
Representing BORM Process Models using OWL and RDF

Marek Suchánek1,2 a and Robert Pergl1 b

1Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, Prague, Czech Republic

2Faculty of Business and Economics, University of Antwerp,
Prinsstraat 13, Antwerp, Belgium

Keywords: Ontology, BORM, Business Process Modelling, RDF, OWL, Transformation.

Abstract: Business Object Relationship Modeling (BORM) is a business process analysis method based on communi-
cating finite-state machines and Petri nets. However, because of its tooling support and non-interoperability
of formats, it is rather niche. This work proposes a way of representing the knowledge from BORM process
models in RDF by creating a BORM ontology. It benefits from previous work done on different conceptual
and process modelling languages and their transformations to OWL. The resulting RDF representation brings
increased interoperability and enhanced analysis possibilities, e.g., using SPARQL or RDF visualization tools.
A part of this work is also a BORM-to-RDF export feature for the OpenPonk modelling platform. The result-
ing BORM ontology is ready for use in practice and further work.

1 INTRODUCTION

Business process modelling is an activity of describ-
ing processes for documentation, optimization, or au-
tomation purposes (Scholz-Reiter and Stickel, 2012).
In terms of process engineering as part of concep-
tual modelling, there are various languages and meth-
ods to build a process model, e.g. BPMN, UML,
LML, or BORM. Business Objects Relation Mod-
elling (BORM) (Merunka et al., 2009) uses an object-
oriented approach through simplistic notation, focus-
ing on connecting business and software engineering.
It is built on formal foundations of communicating
finite-state machine. However, it turned not to be
enough for this method to be successful.

The usability of a modelling language or method
is directly related to the tooling support and inter-
operability to help users use it (Scholz-Reiter and
Stickel, 2012). Despite several substantial advan-
tages, BORM is becoming unknown as an artefact of
the past. Several tools allow BORM modelling; how-
ever, the used formats do not allow interoperability
and are blockers in further use (e.g. orchestration, se-
mantic integration, or normalization). Various tools
for modelling or simulation of BORM models use
specific formats that do not interchange knowledge.

a https://orcid.org/0000-0001-7525-9218
b https://orcid.org/0000-0003-2980-4400

Technologies of semantic web and linked data are
well-known for their interoperability, versatility, and
machine-actionability. RDF can be used to capture
practically any knowledge with the possibility to use
multiple formats to store and exchange it (for in-
stance, Turtle or RDF/XML). RDF schema or OWL
ontology can be used to give the data in RDF mean-
ing. Last but not least, SPARQL can serve to query
and manipulate RDF data in a standard and universal
way. (Powers, 2007; Breitman et al., 2010)

In this work, we aim to allow capturing BORM
models with the use of RDF and OWL. Giving a
new interoperable way of knowledge representation
and way of modelling has the potential to revive the
method. By using RDF and OWL, the formal foun-
dations and critical features of BORM must stay orig-
inal. It must support the transformation from and to
representations used by the existing modelling tools.

In the Section 2, we briefly explain the BORM,
related tools, and necessary background in terms of
RDF. Section 3 describes the first step, building an
ontology-based on BORM metamodel. Then, Sec-
tion 4 shows how the ontology is used for represent-
ing BORM models in RDF. Section 5 demonstrates
the advantages of RDF representation in several use
cases. Section 6 provides a discussion and evaluation
of the results together with an outline of possible fu-
ture steps.

170
Suchánek, M. and Pergl, R.
Representing BORM Process Models using OWL and RDF.
DOI: 10.5220/0010653900003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 2: KEOD, pages 170-177
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

This section serves as a brief overview of the BORM
modelling and important terminology needed for
work with RDF and OWL. It provides references to
relevant previous work and details.

2.1 BORM Method

Business Objects Relation Modelling (BORM) (as
summarized in (Merunka et al., 2009) and (Molhanec
et al., 2011)) is a process modelling method for cap-
turing knowledge of typical business systems. Its de-
velopment started in 1993 and turned to be an effec-
tive due to its understandability and formal founda-
tions. It is possible to apply formalism for validation
and simulation (Podloucký and Pergl, 2014). The re-
lation between BORM and other process modelling
languages (BPMN and UML Activity Diagram) is de-
scribed (Suchánek and Pergl, 2019).

