
Semi-Structured Schema for a Big Data (S-SSBD)

Shady Hamouda1, Raed Sughayyar1 and Omar Elejla2
1Emirates College of Technology, Abu Dhabi, U.A.E.
2Faculty of Information Technology, IUG, Palestine

Keywords: Semi-Structured, Big Data, Schema.

Abstract: Big data has become a crucial issue and has emerged as one of the most important technologies in the modern
world. One of the concerns that need to be addressed regarding big data is the lack of a method that can handle
a semi-structured data model with a flexible schema. None of the existing semi-structured models can handle
a large volume of data with a flexible schema. Therefore, these requirements give significance to designing
and develop a schema for semi-structured data. In addition, these issues and challenges have to be addressed
by researchers when designing a method or algorithm to retrieve information from a large amount of data.
This study aims to design a semi-structured data schema for big data applications. This study assessed the
flexible schema feature and data based on the semi-structure features. The result showed that the proposed
schema can cover and handle any change in the schema.

1 INTRODUCTION

Big data is a research area that is open for discussion
(Stanescu, Brezovan, & Burdescu, 2016). Five main
dimensions known as the 5V characteristics can
describe big data (Pokorny, 2013; Rodríguez-
Mazahua et al., 2016). These dimensions include
volume, which concerns the data scalability as data
grow every day; velocity, which represents the speed
of data and indicates the critical point of big data by
measuring the performance of transactions; variety,
which represents the data format, such as structured,
semi-structured and unstructured; veracity, which is
concerned with data accuracy; and value, which
describes the importance of the data. The elements of
the taxonomy of big data are described in Figure 1.

Goli-Malekabadi, Sargolzaei-Javan, and Akbari
(2016) considered variety as one of the most
important dimensions for big data management
because it describes the type and nature of data.
Therefore, the present thesis focuses on converting
structured data types to semi-structured data types.
In the relational data model, the data and the
relationship among them are organized into tables
(Zhao, Huang, Liang, & Tang, 2013). Each table has
rows and columns, where rows represent records and
columns represent the attributes. Moreover, the

Figure 1: Big data taxonomy (Pokorny, 2013).

model uses SQL to access and process data
(Neves & Bernardino, 2015). As Kune, Konugurthi,
Agarwal, Chillarige, and Buyya (2016) mentioned,
most organizations use a relational database as
structured data to store and access their data. Thus,
these organizations encounter problems with speed
and the increasing size of data. For this reason,
relational database application has become a
bottleneck when the data increase and require more
scalability (Moore, Qassem, & Xhafa, 2014).

202
Hamouda, S., Sughayyar, R. and Elejla, O.
Semi-Structured Schema for a Big Data (S-SSBD).
DOI: 10.5220/0010687600003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 2: KEOD, pages 202-209
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

On the other side, semi-structured data are
emerging as one of the biggest data models for
handling large amounts of data. Semi-structured
captured and stored data have become huge and need
to process flexible schemas and speed through a
distributed system (Lombardo, Di Nitto, & Ardagna,
2012).

A semi-structured data format can store data in
extensible markup language (XML), JavaScript
Object Notation (JSON) and Binary JavaScript
Object Notation (BSON). Moreover, a document-
oriented database stores data in semi-structured data
using the key-value concept. The value of a key can
be any data type that gives database flexibility to store
any kind of data (Zhao et al., 2013).

2 SEMI-STRUCTURED DATA

A semi-structured data is a form of structured data
that can deal with any data type without a formal
structure. Semi-structured data (Yaish & Goyal,
2013) are required to store and handle large amounts
of data with flexibility schemas, which have emerged
as one of the biggest data models for handling large
amounts of data. Many models are proposed to handle
semi-structured data as follows:

Numerous properties of a conceptual model for
semi-structured data need to be addressed to handle
semi-structured data. These properties can include no
strict structure, no strict participation/instances,
hierarchical structure, non-hierarchical structure,
ordering, the irregular structure of data, disjunction,
self-evolving, mixed content, abstraction, separation
of structure and content explicitly, partial
relationship/participation, heterogeneous, n-array
relationship, inheritance, reuse potential, constraints,
functional dependencies, symmetric relationship and
recursive relationship (Ganguly & Sarkar, 2012).
These properties are evaluated with the semi-
structured data model presented in Table 1.

