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Abstract: The design of ontologies is a non-trivial task that can simply be reduced to the reuse of one or more existing 
ontologies. However, since an expert in knowledge engineering would only need a part of the ontology to 
perform a specific task, obtaining this partition will require the modularization of ontologies. This article 
proposes a tool named COMET, based on hybrid modularization, composed of existing structural and 
semantic modularization techniques, that, from an ontology and a list of input terms, generates, according to 
an integrated segmentation algorithm, a module which in fact is a segment consisting only of concepts deemed 
relevant. The segmentation algorithm is based on two parameters which are hierarchical deep and semantic 
threshold. 

1 INTRODUCTION 

The development of Web technologies has brought 
about an increased interest in the research for 
knowledge sharing and integration in a distributed 
environment. The Semantic Web tends not only to 
render information accessible but also readable and 
usable through data processing applications. The 
latter provides the tools which permit a better 
organization of information through extracting, 
sharing and reusing the specific knowledge in a 
domain. In this perspective of sharing and 
interoperability, the proliferation and availability of 
ontologies are crucial. It goes without saying that 
ontologies have become an inevitable pattern for the 
representation and reasoning on domain knowledge. 
Though essential to the system’s management on 
knowledge basis, it does not refute the fact that the 
conception, the reuse and integration of ontologies 
remain complex tasks. In the present situation, the 
authors quickly realize that modularization will be an 
effective approach which will make it possible to 
provide answers to a good number of problems of 
expert knowledge. The authors will examine the 
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modularization as a process during which, a set of 
pertinent concepts of a given domain is identified. 
Modularisation of ontologies is an important field of 
research with many recent publications such as 
(Leclair and al, 2019; De Giacomo and al, 2018; Xue 
and Tang, 2017; Khan and Keet, 2015; Algergawy 
and al., 2016; Babalou and al, 2016; Movaghati and 
Barforoush, 2016). Each of these works addresses 
modularisation either on the structural or on the 
semantic view. The notion of modularization is based 
on the principle of «divide and rule» generally 
applied in software engineering which is about 
developing an application whose structure depends 
essentially on autonomous components easily 
conceivable and reusable. The module thus represents 
a component of software which executes a precise 
task and interacts with others. In ontological 
engineering, modularization can be perceived in two 
ways. Firstly, it can be seen as a process leading to 
the decomposition of a large ontology into 
ontological modules of small sizes. Secondly, it can 
equally be perceived as a stage in the ontology 
construction process which is done through the 
conception of a set of ontological modules 
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independent from one another. Modularization 
therefore is summarized in selecting concepts and 
pertinent relationships based on the task and the 
application for which the modeling of an ontology is 
decided. To do this, the researchers may: 
 Reuse all the ontology in entirety. All the 

concepts and relationships of domain ontology 
will be included in the ontology which is 
conceived. This results in a great weighing on 
the ontology application which will be as big as 
if the domain ontology is large. In such a case, 
the authors would discover concepts and 
definitions which are not necessarily relevant 
to the task at hand. 

 Build a new ontology. This will represent a 
fastidious work. The conception of an ontology 
remains a complex task in the sense that it is 
expected of the expert to define all the concepts 
and relationships necessarily. 

 Reuse of part of the initial ontology. It is a 
compromise between the two preceding 
alternatives. In this case, the application 
ontology will therefore represent a part or a 
module of the domain ontology. There exist 
two principal modularization techniques of 
ontologies (Algergawy A. and al, 2016.). The 
authors distinguish the techniques based on the 
partitioning of ontology and the techniques 
based on the extraction of ontological module. 
The partitioning subdivides an ontology into a 
set of sub structures; autonomous or dependent 
on each other called partitions, meanwhile the 
module extraction consists in extracting a sub 
ontology based on a precise signature. Whether 
it deals with the ontology partitioning or 
module extraction, it is remarked that these 
techniques are based on structural and semantic 
approaches. 