We focus on Object Relations (OR) and Business
Architecture (BA) diagrams. OR captures the process
using communicating finite-state machines. Each ma-
chine represents a role of particular subject, i.e., the
flow in process for a given participant. Through com-
munication it composes a process with multiple roles.
BA diagram provides an overview of the whole busi-
ness and shows how processes are used in scenar-
ios and related to business functions.(Merunka et al.,
2009; Knott et al., 2000)

2.2 Craft.CASE

Craft.CASE (CRAFT.CASE Ltd., 2015) is an enter-
prise tool for modelling with BORM. As also de-
scribed in (Merunka et al., 2009) and (Podloucký and
Pergl, 2014), it supports the entire BORM method
and not just the modelling part. It guides the analyst
through the various stages of business analysis. The
export and import are done through custom XML se-
rialization of a whole project using .crx file exten-
sion. However, it also offers partial exports to CSV
and JSON that allows simpler processing. As it is an
enterprise and proprietary tool, the feature set is lim-
ited in free version. The development of the tool does
not seem to be active (last update in 2015).

2.3 OpenCASE

OpenCABE (formerly OpenCASE) (Pergl and Tuma,
2012) is a BORM modelling tool based on the Eclipse
Modeling Framework (EMF). It focuses primarily on
the Object Relations and Business Architecture dia-
grams and their relations. Still, it also offers print-

able HTML reports that can be used in process oper-
ations as a scenario or decision helper. Furthermore,
a project can be exported and imported through XMI
format that uses a custom profile. Unfortunately, the
development of this tool is discontinued, and Open-
Ponk can be seen as its successor.

2.4 OpenPonk

OpenPonk modelling platform (Uhnák and Pergl,
2016) is a metamodelling platform and a modelling
tool implemented in Pharo (Smalltalk). The core fea-
ture of OpenPonk is to support various metamodels
and use them for modelling purposes. There are vari-
ants of OpenPonk with different metamodels: UML
Class Diagram, OntoUML, Petri Nets, Finite State
Machines, and BORM ORD. The open-source project
is published on GitHub1 and actively developed (last
release for BORM in March 2021). It has also proven
its usefulness in terms of modularity in live visual
modelling (Bliznicenko et al., 2017).

The serialization of models for import and ex-
port in OpenPonk is done as a ZIP archive contain-
ing several JSON files and Smalltalk Object Notation
(STON) file(s). It directly serializes objects represent-
ing the model in Smalltalk. Another option is to ex-
port the diagram as a PNG picture. However, Open-
Ponk is designed to be extended including custom ex-
port and import functionality.

2.5 RDF and OWL

The ontologies and knowledge representation in in-
formation technologies are tightly related to RDF
(Resource Description Framework) and OWL (The
Web Ontology Language). Its use is widespread
across various domains (conceptual modelling, Se-
mantic Web, bioinformatics, FAIR data, artificial in-
telligence, and others). In many places, it replaces
XML and JSON representations. Although some as-
pects in linking can be seen similar in XML (and
XPath, XSD, XSLT, or XMLNS), the simplicity and
versatility of RDF prevails. (Breitman et al., 2010)

The core ideas of keeping the information in
triples composed of subject, predicate, and object,
where each can be uniquely identified resource
enable simple knowledge modelling and referencing.
Then, to give meaning to the triples (describe classes
and their properties including constraints), ontology
can be used, e.g. RDF Schema (RDFS) or OWL
with higher expressiveness. Finally, SPARQL can be
used in a standard way to query knowledge from RDF

1https://github.com/OpenPonk

Representing BORM Process Models using OWL and RDF

171

knowledge representation as well as manipulate
it, including transformation. (Powers, 2007)