Ganguly and Sarkar (2012) found that none of
these models can overcome all of the properties and
requirements of the semi-structured data model. Only
the GOOSSDM model can solve most properties of
semi-structured requirements, but the integration of
semantic web technologies still has a problem with all
of these models. In addition, GOOSDM has
drawbacks in representing schema-less data and data
with a particular timestamp (Banerjee, Shaw, Sarkar,
& Debnath, 2015).

Banerjee et al. (2015) likewise mentioned a
conceptual model of big data transforming data model
to a logical level, which is represented in XML,

JSON, or BSON. JSON is a lightweight language of
the data format used to store and exchange data and it
follows the concept of JavaScript language ((Bansel
& Chis, 2016). Moreover, JSON is a serialization
format, which has schema-less data with all kinds of
data types, such as string, number, list and array, and
nested structure (Florescu & Fourny, 2013).

The features of JSON include easy preparation,
string array analysis, suitability for semi-structured
data, and cloud database (Mathew & Kumar, 2015).
JSON can represent the logical model of big data
better than XML because it represents data through a
collection of key-value pairs that are more suitable for
representing semi-structured data (Peng, Cao, & Xu,
2011). Moreover, JSON is useful and faster than
XML in analyzing data (Florescu & Fourny, 2013).
Binary-encoded serialization of JSON (BOSN) is
used to support complex data types in different
programming languages and supports flexible
schema more than JSON (Bansel & Chis, 2016).
Therefore, JSON plays an important role in
representing semi-structured data in a NoSQL
database, as it is lightweight and uses flexible data to
deal with formatted semi-structured data, and can be
compatible with most programming languages.

This challenge has led to the presentation of the
“not only structured query language (NoSQL)
database” as a new concept of database technology.
One of the most powerful types of NoSQL databases
is the document-oriented database that supports a
flexible schema and stores data in a semi-structured
format. The concept of NoSQL is to be fast and
efficient in data processing in terms of scalability,
reliability, agility, and performance (Grolinger,
Higashino, Tiwari, & Capretz, 2013). Moreover,
Hashem and Ranc (2016) mentioned that the NoSQL
distribution supports flexible schema that will give
flexible methods to handle and process semi-
structured data. Therefore, NoSQL can be preferred
to overcome scalability, high performance, and
variability.

A document-oriented database is designed for
storing, retrieving, and managing document-oriented
or semi-structured data. The central concept of a
document-oriented database is the notion of a
document where the contents within the document are
encapsulated or encoded in some standard format
such as JSON or BSON, And XML. Storing data in
JSON or BSON representation is easy by mapping the
object structure of most of the programming
languages directly into this representation.
Consequently, a set of related documents are stored
and represented by a collection that considers the
table of the relational database. Each document can

Semi-Structured Schema for a Big Data (S-SSBD)

203

Table 1: Evaluations of the semantic properties of the conceptual model with semi-structured models (Ganguly & Sarkar,
2012).

 Properties
Model Name

E
R

X

O
R

A
-S

S

X
E

R

E
R

eX

X
U

M
L

X
S

E
M

G
O

O
SS

D
M

G
N

-D
T

D

No strict structure F F F X F F F F
No strict participation/instances F F F X F F X P
Hierarchical structure F F F F F F F F
Non-hierarchical structure X P X F P F F P
Ordering F F F X P F F F
The irregular structure of data X X X F F F F F
Disjunction X F X F F X F X
Self-evolving X F X X X F X
Mixed content X F F F F F F X
Abstraction X F F X X X F F
Separation of structure and content explicitly X F F X X X F F
Partial relationship/participation X F F F F F F F
Heterogeneous X F X F F X F
N-array relationship X F X F X F F
Inheritance X X X F F X F F
Reuse potential X F F X X F F F
Constraints F F X F F F F P
Cardinality X F X X X X X F