The structural extraction module approaches bring 
the problem of modularization to the extraction of a 
graph which in essence is a sub structure containing 
pertinent concepts in relation to a previously fixed 
signature. While the semantic approaches are based 
essentially on the very usage of ontology, putting in 
evidence the way concepts are linked one to the other. 
That is called the semantic proximity. However, they 
quickly realized that each of these approaches present 
limitations for which they will delve in to provide 
preliminary solutions in proposing a hybrid approach 
name COMET. The latter draws from the better of the 
two worlds in combining at the same time the structural 
and semantic approaches so as to consolidate the 
strengths of these. 

The remaining parts of this paper are organized 
into five sections as follows: the first section is the 
state-of-the-art on existing approaches to 
modularization techniques. The authors present the 
particularities and limitations of these approaches by 
demonstrating the need to develop a new approach. 
The next section concerns the COMET 
modularization approach. The third section is the 
experimentations and results of COMET where 
validation protocol is presented and the results of the 
experimentations. The fifth section is concerned with 
the analysis of the results. The conclusion of this 
paper will be presented in the last section. 

2 STATE OF THE ART 

An ontology O is defined by the following formula 
(Palmisano, Tamma, Payne, & Doran, 2009): 
  O = (Ax(O),Sig(O)) where Ax(O)  represents the 
set of axioms made of concepts, relationships and 
functions (sub class, equivalence, instantiation, 
etc…). Sig(O) is the signature of the O which 
represents the set of entity names which are found in 
the axioms. In other words, it refers to the O 
vocabulary. The ontology modularization of O 
permits the definition of a module M as:    
M = (Ax(M), Sig(M)) 
where M is part of O,  (Ax(𝑀))ூ  ⊆ (𝐴𝑥(𝑂))ூ  and 
Sig (M) ⊆ Sig (O), I is the interpretation. In fact, it is 
a basis of the description semantic logic. It is 
symbolize by I = (Δூ, ●ூ  ) where Δூ  is the domain 
interpretation and ●ூ the interpretation function.  

There are two main approaches to modularizing 
ontologies: approaches based on ontology 
partitioning and approaches based on ontology 
module extraction. 

Partitioning is the process during which an 
ontology O is fractioned into a set of M modules (not 
necessarily disjoint) such that the union of 
interpretation of all the partitions thus creates the 
equivalence of the initial ontology interpretation O. 
Formally, the ontology partitioning can be defined as 
follows: 𝑀 = {𝑀ଵ , 𝑀ଶ,.. , 𝑀 }| 

{(𝐴𝑥(𝑀ଵ)ூ𝑈 𝐴𝑥(𝑀ଶ)ூ𝑈 … 𝑈 𝐴𝑥(𝑀)ூ} = 
{Ax(𝑂))ூ}.  

the authors distinguish two principal partitioning 
approaches:  
 The approach of the Stuckenschmidt and al. is 

based uniquely on the hierarchical structure of 
classes (Stuckenschmidt & Klein, 2004). This 
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approach is founded on the hypothesis that the 
dependence between the concepts could be 
derived from the structure of the ontology. The 
latter is represented by a weighted graph O = < 
C, D, W > where the nodes (C) represent the 
concepts and the crests (D) represent the 
relationships between concepts, and the weight 
(W) varies as a function of the dependence. 

 The approach of the Cuenca Grau and al. on the 
other hand is based on ε-connections (Σ) (Grau, 
Parsia, Sirin, & AdityaKalyan, 2005). These 
are used as the language of definition and 
ontologies combination instantiation OWL-
DL. The partitions generated by Cuenca Grau 
and al. are at the same time structurally (Σ ∼ O) 
and semantically compatible (Σ ≈ O). The 
structural compatibility has as objective to 
guarantee that no entity or axiom should be 
added, removed or modified during the 
partitioning. The role of the semantic 
compatibility is to guarantee the preservation 
of the interpretation module. 