2.6 Conceptual Modelling with RDF

The versatility of ontologies, including OWL and
RDF, is also manifested in several process-oriented
ontologies. Our work can benefit from some that de-
scribe novel approaches or contain important lessons
learned. For example, (Garanina et al., 2019) de-
sign a process ontology with a focus on verifica-
tion. (Natschläger, 2011) proposes an ontology for
BPMN2 standard. (Kchaou et al., 2021) describes a
transformation from BPMN to OWL, which is similar
to our goal. Another interesting approach in terms of
business process modelling is presented in (von Ros-
ing et al., 2015). It aims to create a vocabulary of the
terminology used in business process models. It is a
potential source for linking (in linked data way) with
RDF representing BORM models. To support reason-
ing and queries over UML models, UML to OWL
transformation (Wei et al., 2018) is showing to be a
promising way which further allows to utilize com-
plex SPARQL queries (Wei and Sun, 2021).

3 BORM ONTOLOGY

This section described the OWL ontology based on
BORM for capturing the same knowledge represented
by OR and BA diagrams. OWL is used instead of
RDF Schema for required features in terms of con-
straints and meta-modelling. The examples and rela-
tion to diagrams from Craft.CASE is provided in Sec-
tion 4 based on the ontology.

The BORM Ontology2 is designed based on
BORM metamodel for OR and BA diagrams. The
ontology was developed using Protégé tool (Musen,
2015) and then structurally improved in its Turtle tex-
tual format. It is a single ontology describing both
metamodels for OR and BA diagrams as those are
highly interlinked. It cannot use only RDFS as OWL
is used for metamodelling support. The suggested
prefix for BORM ontology is borm:. The naming is
taken directly from BORM metamodel; changes and
additional elements are explicitly mentioned further.

3.1 Business Architecture

The business architecture part of the ontology con-
tains four core classes:

2http://purl.org/ontoborm

• borm:Business is not directly defined in the
BORM method. However, we need a single top-
level entity that bounds others. It represents a
modelled business organisation.

• borm:Function represents a business function.
It has two subclasses borm:InternalFunction
and borm:ExternalFunction (disjoint, union).

• borm:Scenario supports a certain function a
business and serves as a container for related pro-
cesses.

• borm:Process represents a single object-relation
diagram, i.e., description of a business process
that is part of a certain scenario.

All of these classes require standard rdfs:label
for human-readable name. Use of rdfs:comment
is recommended for brief explanation. There
are three object properties for relating entities
borm:hasFunction, borm:hasScenario, and
borm:hasProcess (in the ontology with corre-
sponding domain and range). As inverse rela-
tions, borm:ofBusiness, borm:ofFunction, and
borm:ofScenario are defined. The semantics of
the properties of BORM are different from generic
part-of taxonomies which is the reason for not using
existing like it is done for labels.

For expressing relations between scenarios,
the corresponding object properties are included:
borm:usesScenario, borm:extendsScenario, and
borm:followsScenario. Again, with its inverted
variants. The properties follows are used to express
transitions between scenarios.

The following properties are defined for the
class borm:Scenario to provide additional de-
tails based on BORM: borm:hasIntitiation,
borm:hasAction, and borm:hasResult. Initially,
those were datatype properties using a string lit-
eral. However, to allow linking triggers, actions,
and results in linked-data sense, those are designed
as object properties and additional classes were
created: borm:Intitiation, borm:Action, and
borm:Result. With that, one can specify just a de-
scription for (anonymous) individual as well as create
own subclass that has additional properties and links.
For example, a result may be a completed order that
requires total price computed.

3.2 Object Relations

The object relations part of the ontology is more com-
plex than the business architecture. First, there are
five classes to express participants in processes and
their roles (flows):

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

172

• borm:Participant represents a type of stake-
holders that may participate in processes. There
are three subclasses (disjoint, non-union) inspired
by OpenPonk and OpenCABE: borm:Person,
borm:System, borm:Organization.

• borm:Role is used to relate a participant with a
process, i.e., a participant has a role in a process.
This could be seen as an object property; however,
we need to specify additional details and have a
reference to distinguish the different roles of the
same participant in multiple processes.