F=fully supported; X = not fully supported; P=partially supported
ERX:Entity relational for XML;ORA-SS:object relationship attribute model for semi-structured data; XER:Extensible ER;
EReX:Entity relational extended to XML;XUML:Executable of Unified Modeling Language;XSEM:Conceptual model for
XML;GOOSSDM:Graph object-oriented semi-structured data model.

be identified by a unique key that is known to the user
or can be automatically created by the database. This
ID becomes an index for the document or can create
other indexes depending on the application
requirements to speed up the query process.

Relationships between the collections can be
identified in two ways: embedding the document and
referencing it. In the embedded document, the
document can contain another document. This model
can lead to the de-normalization of the database.
Reference documents consider the relationships of
the relational database, which shows the relationships
between the collections and the foreign key.
Therefore, a document-oriented database is used to
achieve the objective of this study.

However, there are many challenges and complex
problems for design schema for document-oriented
databases, also there are no tools or methodology
available to support a good schema (Mior, Salem,
Aboulnaga, & Liu, 2017). Moreover, there is still a
lack of strategies for conceptually representing the
data model for a document-oriented database
(Guimaraes et al., 2015). Therefore, the data model

can be used for big data application still has some
issues and challenges such as: how to design a schema
with association relationship and use query
effectively (Mason, 2015).

3 ALGORITHM TO MAPPING
STRUCTURE DATABASE
(USING
ENTITY-RELATIONSHIP)
SCHEMA TO SEMI
STRUCTURE SCHEMA

In large data, conceptual models can be important for
developers to consider and management perspectives
because they can describe the structure and application
semantics. Also, conceptual modeling presents
challenges for large data applications (Storey & Song,
2017). The entity-relationship diagram is a concept of
relational database design. It describes the design

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

204

Table 2: Symbols and type of algorithm.

Model Type Notions Descriptions

ER
Schema

Strong Entity Ei Ei….n (i=1 to n)
Weak Entity WE
Attribute A Ai….An (i=1 and n number of attributes)
Multi-Value attribute Mv
Relationship R Relationships can be one to one (1:1) or one to many

(1:N) or many to many (M:M)

S-SSBD

Collection C
Document D
Key-value K
Embedded document Em The embedded model applies between two entities
Reference document Rf Reference model applies between two entities
Array [] Array data type

of the conceptual schema, which can be assigned to
another data schema, and transform to semi-structured
data formatted, thus an algorithm is proposed to map
the ER schema to semi-structured schema.

The component of ER schema is entities,
attributes, and relationships. We represent entity by E
and the series of entities will be Ei….En (i=1 to n), the
number of attributes represented by use Aj….A (j=1 to n),
and also R represents the type of relationships (1:1)
or (1:N) and (M: M).

Table 2 notions use to map ER schema to S-SSBD
as the following algorithm:

3.1 Algorithm of Mapping ER Schema
to S-SSBD

The study describes how to map the ER schema to the
S-SSBD. This study highlights the mapping
algorithm presented by (Hamouda & Zainol, 2019;
Hamouda, Zainol, & Anbar, 2019).

Input: ER Schema
Output: S-SSBD
1: BEGIN
2: for each strong entity, Ei(i=1…n) do
3: create new collection Ci(i=1….n) where n=

number of collection for each entity
4: for each weak entity, WEi(i=1…n) do
5: create WEi(i=1…n) as embedded documents into

belong strong entity (WEi Em ⊆ Ei)
6: end for
7: for each multi-value attribute, "MVi” do
8: store multi-values as array data type into belong

strong entity ∀ MVi(i=1…n) []⊆ Ei
9: end for
10: for each (1:1) relationship between two entities

(E1 and E2) do

11: If E1 datasets size is less than 16 MB and no
other relationship with other entity

12: E1 store as an embedded document into E2
(E1 Em ⊆ E2)