The extraction of the ontology module is a process 
during which an M module covering a specific 
signature is extracted from an ontology O, as in 
Sig(M) ⊆ Sig(O).  M is the pertinent part of O which 
covers the entire elements defined by Sig (M). M 
module is an ontology of its own, as such, other 
modules can be extracted from it. Formally, the 
module extraction can be defined as follows: 
extracting  

(O, Sig(M)) ⟶ {𝑀|(𝐴𝑥(𝑀))ூ ⊆ (𝐴𝑥(𝑂))ூ } 

The most evident way to visualize an ontology is 
to represent it in a graph where the peaks consist of 
concepts and individuals and the crests are the 
relationships (hierarchies and semantics) (Dupont, 
Callut, Dooms, Monette & Deville, 2006). The 
problem of module ontology extraction will then be 
brought to the extraction of a sub graph containing the 
most pertinent concepts in relation to the list of terms 
entered by the user. There is the necessity to evaluate 
the pertinence of concepts one from the other. The 
authors can refer to the notion of distance in the sense 
that the most pertinent will be the closest to the 
starting concepts in a certain predefined range by the 
user, and for which the inter-concepts distance could 
be evaluated by the calculation of the shortest path of 
Dijkstra. This approach will be realizable, most 
assuredly since there exist a Java library called 
JUNG, which enables the transformation of an 
ontology into a graph. 

The advantages of this structural approach are 
many. Firstly, there already exist algorithms effective 

in extraction of sub graphs. Supposing that the 
ontology from which the module to be extracted is of 
a satisfactory quality, this approach does not re-
structure the ontology in the sense that the extracted 
module conserves the same internal structure as the 
original ontology. And should the graph be any least 
dense, the complexity of the algorithm is reduced. On 
the contrary, JUNG considers by default that all the 
crests of the graph are equivalent. On this basis, it 
becomes impossible to correctly evaluate the nodes 
and arcs, even as in an ontology, the relationships 
between different concepts are never equivalent. More 
so, this method ignores the concepts distance from the 
beginning concepts but which can also be pertinent. 

The second way of seeing an ontology is to 
consider it through its utility which is the 
representation of knowledge. In other words, when it 
comes to the definition of concepts which are useful 
in relation to the others, in order to understand the 
domain which the ontology describes, the authors 
speak of semantic domain. In making a total 
abstraction of the structure of ontology, the authors 
shall be taking concepts two by two in order to see if 
they are semantically close (Jiang & Conrath, 1997). 
Different from the structural approach, the authors 
make allusion here to a semantic distance which will 
allow us evaluate the semantic proximity of ontology 
concepts in relation to those corresponding to the 
terms entered by the user. 

The advantages of the semantic approach are the 
pertinence and precision, because, what constitutes 
the principal strength of an ontology remains its 
semantics (Ghosh, Abdulrab, Naja & Khalil, 2017b). 
Suffice for a concept to be linked to a bad concept for 
the quality of ontology to be altered, and so, can led 
us to an ontology which does not tie anymore with 
reality. The semantic approach permits us to put 
ontology from start and to test the semantic similarity 
of all the sets of concepts of ontology. Meanwhile, 
seeing that the authors work with large ontologies, to 
calculate the semantic distance of all the sets of 
concepts seems very much utopic in terms of the 
algorithmic complexity and the execution time. It 
therefore becomes primordial to turn to other 
alternatives which will permit us to still consider the 
ontology structure instead of completely ignoring it. 

3 COMET MODULARIZATION 
APPROACH 

In order to cope with the current limitations of 
existing modularization approaches, the authors 
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propose the hybrid COMET approach that integrates 
both the structure and semantics of the ontology. The 
modularization process with COMET is done in 2 
steps: the segmentation of the ontology and the 
extraction of the module.  