• borm:State represents a state within a role.
There are two special subclasses for start and end
state.

• borm:Activity represents an activity within a
role that serves for transition between two differ-
ent states (that are within the same role).

• borm:Transition is used to express the transi-
tion between two states via activity. It is not done
through object relation for the same reasons as
role – there is additional information required for
its instances.

Again, well-known rdfs:label is required
and rdfs:comment are recommended for human-
readability. The union of classes borm:State and
borm:Activity forms borm:RoleElement which
has property borm:ofRole. A role uses object prop-
erties borm:startsWith and borm:endsWith with
an corresponding state subclass instances. A transi-
tion can be related to states using borm:sourceState
and borm:targetState, and with an activity by
borm:transitsThrough. Then, a participant is re-
lated to its role by borm:hasRole, and role to pro-
cess by borm:ofProcess. The last part is to capture
relations between roles, and related constraints:

• borm:Communication represents a links between
activities of different roles within the same pro-
cess. It has two subclasses (union, disjoint) for
synchronous and asynchronous communication.

• borm:DataFlow can be attached to a communica-
tion. It is intended to by used by domain-specific
class, e.g., Order can be borm:DataFlow.

• borm:Constraint can be used for both commu-
nication and transition and specifies a condition as
in BORM which result into two subclasses (dis-
joint, union). It should be described by text, but
can be related to domain-specific entity similarly
to data flow.

A communication is related to activities by
borm:sourceActivity and borm:targetActivity
object properties. To distinguish the directional-
ity of data flows, there are two sub-properties of

borm:hasDataFlow, namely borm:hasInputFlow
and borm:hasOutputFlow. The object property
borm:ofCommunication forms link between a com-
munication constraint and a communication, and cor-
respondingly for transitions (borm:ofTransition).

Then, to support sub-process (more specifically a
process flow within a state), a borm:State is a sub-
class of that abstracts the common properties, i.e., the
ability to contain a process flow (have role elements,
starting and ending states).

3.3 Constraints

There are identified five rules that must hold and are
implemented using SHACL:

• A transition relates two non-equal states within
the same role.

• A communication relates two activities of two dif-
ferent roles within the same process.

• If a role has a state, it must have at least one start
state and at least one end state.

• All flows must start in a start state.

• All flows must ultimately end in an end state.

3.4 Levels of Abstractions

As mentioned, some of the classes are designed to
be instantiated by domain-specific entities. For ex-
ample, it allows org:SalesPerson to be of type
borm:Person. Then, an instance of a salesperson can
be a particular human being, e.g., John to be of type
org:SalesPerson (which is also owl:Class). The
same principles may be applied to all of our classes.
There are three abstraction levels:

1. Metamodel level = BORM ontology in OWL that
defines how to define processes.

2. Model level = BORM model in RDF+OWL that
defines the processes in an organisation in com-
pliance with BORM ontology.

3. Instance level = BORM model in RDF that cap-
tures instances of processes (e.g. who and when
participated in the process).

Our target in this work is the first two levels. How-
ever, the third level is fully supported and can help or-
ganisations track processes, simulate and verify them.

3.5 Hierarchies in BORM

The last missing part of the BORM metamodel re-
lated to BA and OR diagrams is the option to spec-
ify hierarchies of participants and products (used

Representing BORM Process Models using OWL and RDF

173

as data flows). Such hierarchies fall into level 2,
i.e., are part of the model, where it can be ex-
pressed through standard rdfs:subClassOf prop-
erty. For example, org:SalesPerson may have sub-
class org:SalesChiefPerson. Such hierarchies of-
ten exist in domain ontologies, and including a special
one in the ontology would add an additional burden.

4 BORM MODEL IN RDF

This section demonstrates how the ontology can be
used to represent a BORM model in RDF. It uses
one of the default examples of Craft.CASE tool with
E-Shop model. In the following examples, we omit
prefixes and other details for the sake of clarity and
brevity. Similarly, the example identifiers also do not
use long UUIDs but short names (e.g. fun1).