13: else
14: apply reference document between E1 and

E2 (E1 Rf ⊆ E2)
15: end if
16: end for
17: for each (1:M) relationship between two entities

(E1 and E2) do
18: if M dataset size is less than 16 MB records then
19: M side store as an embedded document into 1

side (E2(N) Em ⊆ E1(1))
20: else
21: apply reference document between E1and E2 (

E1 Rf ⊆ E2)
22: end if
23: end for
24: for each (M: M) relationship between two entities

(E1 and E2) do
25: for E1 side do
26: create array data type into an embedded

document
27: store the primary key of E2 with other related

attributes
28: Update E1 with the embedded document of E2

(E2 :{[Em]} ⊆ E1)
29: end for
30: for E2 do
31: create array data type into an embedded

document
32: store the primary key of E1 with other related

attributes
33: Update E2 with the embedded document of E1

(E1 :{[Em]} ⊆ E2)
34: end for

Semi-Structured Schema for a Big Data (S-SSBD)

205

35: end for
36: END

The pseudo-code of the above algorithm is describing
how to map the ER schema to S-SSBD. It takes the
ER schema as input and mapping the S-SSBD as
output. This algorithm was applied to the case study
to generate an S-SSBD.

4 CASE STUDY 1: W3SCHOOL
SCHEMA

This case study is the schema of W3Schools Web site
(http://www.w3schools.com/). This schema has
characteristics that are completely different from
those typically used in most applications,
such as integration restrictions, relationships, and
different data types.

The W3school schema can be similar to other
businesses that have products with categories and
these products have suppliers and then offer these
products to customers for ordering and shipping.
Therefore, this schema is chosen to implement
mapping from a relational database to a document-
oriented database through S-SSBD and then evaluate
how S-SSBD can cover any new business
requirements when changing the schema.

Figure 2: Entity relational schema for W3schools (Rocha,
Vale, Cirilo, Barbosa, & Mourão, 2015).

As we can see from the schema, the product has
categories and suppliers, and an order has order
details and shipping to the customer through the
employees. Therefore, S-SSBD applied to map the
above schema, it creates product collection and store
categories and suppliers as embedded documents, and
also, creates order collection and stores the order
details with shipping as embedded documents,
moreover, these orders and products will manage
through the collection of employees. The algorithm
of mapping ER schema to S-SSBD were applied to
the schema shown in Figure 2, and the output of this
schema, presented in Figure 3, is as follows:
i. Created new collections for the main strong entity,

which are PRODUCT, ORDER, and
EMPLOYEES.

Figure 3: The S-SSBD for W3schools.

ii. Mapped the relationship between PRODUCT and
CATEGORY by store CATEGORIES as
embedded documents in the PRODUCT

iii. collection. Also, mapped the relationship between
PRODUCT and SUPPLIERS by store
SUPPLIERS as embedded documents in the
PRODUCT collection

iv. Mapped the relationship between ORDER and
ORDERDETAILS by creating an embedded
document for ORDERDETAILS in the ORDER
collection. Also, the relationship between
ORDER and SHIPPERS was mapped to create
embedded documents for SHIPPERS in the
ORDER collection.

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

206

v. Mapped the relationship between ORDERS and
CUSTOMERS by creating an embedded
document for CUSTOMERS in the ORDERS
collection.
The evaluation of this case study assessed the

flexibility of the schema by checking whether the
features of the S-SSBD were compatible with any
business requirement changes.

5 EVALUATION: FLEXIBILITY
OF THE SCHEMA

The flexibility of the schema refers to the evaluation
of the capability to meet and respond to business
change requirements during the development process
(Rathor, Batra, & Xia, 2016). Accordingly, this
evaluation tested the flexibility of the S-SSBD using
the W3schools schema in Figure 3 to determine
whether it could keep up with new business
requirements. In a relational database, the new field
should add to all table records to change its schema.
By contrast, an S-SSBD allows the addition or
alteration of the data for a specific document in any
structure without changing the database schema. An
S-SSBD thereby permits the application to use the
required data while ignoring the unrequired data.

