REFERENCES 
Albert,  A.  (1972).  Regression and the Moore-Penrose 
Pseudoinverse. 
Castro, F., Savaris, W., Araujo, R., Costa, A., Sanches, M., 
&  Carvalho,  A.  de.  (2020).  Plantar  Pressure 
Measurement  System  With  Improved  Isolated  Drive 
Feedback  Circuit  and  ANN:  Development  and 
Characterization.  IEEE Sensors Journal,  20(19), 
11034–11043.  https://doi.org/10.1109/JSEN.2020.299 
8700 
Cimino, D. (2016). Implementazione Hardware dedicata di 
Metodi di Data Processing per la Ricostruzione della 
Distribuzione di Forze di Contatto in Applicazioni 
Tattili. 
Ciotti,  S.,  Sun,  T.,  Battaglia,  E.,  Bicchi,  A.,  Liu,  H.,  & 
Bianchi,  M.  (2019).  Soft  tactile  sensing:  retrieving 
force,  torque  and  contact  point  information  from 
deformable surfaces. 2019 International Conference on 
Robotics and Automation (ICRA),  4290–4296. 
https://doi.org/10.1109/ICRA.2019.8794087 
Cirillo, A., Ficuciello, F., Natale, C., Pirozzi, S., & Villani, 
L.  (2016).  A  Conformable  Force/Tactile  Skin  for 
Physical Human–Robot Interaction. IEEE Robotics and 
Automation Letters,  1(1),  41–48.  https://doi.org/ 
10.1109/LRA.2015.2505061 
Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). 
Tactile  Sensing—From  Humans to  Humanoids.  IEEE 
Transactions on Robotics,  26(1),  1–20. 
https://doi.org/10.1109/TRO.2009.2033627 
Dahiya,  R.  S.,  Mittendorfer,  P.,  Valle,  M.,  Cheng,  G.,  & 
Lumelsky,  V.  J.  (2013).  Directions  Toward  Effective 
Utilization  of  Tactile  Skin:  A  Review.  IEEE Sensors 
Journal,  13(11),  4121–4138.  https://doi.org/10.1109/ 
JSEN.2013.2279056 
Duong, L. Van, & Ho, V. A. (2021). Large-Scale Vision-
Based  Tactile  Sensing  for  Robot  Links:  Design, 
Modeling,  and  Evaluation.  IEEE Transactions on 
Robotics,  37(2),  390–403.  https://doi.org/10.1109/ 
TRO.2020.3031251 
Ibrahim,  A.,  Pinna,  L.,  &  Valle,  M.  (2017).  Interface 
Circuits  Based  on  FPGA  for  Tactile  Sensor  Systems. 
2017 New Generation of CAS (NGCAS),  37–40. 
https://doi.org/10.1109/NGCAS.2017.60 
Ito, D., Funabora, Y., Doki, S., & Doki, K. (2019). Control 
System  Based  on  Contact  Force  Distribution  for 
Wearable Robot with Tactile Sensor. 2019 IEEE/SICE 
International Symposium on System Integration, SII 
2019,  259–263.  https://doi.org/10.1109/SII.2019.870 
0383 
Johnson,  K.  L.  (1985).  Contact Mechanics. 
https://doi.org/DOI: 10.1017/CBO9781139171731 
Lambeta, M., Chou, P.-W., Tian, S., Yang, B., Maloon, B., 
Most,  V.  R.  Calandra,  R.  (2020).  DIGIT:  A  Novel 
Design  for  a  Low-Cost  Compact  High-Resolution 
Tactile  Sensor  with  Application  to  In-Hand 
Manipulation. IEEE Robotics and Automation Letters, 
5
(3), 3838–3845. https://doi.org/10.1109/LRA.2020.29 
77257 
Li, X., Li, W., Zheng, Y., Althoefer, K., & Qi, P. (2020). 
Criminisi  algorithm  applied  to  a  gelsight  fingertip 
sensor  for  multi-modality  perception.  2020 
IEEE/ASME International Conference on Advanced 
Intelligent Mechatronics, AIM 2020, 2020-July,  190–
195. https://doi.org/10.1109/AIM43001.2020.9158799 
Li, Y., Wang, B., Li, Y., Zhang, B., Weng, L., Huang, W., 
& Liu, H. (2019). Design and Output Characteristics of 
Magnetostrictive  Tactile  Sensor  for  Detecting  Force 
and  Stiffness  of  Manipulated  Objects.  IEEE 
Transactions on Industrial Informatics,  15(2),  1219–
1225. https://doi.org/10.1109/TII.2018.2862912 
Masoumian, A., Montazer, M. C., Valls, D. P., Kazemi, P., 
&  Rashwan,  H.  A.  (2020).  Using  the  Feedback  of 
Dynamic  Active-Pixel  Vision  Sensor  (Davis)  to 
Prevent  Slip  in  Real  Time.  6th International 
Conference on Mechatronics and Robotics 
Engineering, ICMRE 2020,  63–67.  https://doi.org/ 
10.1109/ICMRE49073.2020.9065017 
Mohammadi, A., Xu, Y., Tan, Y., Choong, P., & Oetomo, 
D.  (2019).  Magnetic-based  soft  tactile  sensors  with 
deformable  continuous  force  transfer  medium  for 
resolving  contact  locations  in  robotic  grasping  and 
manipulation.  Sensors (Switzerland),  19(22). 
https://doi.org/10.3390/s19224925 
Seminara, L., Capurro, M., & Valle, M. (2015). Tactile data 
processing  method  for  the  reconstruction  of  contact 
force  distributions.  MECHATRONICS,  27,  28–37. 
https://doi.org/10.1016/j.mechatronics.2015.02.001 
Trueeb, C., Sferrazza, C., & D’Andrea, R. (2020). Towards 
vision-based robotic skins: A data-driven, multi-camera 
tactile  sensor.  3rd IEEE International Conference on 
Soft Robotics, RoboSoft 2020,  333–338. 
https://doi.org/10.1109/RoboSoft48309.2020.9116060 
Wasko, W., Albini, A., Maiolino, P., Mastrogiovanni, F., & 
Cannata,  G.  (2019).  Contact  Modelling  and  Tactile 
Data  Processing  for  Robot  Skins.  SENSORS,  19(4). 
https://doi.org/10.3390/s19040814 
XELA Robotics Inc. (n.d.). XELA Robotics | Sensing for 
the  future.  Retrieved  April  19,  2020,  from 
https://www.xelarobotics.com/index?lang=en 
Yuan,  W.,  Zhu,  C.,  Owens,  A.,  Srinivasan,  M.  A.,  & 
Adelson,  E.  H.  (2017).  Shape-independent  hardness 
estimation  using  deep  learning  and  a  GelSight  tactile 
sensor.  2017 IEEE International Conference on 
Robotics and Automation, ICRA 2017,  951–958. 
https://doi.org/10.1109/ICRA.2017.7989116 
Zou, L.,  Ge,  C.,  Wang, Z.  J.,  Cretu, E., &  Li,  X. (2017). 
Novel  Tactile  Sensor  Technology  and  Smart  Tactile 
Sensing  Systems:  A  Review.  SENSORS,  17(11). 
https://doi.org/10.3390/s17112653