4.1 Business Architecture

In the BA diagram in Figure 1, four business func-
tions are captured, two external (light grey) and two
internal (dark grey). One internal function has a sin-
gle scenario. In external functions, there are five sce-
narios linked with various relations. Three of them
have processes (linked OR diagrams). There is the
single top-level individual of borm:Business with
those four functions. The scenarios are linked to the
functions and between themselves. The processes are
linked to scenarios as shown in Source Code 1.

Figure 1: Business Architecture Diagram of E-Shop.

4.2 Participants

Before capturing the knowledge from OR diagrams,
the next step is to describe the participants that are
used across these diagrams. The hierarchy of partic-
ipants may also be included. For the E-Shop case,

Source Code 1: Example of BORM BA in RDF.

:myEShop a borm:Business ;
rdfs:label "My E-Shop Example" ;
borm:hasFunction :f1, :f2, :f3, :f4 ;

:f1 a borm:InternalFunction ;
rdfs:label "Sell Food" ;
rdfs:comment "..." .

:sce2 a borm:Scenario ;
borm:usesScenario :sce1 ;
borm:followedByScenario :sce3 ;
borm:ofFunction :fun1 ;
borm:hasIntitiation :init21 ;
rdfs:label "schedule delivery" ;
rdfs:comment "..." .

there are eight participants with a hierarchy for sup-
pliers as shown in Source Code 2.

Source Code 2: Example of participants in RDF.

:par1 a borm:Participant, owl:Class ;
rdfs:label "Supplier" .

:par2 a borm:Participant ;
rdfs:label "Supermarker Supplier" ;
rdfs:subClassOf :par1 .

4.3 Object Relations

Then for each OR diagram, i.e., a process in terms of
the ontology, roles and their parts with links can be
captured. From the E-Shop example, the update de-
livery (Figure 2) process has been selected. Part of its
RDF representation is shown in Source Code 3. No-
tice that states :st1 and :st4 (start and end states)
do not have to define label due to the use of the sub-
classes. For the data flow :df1, it would also be pos-
sible to specify the data structure used for the flow.

Figure 2: Object Relations Diagram of E-Shop.

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

174

Source Code 3: Example of BORM OR in RDF.

:ro1 a borm:Role ;
borm:startsWith :st1 ;
borm:endsWith :st4 .

:st1 a borm:StartState ;
borm:ofRole :ro1 .

:act1 a borm:Activity ;
borm:ofRole :ro1 ;
rdfs:label "opens website" .

:tr1 a borm:Transition ;
borm:sourceState :st1 ;
borm:targetState :st2 ;
borm:transitsThrough :act1 .

:df1 a borm:DataFlow ;
rdfs:label "Login data" .

:co1 a borm:SynchronousCommunication ;
borm:sourceActivity :act1 ;
borm:targetActivity :act4 ;
borm:hasInputFlow :df1 .

5 EXAMPLE USE CASES

SPARQL as part of the Semantic Web stack (Breit-
man et al., 2010) can be used to efficiently query in-
formation from a BORM model in RDF. A business
analyst can have several queries prepared and execute
them with different models. Helpful might be queries
that count certain elements or patterns in the model,
for example, number of activities for each participant
across all processes as shown in Source Code 4. Also
interesting are ASK queries that yield true or false,
for instance, number of communications between two
participants as shown in Source Code 5. It can be even
used to validate the model, a more complex query can
ask if it is valid (does not violate any of the five con-
straints stated in this paper). DESCRIBE can help to
find out more information about a particular entity in
a model, especially if it is linked with other RDF data.
Finally, it can be used to CONSTRUCT new statements
from a model.

As already shown in shorter examples in previ-
ous sections, knowledge from different sources can
be linked to create a more precise domain descrip-
tion. We tried to transform a UML Class Diagram to
OWL according to (Zedlitz et al., 2011) and link it
with an overlapping BORM model in RDF/OWL. An
example for this approach is shown in Source Code 6.
Then, we also experimented with additional ontolo-
gies. In the integration, some of the classes from
UML were identical to participants and data flow en-

Source Code 4: Example of SPARQL query to count activ-
ities for each participant.