In the W3schools schema 2, the relationship
between PRODUCTS and SUPPLIES is one to one.
In this case, the W3schools schema needs to change
the business requirements by allowing one
PRODUCT to have many SUPPLIES or each
SUPPLIER to provide many PRODUCTS; however,
this new requirement creates difficulty in changing
the relational database schema. To incorporate this
requirement in the relational database, a new table
should be added to allow the PRODUCT to have
many SUPPLIERS, as shown in Figure 4. The
relational database schema will not allow the same
PRODUCT to have many SUPPLIERS because it is
fixed and has change constraints.

The previous scenario indicates that the change
required will affect the database schema, query level,
and reporting level. Given that the relational database
needs to change, all queries related to PRODUCT and
SUPPLIER need to be redesigned and recoded. By
contrast, an S-SSBD supports a flexible schema with
semi-structured data that can add or change
relationships between entities without adverse
effects. In the previous case in Figure 3, the
relationships between PRODUCTS and SUPPLIERS
can be changed without affecting the schema because

the PRODUCT collection stores the SUPPLIERS as
embedded documents and lists SUPPLIERS for each
product. In an S-SSBD, mapping one-to-one or

Figure 4: ER schema after changing the relationship
between product and supplier.

one-to-many relationships can occur via the
embedded documents. Therefore, this schema can
store the many SUPPLIES as embedded documents
into each PRODUCT, as shown in Figure 3. In
addition, the second evaluation assessed the flexible
schema feature and data based on the semi-structure
features.

6 CONCLUSION

A semi-structured data can be formatted in a
document in a way that is more useful than a table
when a large amount of data is available. The
proposed schema provides features for the conceptual
representation of a document-oriented database. For
example, it presents a flexible schema by allowing the
application to change or update business
requirements over time, and it represents
relationships as embedded and reference documents.
Additionally, semi-structured data with a flexible
schema can handle two data dimensions of big data—

Semi-Structured Schema for a Big Data (S-SSBD)

207

that is, a semi-structure and a large volume of data. In
future work, this study can be extended to migrate the
structure database to a document-oriented database
using the proposed schema of semi-structured data.

REFERENCES

Banerjee, S., Shaw, R., Sarkar, A., & Debnath, N. C.
(2015). Towards logical level design of Big Data. Paper
presented at the 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN).

Bansel, A., & Chis, A. E. (2016). Cloud-Based NoSQL
Data Migration. Paper presented at the 2016 24th
Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP).

Florescu, D., & Fourny, G. (2013). JSONiq: The history of
a query language. IEEE internet computing, 17(5), 86-
90.

Ganguly, R., & Sarkar, A. (2012). Evaluations of
Conceptual Models for Semi-structured Database
System. International Journal of Computer
Applications, 50(18).

Goli-Malekabadi, Z., Sargolzaei-Javan, M., & Akbari, M.
K. (2016). An effective model for store and retrieve big
health data in cloud computing. Computer Methods and
Programs in Biomedicine, 132, 75-82.

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M.
A. (2013). Data management in cloud environments:
NoSQL and NewSQL data stores. Journal of Cloud
Computing: Advances, Systems and Applications, 2(1), 1.

Guimaraes, V., Hondo, F., Almeida, R., Vera, H., Holanda,
M., Araujo, A., Lifschitz, S. (2015). A study of genomic
data provenance in NoSQL document-oriented
database systems. Paper presented at the
Bioinformatics and Biomedicine (BIBM), 2015 IEEE
International Conference on Bioinformatics and
Biomedicine.

Hamouda, S. and Zainol, Z. (2019). Semi-Structured Data
Model for Big Data (SS-DMBD). In Proceedings of the
8th International Conference on Data Science,
Technology and Applications - DATA, ISBN 978-989-
758-377-3; ISSN 2184-285X, pages 348-356. DOI:
10.5220/0007957603480356.

