
Ontology-based Framework for Integration of Time Series Data:
Application in Predictive Analytics on Data Center Monitoring Metrics

Lauri Tuovinen and Jaakko Suutala
Biomimetics and Intelligent Systems Group, University of Oulu, Finland

Keywords: Data Integration, Data Analytics, Time Series Data, Data Center, Domain Ontology, Software Framework.

Abstract: Monitoring a large and complex system such as a data center generates many time series of metric data, which
are often stored using a database system specifically designed for managing time series data. Different, pos-
sibly distributed, databases may be used to collect data representing different aspects of the system, which
complicates matters when, for example, developing data analytics applications that require integrating data
from two or more of these. From the developer’s point of view, it would be highly convenient if all of the
required data were available in a single database, but it may well be that the different databases do not even
implement the same query language. To address this problem, we propose using an ontology to capture the
semantic similarities among different time series database systems and to hide their syntactic differences.
Alongside the ontology, we have developed a Python software framework that enables the developer to build
and execute queries using classes and properties defined by the ontology. The ontology thus effectively spec-
ifies a semantic query language that can be used to retrieve data from any of the supported database systems,
and the Python framework can be set up to treat the different databases as a single data store that can be
queried using this semantic language. This is demonstrated by presenting an application involving predictive
analytics on resource usage and electricity consumption metrics gathered from a Kubernetes cluster, stored
in Prometheus and KairosDB databases, but the framework can be extended in various ways and adapted to
different use cases, enabling machine learning research using distributed heterogeneous data sources.

1 INTRODUCTION

Data mining and machine learning applications often
require integrating data from multiple sources. Even
data of the same type and representing measurements
of the same entity may be distributed across differ-
ent databases, each with its own query interface and
syntax. For example, in the domain of data center
monitoring, metrics representing usage of computing
resources may be stored in one time series database
while those representing consumption of electricity
are stored in another one. Integrating data from these
two sources is necessary, for example, in order to de-
velop models for load prediction, resource allocation
and optimization of electricity consumption for the
data center.

In a situation like this, data integration can be
made more seamless by using semantic technology
to build an application programming interface (API)
that hides database-specific details from the data user
and enables them to express queries on a higher level
of abstraction, using domain concepts rather than a

particular query language. We have developed such
an API to support integration and analysis of time se-
ries data in Python. The API was built for an appli-
cation involving metrics collected from a virtualized
data center, based on the Kubernetes platform (Kuber-
netes, 2021), and stored in Prometheus (Prometheus,
2021) and KairosDB (KairosDB, 2021) databases, en-
abling the development of artificial intelligence-based
sustainable and energy-efficient data centers. How-
ever, the API can be extended to work with other
database systems and can also be adapted to different
use cases.

The API is based on an ontology that defines a
set of classes and properties representing databases,
queries, metrics and data center components. The
ontology thus bridges the domains of time series
databases and data center monitoring. Using the
ontology classes, the user of the API can compose
queries without knowledge of the correct query syn-
tax for a given database or even of which database
is supplying a given metric. The ontology thus ef-
fectively specifies a semantic query language that
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abstracts away the differences between different
database systems, which in this case are typically sub-
stantial since time series databases, unlike relational
databases, do not have a unifying standard query lan-
guage.

When the API is initialized, it retrieves informa-
tion about the metrics supplied by each database and
populates the ontology with individuals representing
the available metrics. Once the initialization is com-
plete, the user can start building queries by creating
individuals of the query class and setting their ontol-
ogy properties. When the user executes a query, the
query individual is handed over to a query processor,
which handles the process of translating the seman-
tic query into the appropriate system-specific query
language and parsing the query result into a represen-
tation format that is again independent of the format
used by the database system. The user – who is a data
miner or a machine learning engineer, not a data en-
gineer – thus only needs to specify the data they wish
to process, and the API will take care of the details
of how to retrieve it. In the future, the API will also
provide pre-processing operators that the user can use
to prepare data for analysis.

The principal contributions of the paper are as fol-
lows:

• An ontology for semantic composition of
database queries and other data processing
operations using domain concepts;

• An extensible Python software framework en-
abling the execution of such operations;

• A demonstration of the applicability of the query
API in the domain of data center monitoring, pro-
viding data for machine learning research in co-
herent manner.

In the remainder of the paper, we first discuss
some essential background information and review
related work in Section 2. We then present the prob-
lem addressed in the form of requirements in Sec-
tion 3. The solution is described in Sections 4 and 5,
which present the ontology and the software frame-
work, respectively. Section 6 demonstrates the valid-
ity of the solution by describing an application where
the API is used to solve a real-world data integration
problem, and Section 7 shows how the capabilities of
the API can be extended beyond the requirements of
this original problem. Section 8 discusses the signif-
icance of the results, and Section 9 presents our con-
clusions.