SELECT
?p, ?p_label, (count(distinct ?a) as ?cnt)

WHERE {
PREFIXes
?a rdf:type borm:Activity .
?a borm:ofRole ?r .
?r borm:ofParticipant ?p .
?p rdfs:label ?p_label .

} ORDER BY DESC(?cnt)

Source Code 5: Example of SPARQL query to check if
there is communication from p1 towards p2 in any process.

ASK {
PREFIXes
:p1 borm:hasRole ?r1 .
?r1 borm:hasElement ?e1 .
:p2 borm:hasRole ?r2 .
?r2 borm:hasElement ?e2 .
?c a borm:Communication .
?c borm:sourceActivity ?e1 .
?c borm:targetActivity ?e2 .

}

tities in BORM. Such a mapping could be done even
semi-automatically with use of natural language pro-
cessing (NLP) methods.

Source Code 6: Example of Linked BORM Model.

... common imports
@import borm: http://purl.org/ontoborm
@import m2: https://example.com/my-uml
@import : https://example.com/my-borm

:SalesPerson a borm:Person, owl:Class .

<https://orcid.org/0000-0001-7525-9218>
a borm:Person, m2:Human, foaf:Person ;
rdf:label "John Walker" ;
foaf:name "John Walker" ;
m2:firstName "John" ;
m2:lastName "John" ;
borm:hasRole :role01 .

We managed to implement an export feature in
the OpenPonk modelling platform for BORM models
with the proposed RDF representation. It plainly cre-
ates XML as a serialisation of the model. However,
there were two limitations encountered with Open-
Ponk. First, there is a lack of support of RDF in Pharo,
limiting the use of RDF/XML format. Second, the
current implementation of BORM in OpenPonk sup-
ports only OR; therefore, on import, the BA part is ig-
nored. Nevertheless, it enables the use of OpenPonk
to visualise OR diagrams from BORM in RDF.

Representing BORM Process Models using OWL and RDF

175

6 DISCUSSION

The BORM ontology is published with standard
metadata and is ready to be used and enhanced in
the future. A community of adopters can manage
such contributions. Eventually, a new version may
be released with suggested ways of transforming the
underlying models. The resulting ontology is classi-
fied to be valid by Protégé (Musen, 2015) as well as
the reasoners HermiT (1.3.8) and Apache Jena (4.1.0)
used during the development. The ontology does not
have any significant issues in terms of quality assess-
ment (Mc Gurk et al., 2017) of completeness, accu-
racy, understandability, compliance, availability and
consistency. It has been achieved by applying the best
practices during the development; however, the on-
tology must retain its quality when changed by vari-
ous contributors. That is supported by set contribution
rules and reviewing process.

The ultimate goal of promoting interoperability
for BORM models has been achieved and demon-
strated in the previous section. All entities in the RDF
representation of a BORM model may have identifiers
through which can be referenced. These references
are internal, e.g., a participant in multiple processes
can be identified as one entity. However, it can also
be external; one may add more statements about an
entity as shown for participants and particular people.
Finally, having BORM in RDF allows various tooling
designs for RDF and OWL.

Although interoperability was the primary objec-
tive of this work, the use of RDF and OWL to repre-
sent BORM models also improved model (and busi-
ness process) analysis possibilities. As shown in the
example use cases, SPARQL can be used to extract
specific knowledge. For example, how many pro-
cesses the participant has a role if there is any commu-
nication between two participants in the whole busi-
ness, or the most complex process by counting states
and transitions. With RDF, it is also possible to look
for similarities across processes in order to eliminate
duplicity and, as part of optimization, add a com-
mon sub-process. The BORM models in RDF can
be validated in the same manner as is described by
Natschläger (Natschläger, 2011) for BPMN 2.0 or
queried as Wei and Sun (Wei and Sun, 2021) pro-
poses for UML. The validation can also be done us-
ing a more modern approach with SHACL and ShEx
shape expressions. Finally, semantic reasoners can be
used to infer new statements of a model, for instance,
concerning class hierarchies.