Segmentation is the first phase of the extraction 
process. It is based on the assumption that when a 
concept is pertinent, then its sub concepts are equally 
pertinent (Stuckenschmidt & Schlicht, 2006)( Ghosh, 
Abdulrab, Naja & Khalil, 2017a). The segmentation 
phase therefore consists in determining the limits of 
the module.  To do this, the user must first of all enter 
a list of terms, then define a semantic threshold and a 
hierarchical depth.  Once all these parameters have 
been defined, the algorithm will first of all search for 
the concepts corresponding to the list of terms and 
will save them in a formerly defined stack: this is the 
initialization. This stack containing the starting 
concepts is the initial core of the module. The purpose 
of this approach is to extend the base over time as the 
semantically close concepts are discovered. Thus for 
each concept, it is verified that it possesses semantic 
relationships stemming from the object type. In the 
case where there is, then for each of these 
relationships, the concept to which it is semantically 
linked will be searched and the distance between 
these two concepts will be evaluated. In a scenario 
where this distance is greater than or equal to the fixed 
semantic threshold, the new concept thus discovered 
will be added to the stack containing the list of 
pertinent concepts. Also, depending on the user's 
defined hierarchical depth, the offspring of the 
concept judged pertinent will equally be added to the 
stack. In the event where the semantic distance is less 
than the threshold and cannot find a semantically 
linked concept to the pertinent concept already 
present in the stack, the algorithm will call upon the 
hierarchy of ontology to verify if the initial concept 
has sub concepts. If sub concepts exist, then for each 
of them, the algorithm will start searching again for 
semantic relationships. And, if there exists one, it will 
evaluate the semantic inter-concept distances in 
relation to the threshold. In a case where there exists 
no semantic relationships or if the threshold is still not 
attained, the algorithm will search even further in the 
hierarchy until it finds a concept with satisfactory 
semantic relationships. The calculation of the 
semantic distance is done using Wu and Palmer's 
distance, which is a practical and intuitive measure 
based on the length of the path between two concepts 
of the same hierarchy. It calculates the distance 
separating two concepts in the hierarchy according to 
their position relative to the root (Wu & Palmer, 
1994).  It is obvious that two concepts found at the 

same depth in the hierarchy will have a higher 
similarity than concepts at different levels of the 
hierarchy. The measurement of Wu and Palmer is 
defined as follows: 𝑆𝑖𝑛(𝐶ଵ + 𝐶ଶ) = 2 + dept(C)𝑑𝑒𝑝𝑡ℎ(𝐶ଵ) + 𝑑𝑒𝑝𝑡ℎ(𝐶ଶ) 

where c, the most accurate common subsuming, 
depth(c) is the length of the path between c and the 
root of the hierarchy,  𝑑𝑒𝑝𝑡ℎ (𝑐) is the number of 
arcs between 𝑐 and the root passing through c. This 
measure ranges between 0 and 1. The segmentation 
algorithm is presented by the following codes. 

 
Algoritm COMET_Segmentation 
Require: Ontology O 
Require: domain : OntClass 
Ensure: relevantClasses : Vector<OntClass> 
1: procedure computeRelevantClasses(domain) 
2: relations ← getOutgoingObjectProperties(O, domain) 
3: if (relations.size() > 0) then 
4: for each op ∈ relations do 
5: range ← op.getRange() 
6: if range 6= 0 then 
7: if SemanticDistance(domain, range) > threshold then 
8: if relevantClasses.contains(range) then 
9:   continue 
10: else 
11: relevantClasses.add(range) 
12: end if 
13:        else 
14:        if domain.hasSubclass() then 
15:        relevantSubClasses ← domain.listSubClasses() 
16:        for each c ∈ relevantSubClasses do 
17:  computeRelevantClasses(c) 
18:        end for 
19:        end if 
20:        end if 
21:        else 
22:              relevantClasses.remove(range) 
23:         end if 
24: end for 
25: else 
26: if domain.hasSubclass() then 
27: relevantSubClasses ← domain.listSubClasses() 
28:     for each c ∈ relevantSubClasses do 
29:        computeRelevantClasses(c) 
30:     end for 
31:  end if 
32: end if 
33:  return relevantClasses 
34: end procedure 

 
After segmentation, the second phase of the 

modularization process follows, it is the extraction of 
the sub ontology that has been identified and stored 
in memory. To do this, the authors proceed with the 
pruning of the graph (tree) representing the ontology 
in looking through its entirety in order to delete non-
pertinent concepts.  It is important to indicate that the 
authors work with two sets of data, one containing all 
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the relevant concepts and the other containing all the 
concepts judged irrelevant. When a concept is deleted 
from the ontology, all the semantic and hierarchical 
relationships that index it are equally deleted.  Once 
pruning is completed, the new ontology will be 
exported into a file. Pruning is by far the most suitable 
technique for the extraction phase, in that it would 
have been clearly more complex to save both the 
relevant concepts and their differing properties in data 
structures (list type) and uniquely from these, to 
generate the ontological module.  