2 BACKGROUND

The development of the data integration API was mo-
tivated by the observation that while querying differ-
ent time series databases providing data on the same
entity of interest – in our case, a Kubernetes cluster –
is semantically similar, syntactically the queries may
differ on a number of levels:

• Interface: Different database systems have dif-
ferent APIs via which they accept queries over
HTTP.

• Language: Different database systems generally
implement their own custom query languages.

• Representation: Different database systems may
use different representation formats for e.g. times-
tamps.

• Nomenclature: The naming of domain concepts
is not necessarily consistent across databases; for
example, a virtual machine in a Kubernetes cluster
might be referred to as a node in one database and
as a host in another.

Our ontology was designed to hide all of these dif-
ferences by establishing a level of abstraction where
queries can be specified according to the same syn-
tax regardless of which database they are targeting.
The Python framework, in turn, was created in order
to provide a practical implementation of the semantic
query language defined by the ontology. The idea of
translating queries to different platform-specific lan-
guages is similar to TSL (Hébert, 2019), but this lan-
guage operates on a lower, wholly non-semantic level
of abstraction. Our API could be said to represent a
middle ground between this and ontology-based data
access in the traditional sense, in that our ontology
models both the domain of time series databases and
the application domain proper (albeit on a relatively
high level of abstraction).

Ontology-based data access is a relatively es-
tablished idea where a semantic query expressed in
SPARQL is mapped to an equivalent query in SQL,
allowing the desired data to be specified in terms of
domain concepts rather than database structures (Xiao
et al., 2018). More recently, similar ideas have begun
to be applied to time series data. SE-RRD (Zhang
et al., 2016) is a semantically enhanced time series
database for monitoring data, with an ontology that
bears some similarity to ours but is more focused on
representing the semantics of the data. SE-TSDB
(Zhang et al., 2019) builds on this and the paper ex-
plicitly mentions mapped queries, but no details are
provided on how the queries are prepared and exe-
cuted.
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Two instances of semantic time series query en-
gines where the authors do specify the query language
implemented are FOrTÉ (El Kaed and Boujonnier,
2017) and ESENTS (Hossayni et al., 2018). The for-
mer of these uses SPARQL, while the latter imple-
ments its own domain-specific query language. As
far as we know, there are no examples in the litera-
ture, at least in the domain of time series data man-
agement, of a framework like ours where the ontol-
ogy itself serves as the query language and queries are
prepared by creating ontology individuals and setting
their properties, which the framework translates into
REST API requests to the databases used.

In the domain of data center management specif-
ically, ontology-based solutions have been proposed
to various problems. These include situation analy-
sis (Deng et al., 2013), resource allocation (Metwally
et al., 2015), simulation (Memari et al., 2016), con-
tainer description (Boukadi et al., 2020) and power
profiling (Koorapati et al., 2020). There appears to be
no previous work in this particular domain where an
ontology is used to facilitate data access or integra-
tion.

3 REQUIREMENTS

In the original use case for the API, monitoring data
for a Kubernetes-based data center is accessible via
two time series databases: Kubernetes metrics rep-
resenting usage of computing resources (e.g. CPU
time, memory allocation, disk I/O) are exported to
a Prometheus database, while information about the
electricity consumption of the data center hardware
is stored in a KairosDB database. Data users can re-
trieve data from these databases over an HTTP con-
nection using their REST APIs. New data entered
into the databases is retained for a limited time, so
long-term historical data is not available.

The data user in this use case is a machine learn-
ing engineer aiming to build predictive models for es-
timating, anticipating and optimizing electricity con-
sumption in the data center. To obtain training data for
the models, the user needs to be able to integrate and
synchronize data from the two monitoring databases.
From this use case, the following core requirements
were derived:

• The user must be able to retrieve data for any met-
ric supplied by either of the two databases;

• When querying for metric data, the user must be
able to specify a time range;

• When querying for metric data, the user must
be able to specify a Kubernetes node (or set of

nodes);

• The user must be able to store and reuse queries
for periodic retrieval of data;

• The user must be able to store retrieved data in a
local database;

• The user should be able to specify multiple met-
rics in a single query;

• The user should be able to specify aggregator
functions to be applied to the data;

• The user should be able to specify data trans-
formation operations for further processing of re-
trieved datasets;

• The user must not be required to be familiar
with database APIs, query languages or any other
system-specific details;

• The user must be able to extend the capabilities of
the API without modifying its internal logic.