Future work can focus both on managing BORM
models in RDF in terms of linking, querying, or eval-
uating its quality. In terms of development, other

import and export feature for Craft.CASE and Open-
CABE formats would be helpful for historical models
in addition to our support in OpenPonk (as an open-
source and actively developed tool). The RDF rep-
resentation and use of the OpenPonk modelling plat-
form should streamline prototyping of such improve-
ments and their subsequent refining.

7 CONCLUSIONS

In this paper, the BORM ontology has been pro-
posed to promote the interoperability of BORM pro-
cess models. The ontology is designed according to
the metamodel of BORM; more specifically, its part
related to business process modelling. Standard on-
tology metadata and documentation has been used to
improve its practical usability. It has been also de-
scribed how business processes can be represented in
RDF by using the ontology—representing the knowl-
edge from Object Relation and Business Architecture
diagrams using RDF proven to open multiple pos-
sibilities for business analysis. The primary advan-
tage lies in the ability to link to other domain knowl-
edge in a linked data way. Moreover, other conse-
quential advantages are discussed in the paper, e.g.,
using SPARQL to extract specific information from
BORM models or visualization. Finally, possible fu-
ture steps are outlined, mainly providing BORM-like
visualization of the diagrams and transformation for
Craft.CASE project format in addition to our RDF ex-
port from OpenPonk modelling tool.

ACKNOWLEDGEMENTS

The research was supported by the grant
of Czech Technical University in Prague
No. SGS20/209/OHK3/3T/18.

REFERENCES

Bliznicenko, J., Papoulias, N., Pergl, R., and Stinckwich, S.
(2017). Towards modularity in live visual modeling:
A case study with openponk and kendrick. In Laval, J.
and Etien, A., editors, Proceedings of the 12th edition
of the International Workshop on Smalltalk Technolo-
gies, IWST 2017, Maribor, Slovenia, September 4-8,
2017, pages 3:1–3:10. ACM.

Breitman, K., Casanova, M., and Truszkowski, W. (2010).
Semantic Web: Concepts, Technologies and Applica-
tions. NASA Monographs in Systems and Software
Engineering. Springer London.

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

176

CRAFT.CASE Ltd. (2015). Craft.CASE: Business Process
Analysis, version 2.4.18.1. [online][visited 2021-06-
05].

Garanina, N. O., Anureev, I. S., and Borovikova, O. (2019).
Verification-oriented process ontology. Autom. Con-
trol. Comput. Sci., 53(7):584–594.

Kchaou, M., Khlif, W., Gargouri, F., and Mahfoudh, M.
(2021). Transformation of BPMN model into an
OWL2 ontology. In Ali, R., Kaindl, H., and Ma-
ciaszek, L. A., editors, Proceedings of the 16th In-
ternational Conference on Evaluation of Novel Ap-
proaches to Software Engineering, ENASE 2021, On-
line Streaming, April 26-27, 2021, pages 380–388.
SCITEPRESS.

Knott, R. P., Merunka, V., and Polák, J. (2000). Process
modeling for object oriented analysis using BORM
object behavioral analysis. In Proceedings of the 4th
International Conference on Requirements Engineer-
ing, ICRE ’00, Schaumburg, Illinois, USA, June 19-
23, 2000, pages 7–16. IEEE Computer Society.

Mc Gurk, S., Abela, C., and Debattista, J. (2017). Towards
ontology quality assessment. In MEPDaW/LDQ@
ESWC, pages 94–106.

Merunka, V., Brozek, J., Sebek, M., and Polák, J. (2009).
BORM - business object relation modeling. In Nicker-
son, R. C. and Sharda, R., editors, Proceedings of the
15th Americas Conference on Information Systems,
AMCIS 2009, San Francisco, California, USA, August
6-9, 2009, page 788. Association for Information Sys-
tems.