Figure 1, illustrate the entire modularization 
process from COMET, with input parameters: a list 
of terms composed of a and b, a semantic threshold 
fixed at 0.4, and a hierarchical depth of 1. At the start, 
the authors have an ontology of 15 concepts and after 
modularization, the authors obtain a module of 7 
concepts. The authors note that the concepts d, g and 
i are identified and added via hierarchical 
relationships according to the depth fixed in relation 
to a pertinent concept already present in the stack.  

 
Figure 1: Modularization process with COMET. 

4 EXPERIMENTATIONS AND 
RESULTS OF COMET 

A module is an ontology, and as such, the quality 
assessment approaches of ontologies apply equally to 
it.  Although some evaluation techniques analyze the 
structure of the ontology represented by the content 
of the ontology, other techniques focus mainly on the 
comparison of the content of the ontology itself, 
either with another existing ontology whose quality 
would have been judged satisfactory, or with another 
alternative representation of the domain of 
knowledge in question, such as a corpus of 
documents. This comparison is made in order to 
determine the extent to which this content modulates 
all relevant aspects of the domain to be described.  

Based on these principles and in order to finalize their 
validation protocol, the authors will first of all define 
their evaluation criteria and then establish the 
procedure by which the different extracted modules 
will be evaluated. 

4.1 The Validation Protocol 

The validation protocol is essentially based on a 
comparative analysis of the modules obtained by 
COMET to those generated by the OWL Module 
Extractor1 and SegmentationApp tools.  It is in fact a 
Gold standard type evaluation having as reference the 
ontology from which the different modules are 
extracted (Dellschaft  & Steffen, 2006). The aim of our 
validation protocol is to evaluate both the lexico-
semantic aspect and the structural aspect of the 
different modules. To do this, in addition to 
OntoMetrics API, the authors also use the OntoEval 
API to calculate the precision and recall of modules as 
a function of those obtained by the reference ontology.  
Each of these APIs take two parameters for input: the 
reference ontology and the generated or calculated 
ontology which, in this case is the extracted module.  

The API evaluation process is therefore carried 
out in three phases. In the first, the API evaluates the 
source ontology according to Alani and al. This 
evaluation consists first of all in calculating the 
quality metrics of the source ontology, then in 
assigning the maximum score which is 100% to each 
returned metric result. This systemic attribution of a 
maximum score is justified by the fact that our source 
ontology is considered as an ontology of reference, 
that is, an ontology of satisfactory quality.  

In   the second phase, the modules are evaluated 
in turn using these same APIs.  The metrics are 
calculated for each module.  The results obtained in 
the calculations of the module's quality metrics are 
compared with those of the reference ontology. Based 
on the scores attributed to those of the reference 
ontology, the scores of the metrics in the module are 
calculated. In order to illustrate this approach of 
evaluation, let us consider an ontology O and a 
module M for which the density DEM is calculated. 
At the end of the calculation of the density of the 
initial ontology O, the authors obtain a result of 
DEMO = 12.22; while the calculation of the density 
of the module gives a result of DEMM = 5.21.  

In making a connection between the densities of 
the module to that of the reference ontology, the 
authors obtain the score of the module density, which 
in this case, is of 42.63%. 𝑆𝑐𝑜𝑟𝑒ாெ =  ாெಾாெೀ  (%) 
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The last phase of the evaluation consists simply of 
comparing the metric scores of the modules generated 
by COMET, OWL Module Extractor and 
SegmentationApp amongst them in order to 
determine which one is most relevant depending on 
the metrics used. 

To summarize the validation protocol, the authors 
compare each module generated from the different 
extraction tools with the source ontology to obtain 
scores. Then, compare the scores of the naked 
modules with each other in order to determine the 
highest score. It is the modules with the best metric 
scores or the best total score that allows the judgment 
of the efficiency of an extraction tool.   

It is expected that the module that will maximize 
the characteristics of the reference ontology will end 
up with the highest scores. The metric scores depend 
on factors such as the number of concepts, the number 
of properties and the taxonomy of the module or the 
ontology of reference to name just a few. Table 1and  
2 shows all ontologies modularized, the signature of 
the module (the list of terms to be covered), the 
extraction tools together with the size of ontologies 
and the different modules extracted from them. As for 
the tests, the authors have fixed the hierarchical depth 
of COMET at 1 while the semantic threshold S is 
variable. 

