocess the deterministic 
results of the XGB model. The ensemble forecast 
medians and 90% confidence intervals were 
generated from the conditional distribution of the 
predictand. Several performance indices were used 
for evaluating the deterministic results and 90% 
confidence intervals. Several conclusions can be 
drawn as follows. 
(1) The NSE and MAPE were selected as the 

performance indices to investigate the accuracy 
of the XGB model. Results reveal that it is 
reasonable to apply the XGB model to predict 
the monthly streamflow series of the 
Huangzhuang station. 

(2) Compared with results from the XGB model, the 
NSE and MAPE values of the forecast medians 
generated by MCP model were larger and 
smaller, respectively, suggesting that the MCP 
approach can remove the bias and error of the 
forecasts generated by the XGB model. 

(3) The CR, RB and RD indices were selected to 
evaluate predictive uncertainties, the results of 
which suggest that the 90% confidence intervals 
cover most observations for both calibration and 
validation periods, and the deviations of the 
middle points from observed points are less than 
0.2. 

Although total predictive uncertainties in 
hydrological process had been analysed and 
estimated quantitatively in this study, we did not 
distinguish uncertainties based on their sources, e.g., 
parameters, inputs and model structures. We also 
ignored some other forecasting uncertainties risen 
from external factors, including climate change and 
human activities (Chen et al., 2011, Wesam et al., 
2020a, b). We will further investigate these 
problems in the future work. 
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