Hamouda, S.; Zainol, Z. and Anbar, M. (2019). A Flexible
Schema for Document Oriented Database (SDOD).
In Proceedings of the 11th International Joint
Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management -
KEOD, ISBN 978-989-758-382-7; ISSN 2184-3228,
pages 413-419. DOI: 10.5220/0008353504130419

Hashem, H., & Ranc, D. (2016). Evaluating NoSQL
document oriented data model. Paper presented at the
Future Internet of Things and Cloud Workshops
(FiCloudW), IEEE International Conference on Future
Internet of Things and Cloud Workshops.

Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R.,
& Buyya, R. (2016). The anatomy of big data
computing. Software: Practice and Experience, 46(1),
79-105.

Lombardo, S., Di Nitto, E., & Ardagna, D. (2012). Issues in
handling complex data structures with noSQL
databases. Paper presented at the Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC), 2012 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing.

Mason, R. T. (2015). NoSQL databases and data modeling
techniques for a document-oriented NoSQL database'.
Paper presented at the Proceedings of Informing
Science & IT Education Conference (InSITE).

Mathew, A. B., & Kumar, S. M. (2015). Analysis of data
management and query handling in social networks
using NoSQL databases. Paper presented at the
Advances in Computing, Communications and
Informatics (ICACCI), 2015 International Conference
on Advances in Computing, Communications and
Informatics.

Mior, M., Salem, K., Aboulnaga, A., & Liu, R. (2017).
NoSE: Schema design for NoSQL applications. IEEE
Transactions on Knowledge and Data Engineering,
29(10), 2275-2289.

Moore, P., Qassem, T., & Xhafa, F. (2014). 'NoSQL'and
Electronic Patient Record Systems: Opportunities and
Challenges. Paper presented at the P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2014 Ninth
International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing.

Neves, P., & Bernardino, J. (2015). Big Data Issues. Paper
presented at the Proceedings of the 19th International
Database Engineering & Applications Symposium.

Peng, D., Cao, L.-d., & Xu, W.-j. (2011). Using JSON for
data exchanging in web service applications. Journal of
Computational Information Systems, 7(16), 5883-5890.

Pokorny, J. (2013). NoSQL databases: a step to database
scalability in web environment. International Journal
of Web Information Systems, 9(1), 69-82.

Rathor, S., Batra, D., & Xia, W. (2016). What Constitutes
Software Development Agility?

Rocha, L., Vale, F., Cirilo, E., Barbosa, D., & Mourão, F.
(2015). A Framework for Migrating Relational Datasets
to NoSQL1. Procedia Computer Science, 51, 2593-2602.

Rodríguez-Mazahua, L., Rodríguez-Enríquez, C.-A.,
Sánchez-Cervantes, J. L., Cervantes, J., García-
Alcaraz, J. L., & Alor-Hernández, G. (2016). A general
perspective of Big Data: applications, tools, challenges
and trends. The Journal of Supercomputing, 72(8),
3073-3113.

Stanescu, L., Brezovan, M., & Burdescu, D. D. (2016).
Automatic mapping of MySQL databases to NoSQL
MongoDB. Paper presented at the Computer Science
and Information Systems (FedCSIS), 2016 Federated
Conference on Computer Science and Information
Systems.

Storey, V. C., & Song, I.-Y. (2017). Big data technologies
and Management: What conceptual modeling can do.
Data & Knowledge Engineering, 108, 50-67.

Yaish, H., & Goyal, M. (2013). A multi-tenant database
architecture design for software applications. Paper
presented at the Computational Science and
Engineering (CSE), 2013 IEEE 16th International

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

208

Conference on Computational Science and
Engineering.

Zhao, G., Huang, W., Liang, S., & Tang, Y. (2013).
Modeling MongoDB with relational model. Paper
presented at the Emerging Intelligent Data and Web
Technologies (EIDWT), 2013 Fourth International
Conference on Emerging Intelligent Data and Web
Technologies.

Semi-Structured Schema for a Big Data (S-SSBD)

209