Table 1: Ontologies and terms. 

Ontologies #C Terms 

sweto simplified 115 Person, Event 

cmt 29 Co-author,  Review 

confOf 38 Participant, Conference 

iasted 140 Delegate, Activity, Place, 
Fee, Deadline, Submission 

Conference 59 Submitted contribution, 
Topic 

edas 103 Author, Paper, Workshop, 
Program, SocialEvent, Call,  
Country, Document, 
ReviewRating, Rejectedpaper 

paperdyne 45 Conference,  Location 

OpenConf 62 Paper Review,  People 

ekaw 73 Review, Possible Reviewer 

sigkdd 49 Author,  Award, Sponzor 

travel 34 Destination, 
AccommodationRating 

PPOntology 88 Case, Biotic Disorder, 
Organism, Disorder, Mineral, Plant 
Observatio, Pesticide, Abnormality, 
Bacterium, Roots 

OTN 179 Feature, Service, 
Road Element, Manoeuvre, 
Temperature,  Face, Tourism, 
Accident, Forest, Junction 

Table 2: Extraction of modules using approaches from 
Seidenberg and al., Cuenca and al. and COMET. 

 COMET CUENCA 

SEIDENBERG S = 0.2 S = 0.0 Bottom 

O #C Ratio #C Ratio #C Ratio #C Ratio 

A 4 3,48% 21 18,26% 21 18,26% 4 3,48% 

B 7 24,14% 3 10,34% 24 82,76% 7 24,14% 

C 10 26,32% 5 13,16% 5 13,16% 10 26,32% 

D 48 34,29% 56 40% 56 40% 54 38,57% 

E 10 16,95% 21 35,59% 23 38,98% 11 18,64% 

F 20 19,42% 46 44,66% 47 45,63% 24 23,30% 

G 18 40% 17 37,78% 18 40% 2 4,44% 

H 22 35,48% 7 11,29% 29 46,77% 58 93,55% 

I 4 5,48% 15 20,55% 15 20,55% 4 5,48% 

J 16 32,65% 20 40,82% 21 42,86% 16 32,65% 

K 1 2,94% 15 44,12% 15 44,12% 25 73,53% 

L 17 19,32% 33 37,50% 41 46,59% 87 98,86% 

M 25 13,97% 59 32,96% 59 32,96% 52 29,05% 

Average 21,11%  29,77%  39,43%  36,31% 

Legende: column O = Ontologies.  
A = sweto simplified, B =cmt, C= ConfOf, D = Conference, 
E= iasted, F = edas, G=paperdyne, H=OpenConf, I=ekaw, 
J = sigkdd, K = travel, L =PPOntology, M = OTN, #C = 
Size. 

4.2 Analysis of the Results 

In order to determine the most efficient extraction 
tool, the authors evaluated each module extracted 
from the ontologies listed in Table 1 according to the 
metrics of Alani and al. (Alani & Shadbolt, 2006). 
Independent of the ontology to modularize and the 
modules generated, it is a question of calculating the 
score of each metric used, then comparing the scores 
of the modules obtained between them.  Each of the 
metrics is intended to evaluate a specific aspect of the 
ontological module. 

Class Matching (CMM) assesses the ability of an 
ontology to cover a given set of terms. In this case, it 
is intended to calculate the percentage of both exact 
and partial matching between the classes of the 
module and those of the reference ontology, in order 
to find the degree of representation of the classes of 
the initial ontology in the extracted module.  It is 
obvious that the larger the module, the more likely it 
is to cover the set of concepts (corresponding to the 
list of searched terms) presented in the initial 
ontology. After analyzing of Table 1, it is noted that 
in most cases of ontologies studied, the COMET 
modules obtain a better score from the CMM, which 
suggests that the modules they generate are more 
representative of the initial ontology. 

