the  generation  of  an  emotional  model  aimed  to 
estimate the passengers state from their physiological 
signals. 
ACKNOWLEDGEMENTS 
This  work  were  funded  by  the  European  Union’s 
Horizon  2020  Research  and  Innovation  Program 
SUaaVE  project:  “SUpporting  acceptance  of 
automated  Vehicles”;  under  Grant  Agreement  No. 
814999. 
REFERENCES 
Bazilinskyy, P., Kyriakidis, M., & de Winter, J. (2015). An 
international  crowdsourcing  study  into  people’s 
statements  on  fully  automated  driving.  Procedia 
Manufacturing, 3, 2534–2542. 
Belda, J.-M., Iranzo, S., Jimenez, V., Mateo, B., Silva, J., 
Palomares,  N.,  Laparra-Hernández,  J.,  &  Solaz,  J. 
(2021).  Identification of relevant scenarios in the 
framework of automated vehicles to study the emotional 
state of the passengers. 10th International Congress on 
Transportation Research, Rhodes, Greece. 
Bong,  S.  Z.,  Murugappan,  M.,  &  Yaacob,  S.  (2013). 
Methods and approaches on inferring human emotional 
stress changes through physiological signals: A review. 
International Journal of Medical Engineering and 
Informatics, 5(2), 152–162. 
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: 
The  self-assessment  manikin  and  the  semantic 
differential.  Journal of Behavior Therapy and 
Experimental Psychiatry, 25(1), 49–59. 
Braun,  M.,  Weber,  F.,  &  Alt,  F.  (2020).  Affective 
Automotive  User  Interfaces–Reviewing  the  State  of 
Emotion  Regulation  in  the  Car.  ArXiv Preprint 
ArXiv:2003.13731. 
Cuzzocrea, A., Kittl, C., Simos, D. E., Weippl, E., & Xu, L. 
(Eds.). (2013). Availability, Reliability, and Security in 
Information Systems and HCI  (Vol.  8127).  Springer 
Berlin  Heidelberg.  https://doi.org/10.1007/978-3-642-
40511-2 
Drewitz, U.,  Ihme, K.,  Bahnmüller, C., Fleischer,  T., La, 
H., Pape, A.-A., Gräfing, D., Niermann, D., & Trende, 
A. (2020). Towards  user-focused  vehicle automation: 
The architectural approach of the AutoAkzept project. 
International Conference on Human-Computer 
Interaction, 15–30. 
Geethanjali, B., Adalarasu, K., Hemapraba, A., Kumar, S. 
P., & Rajasekeran, R. (2017). Emotion analysis using 
SAM  (self-assessment  manikin)  scale.  Biomedical 
Research. 
Holzinger,  A.,  Kieseberg,  P.,  Tjoa,  A.  M.,  &  Weippl,  E. 
(Eds.).  (2020).  Machine Learning and Knowledge 
Extraction: 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 
12.9 International Cross-Domain Conference, CD-
MAKE 2020, Dublin, Ireland, August 25–28, 2020, 
Proceedings  (Vol.  12279).  Springer  International 
Publishing. https://doi.org/10.1007/978-3-030-57321-8 
Jang, E.-H., Park, B. J., Kim, S. H., & Sohn, J. H. (2012). 
Emotion classification by machine learning algorithm 
using physiological signals. Proc. of Computer Science 
and Information Technology. Singapore, 25, 1–5. 
Lee, J. D., & See, K. A. (2004).  Trust  in  automation: 
Designing  for  appropriate  reliance.  Human Factors, 
46(1), 50–80. 
Mohamad,  Y.  (2005).  Integration von emotionaler 
Intelligenz in Interface-Agenten am Beispiel einer 
Trainingssoftware für lernbehinderte Kinder.  RWTH 
Aachen University. 
Nummenmaa, L.,  & Niemi, P.  (2004). Inducing affective 
states  with  success-failure  manipulations:  A  meta-
analysis.  Emotion,  4(2),  207–214.  https://doi.org/ 
10.1037/1528-3542.4.2.207 
Paddeu, D., Parkhurst, G., & Shergold, I. (2020). Passenger 
comfort  and  trust  on  first-time  use  of  a  shared 
autonomous  shuttle  vehicle.  Transportation Research 
Part C: Emerging Technologies, 115, 102604. 
Post,  J.  M.  M.,  Ünal,  A.  B.,  &  Veldstra,  J.  L.  (2020). 
Deliverable 1.2. Model and guidelines depicting key 
psychological factors that explain and promote public 
acceptability of CAV among different user groups. 
H2020 SUaaVE project. 
SAE  International.  (2021).  J3016C: Taxonomy and 
Definitions for Terms Related to Driving Automation 
Systems for On-Road Motor Vehicles - SAE 
International. 
Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., 
& Yang, X. (2018). A review of emotion recognition 
using physiological signals. Sensors, 18(7), 2074. 
Suja,  P.,  Tripathi,  S.,  &  Deepthy,  J.  (2014).  Emotion 
Recognition from Facial Expressions Using Frequency 
Domain Techniques. In S. M. Thampi, A. Gelbukh, & 
J.  Mukhopadhyay  (Eds.),  Advances in Signal 
Processing and Intelligent Recognition Systems  (pp. 
299–310).  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-319-04960-1_27