Molhanec, M., Merunka, V., and Merunková, I. (2011).
Business knowledge modelling using the BORM
method. In Salampasis, M. and Matopoulos, A., ed-
itors, Proceedings of the 5th International Confer-
ence on Information and Communication Technolo-
gies for Sustainable Agri-production and Environment
(HAICTA 2011), Skiathos, Greece, September 8-11,
2011, volume 1152 of CEUR Workshop Proceedings,
pages 385–396. CEUR-WS.org.

Musen, M. A. (2015). The Protégé Project: A Look Back
and a Look Forward. AI Matters, 1(4):4–12.

Natschläger, C. (2011). Towards a BPMN 2.0 ontology. In
Dijkman, R. M., Hofstetter, J., and Koehler, J., edi-
tors, Business Process Model and Notation - Third In-
ternational Workshop, BPMN 2011, Lucerne, Switzer-
land, November 21-22, 2011. Proceedings, volume 95
of Lecture Notes in Business Information Processing,
pages 1–15. Springer.

Pergl, R. and Tuma, J. (2012). Opencase - A tool for
ontology-centred conceptual modelling. In Bajec, M.
and Eder, J., editors, Advanced Information Systems
Engineering Workshops - CAiSE 2012 International
Workshops, Gdańsk, Poland, June 25-26, 2012. Pro-
ceedings, volume 112 of Lecture Notes in Business
Information Processing, pages 511–518. Springer.

Podloucký, M. and Pergl, R. (2014). Towards formal foun-
dations for BORM ORD validation and simulation. In
Hammoudi, S., Maciaszek, L. A., and Cordeiro, J.,
editors, ICEIS 2014 - Proceedings of the 16th Interna-
tional Conference on Enterprise Information Systems,

Volume 2, Lisbon, Portugal, 27-30 April, 2014, pages
315–322. SciTePress.

Powers, S. (2007). Practical RDF. O’Reilly Media.
Scholz-Reiter, B. and Stickel, E. (2012). Business Process

Modelling. Springer Berlin Heidelberg.
Suchánek, M. and Pergl, R. (2019). Mapping UFO-B to

bpmn, borm, and UML activity diagram. In Pergl, R.,
Babkin, E., Lock, R., Malyzhenkov, P., and Merunka,
V., editors, Enterprise and Organizational Modeling
and Simulation - 15th International Workshop, EO-
MAS 2019, Held at CAiSE 2019, Rome, Italy, June
3-4, 2019, Selected Papers, volume 366 of Lecture
Notes in Business Information Processing, pages 82–
98. Springer.

Uhnák, P. and Pergl, R. (2016). The openponk modeling
platform. In Laval, J. and Etien, A., editors, Proceed-
ings of the 11th edition of the International Workshop
on Smalltalk Technologies, IWST 2016, Prague, Czech
Republic, August 23-24, 2016, page 14. ACM.

von Rosing, M., Laurier, W., and Polovina, S. M. (2015).
The BPM ontology. In von Rosing, M., von Scheel,
H., and Scheer, A., editors, The Complete Business
Process Handbook: Body of Knowledge from Process
Modeling to BPM, Volume I, pages 101–121. Morgan
Kaufmann/Elsevier.

Wei, B. and Sun, J. (2021). Leveraging SPARQL queries for
UML consistency checking. Int. J. Softw. Eng. Knowl.
Eng., 31(4):635–654.

Wei, B., Sun, J., and Wang, Y. (2018). A knowledge en-
gineering approach to UML modeling. In Pereira,
Ó. M., editor, The 30th International Conference
on Software Engineering and Knowledge Engineer-
ing, Hotel Pullman, Redwood City, California, USA,
July 1-3, 2018, pages 60–63. KSI Research Inc. and
Knowledge Systems Institute Graduate School.

Zedlitz, J., Jörke, J., and Luttenberger, N. (2011). From
UML to OWL 2. In Lukose, D., Ahmad, A. R.,
and Suliman, A., editors, Knowledge Technology -
Third Knowledge Technology Week, KTW 2011, Ka-
jang, Malaysia, July 18-22, 2011. Revised Selected
Papers, volume 295 of Communications in Computer
and Information Science, pages 154–163. Springer.

Representing BORM Process Models using OWL and RDF

177