The density (DEM) expresses the degree of 
precision of a given concept, that is, the richness of 
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its attributes.  This definition implies that an adequate 
representation of a concept must be able to offer as 
much information as possible about it. The density 
depends essentially on the number of subclasses, the 
number of attributes associated with this concept or 
betters still, the number of related concepts.  In the 
present case, it is observed that the modules generated 
using COMET have a significantly higher DEM score 
than those extracted from the other tools (Figure 3). 
This is explained by the fact that COMET crosses the 
ontology horizontally through semantic relationships 
in order to search for the relevant concepts and once 
they have been identified, the hierarchy is gone 
through in order to add their descendants to the 
module. However, it should be remembered that in 
the case of the COMET tool, the hierarchic depth is a 
parameter which, like the semantic threshold, is 
defined by the user. It is through this parameter that 
the expert is able to determine the limit at which the 
algorithm should stop during the course of the 
taxonomy. The hierarchical depth goes in peer with 
the level of specialization, which is an important 
factor in the calculation of density. From there, the 
authors can deduce that the deeper the hierarchical 
depth of the COMET, the more the score of the DEM 
module increases. 

The density does not depend on the number of 
concepts in the module. This hypothesis is verified in 
the cases of ontologies 8, 11 and 12, where it is noted 
that, although the size of the top-modules extracted 
with OWL Module Extractor represent about 75% to 
95% of the size of source ontologies, their score 
remains less than that of the modules extracted with 
COMET whose average size remains largely inferior 
to 50% (Figure 3). 

The semantic similarity (SSM) calculates the 
proximity between the classes corresponding to the 
terms searched in the ontology. Thus, concepts that 
correspond to these terms must be linked either by 
hierarchical relationships or by semantic 
relationships.  This measurement is based on the 
calculation of the shortest path between pairs of 
concepts. It can be seen that in the majority of cases, 
the modules generated with COMET have a SSM 
elevated score, which is in line with the COMET 
approach where the detection of relevant concepts is 
done through the path of object type properties. The 
more semantic relationships there are in the module, 
the more differing paths there will be between peer of 
concepts in the module. Similarly, the more the 
concepts of a module are interconnected by semantic 
and hierarchical relationships, the higher the SSM 
score of this module will be. 

The centrality (CEM) measures the degree of 
representation of all the concepts corresponding to the 
terms searched for in an ontology. It is based on the 
calculation of the shortest route through each concept 
of ontology. The most solicited concepts during the 
ontology process have a higher centrality than those 
of other concepts. In view of the results shown in 
figures 2, 3, 4 and 5 below, it is noticed that in 7 of 
the 13 ontology cases studied, the modules generated 
by COMET have a significantly higher CEM score 
than those of modules generated by OWL Module 
Extractor and SegmentationApp. The authors can 
justify this result by the fact that these last two tools 
have produced modules with few semantic 
relationships, thus reducing the number of paths 
between pairs of concepts. This observation leads to 
the conclusion that the structure's course in the 
calculation of the CEM of the OWL Module 
Extractor and SegmentationApp modules is mainly 
done through hierarchical relationships. It is 
important to remember that the density, the centrality 
and the semantic similarity are structural measures 
which are founded essentially on the degree of 
interconnection of concepts in the module.  

In Scenario 1, the results of which are shown in 
Figure 2, the authors consider both class matching 
and density to be priorities. To do this, the authors 
distribute the weights as follows: 0.4CMM, 0.4DEM, 
0.2SSM, 0.0CEM. In this case, the authors estimate 
that centrality has no impact on the global quality of 
the module. 

 
Figure 2: Module score as a function of the metrics of Alani 
and al.: scenario 1. 

In scenario 2, the weights are assigned equally to each 
metric, resulting in the following distribution: 
0.25CMM, 0.25DEM, 0.25SSM, 0.25CEM. The 
authors estimate that no one metric is more important 
than another. The results obtained are shown in 
Figure 3. 
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Figure 3: Module score as a function of the metrics of Alani 
and al.: scenario 2. 

In Scenario 3, priority is given to the 
correspondence of classes, followed by density, then 
similarity and finally centrality. The weights are 
assigned as follows: 0.4CMM, 0.3DEM, 0.2SSM, 
0.1CEM. The results obtained are shown in Figure 4. 

 
Figure 4: Module score as a function of the metrics of Alani 
and al.: scenario 3. 

In scenario 4, whose results are shown in Figure 
5, semantic similarity is considered to be the most 
important metric, while centrality remains the least 
important, resulting in the following distribution: 
0.2CMM, 0.3DEM, 0.4SSM, 0.1CEM. 

After analyzing Figures 2, 3, 4 and 5, it is noted 
that in the majority of ontologies studied, more 
precisely in 8 of the 13 cases of ontologies used, 
COMET produced the modules whose quality is the 
most satisfactory according to Alani and al. measures. 
The hierarchic depth and semantic threshold are 
essential parameters that allow us to control the size 
of the modules. The more an ontology is rich in object 
type relationships, the more likely the COMET 
algorithm will return larger modules. 

 
Figure 5: Module score as a function of the metrics of Alani 
and al.: scenario 4. 

Hence the need for the user to define a semantic 
threshold, in order to control the proportions of the 
modules. 

5 CONCLUSION 

In this paper, the authors propose a new technique of 
modularization of ontologies, which is a combination 
of existing structural and semantic approaches. Based 
on this technique, the authors have implemented a 
prototype module extraction tool: COMET.  Tests 
were carried out on different modules generated using 
extraction tools, including COMET, in order to 
demonstrate that the authors could derive benefits 
from both the structure and semantic of an ontology, 
in order to produce modules of satisfactory quality. 

COMET is a tool that, from an ontology and a list 
of terms, generates a module. The latter represents a 
segment that is made up only of concepts judged 
relevant according to a segmentation algorithm. This 
algorithm is based on two parameters which are the 
hierarchical depth and the semantic threshold; 
essential parameters allowing to regulate the 
taxonomy path of source ontology and to control the 
proportions of the module to extract. 

Potentially relevant concepts are observed 
through semantic relationships. As for the hierarchy, 
it intervenes in two cases, either when searching in a 
taxonomy for concepts having object type properties, 
more specifically, concepts linked to others by a 
relationship whose weight is superior or equal to the 
threshold; or when it is to add the derivative of the 
relevant concepts to the module.  After the process of 
segmentation of the ontology, a second algorithm 
proceeds to its pruning in deleting all concepts 
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deemed irrelevant in order to generate the final 
module. 

The authors have also set up a validation protocol 
to evaluate the quality of the different extracted 
modules using a number of metrics.  The validation 
of the tools is based on a comparative study of the 
modules generated compared to a reference ontology, 
which this case is the source ontology. 

On the strength of the results obtained during the 
tests, it was observed that density is an essential 
characteristic for it represents the level of 
completeness of an ontology.  A dense ontology is an 
ontology rich in semantic relationships, that is, an 
ontology whose classes are clearly defined. From the 
series of tests, it can be concluded that the more dense 
an ontology is, the more the module returned by 
COMET is as well. However, the authors believe that, 
given the current limitations of COMET and with a 
view to future development, improvements could be 
made both at the algorithm as well as at the tool 
implementation levels. Thus, the following points can 
be addressed: 
 Choose a better semantic distance.  It would be 

interesting to look at another measure such as a 
semantic distance based on WordNet, because 
in addition to being a database containing the 
lexical semantic content, WordNet equally 
presents an ontology. This representation can 
be used to evaluate the semantic distance 
between two concepts not according to their 
position in the ontology to modularize, but 
rather according to their position in the 
WordNet taxonomy. 

 Propose an empirical approach which can set 
the semantic threshold and the hierarchical 
depth.  The expert must carry out a certain 
number of tests in order to find the ideal 
threshold, hence the necessity to elaborate a 
protocol by which these tests are to be 
conducted.  

 To be inspired by methods of graph exploration 
based on heuristics or incremental deepening 
during the course of the ontology and the 
addition of the derivative of the relevant 
concepts to the module. Indeed, it would be a 
question of exploring the nodes of the graph 
representing ontology according to the weights 
associated with them. Depending on the depth 
set by the user, the algorithm cannot 
systematically add the concepts derivative 
identified, but rather add concepts belonging to 
this derivative based on their weights. 
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