These requirements are summarized in Table 1.
In the table, each requirement is given a short ref-
erence number; these range from R1 to R10. Addi-
tionally, each requirement is classified as either re-
quired, meaning that it represents an essential feature,
or desired, meaning that the feature is not essential
but would be useful to have.

Implementing requirement R1 ensures that the
user of the framework is able to retrieve all the data
required for the training of the machine learning mod-
els. Implementing requirements R2 and R3 ensures
that the user can exclude data that is of no interest.
Implementing requirement R8 makes it more conve-
nient to retrieve data for multiple metrics, but this can
also be achieved by executing multiple queries, so
the feature is considered non-essential. Implement-
ing requirement R9 enables the user to e.g. retrieve
the growth rate of a counter-type metric, which is
often more useful than the raw data, but since such
functions can also applied to the data locally after re-
trieval, this feature is also considered non-essential.

Implementing requirements R4 and R5 ensures
that the user has access to a sufficient quantity of the
data needed for model training and testing. Since the
remote databases do not provide long-term historical
data, the user needs to build such a dataset locally by
retrieving periodic snapshots of the metrics used. For
this purpose, the user needs to be able to reuse queries
and to store their results in a local database. Require-
ment R10 is considered non-essential, but it would be
useful if the framework would provide operators for
pre-processing the retrieved data for analysis. For ex-
ample, one such operator could provide the ability to
stitch together the periodic snapshots to form a single
contiguous time series spanning a longer time range.
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Requirement R6 applies to the features repre-
sented by all of the other requirements. Implementing
the requirement involves building an abstraction layer
that hides the system-specific details discussed in Sec-
tion 2 from the user. This ensures that the user can
concentrate on developing the models, since they can
access the data they need without having to specify
how it is to be retrieved. Finally, requirement R7 en-
ables the user to adapt the API to different use cases;
this can always be achieved by modifying the exist-
ing code, but this must not be necessary in order to
e.g. add support for a new database system. Instead,
the API must provide abstract classes that the user can
implement to add new capabilities in a modular fash-
ion.

4 THE ONTOLOGY

The ontology was designed using the Protégé tool
(Musen and the Protégé Team, 2015). A partial class
hierarchy is shown in Figure 1. The hierarchy is orga-
nized under four principal top-level classes:

• KubernetesObject, representing objects related
to the composition of a Kubernetes cluster;

• MonitoringObject, representing objects related
to the collection and storage of monitoring met-
rics;

• RestApiObject, representing objects related to
communicating with the REST APIs of monitor-
ing databases;

• AnalyticsObject, representing objects related to
local storage and analysis of retrieved metric data.

Additionally, certain subclasses of MonitoringOb-
ject and AnalyticsObject share a common superclass.
Database is the common superclass of all classes
representing databases, both those from which met-
ric data is retrieved and those in which it is stored
locally. DataContainer is the common superclass
of all classes representing in-memory containers of
metric data, both query results received from remote
databases and datasets generated locally by process-
ing query results.

Under the KubernetesObject class, the subclasses
of KubernetesExecutionUnit are particularly impor-
tant. These represent objects that are directly involved
in the execution of code on the Kubernetes platform:
workloads, containers, pods and nodes. These are
used in queries to select data generated by a specific
node, for example. Other subclasses of Kubernete-
sObject represent Kubernetes namespaces, services
and storage volumes.

Under the MonitoringObject class, Monitoring-
Database represents remote databases supplying met-
rics, which in turn are represented by Monitor-
ingMetric. MonitoringDatabase has the subclasses
PrometheusDatabase and KairosDatabase, repre-
senting different time series database systems, as well
as PrimaryDatabase. The latter is used to designate
a database as the one from which information about
the composition of the Kubernetes cluster will be re-
trieved when the ontology is populated during initial-
ization of the framework. The DatabaseCredentials
class is used to represent the username and password
to be used to access a given database.

Queries to the databases are represented as in-
stances of DatabaseQuery, which has several sub-
classes representing different types of queries: Clus-
terCompositionQuery represents queries for infor-
mation about the Kubernetes cluster, Metadata-
Query represents queries for information about the
metrics provided by a database, and MetricValues-
Query represents queries for metric data. More spe-
cific subclasses of these classes are not visible in the
figure, but notably, a MetricValuesQuery can be either
an InstantQuery, which returns data for a given point
in time, or a RangeQuery, which returns data for a
time range. A query may also be a compound query,
i.e. consist of multiple subqueries, in which case each
subquery is represented by its own DatabaseQuery in-
stance.

A query is built by setting the properties of the
DatabaseQuery instance. Some of these are data prop-
erties, such as the time instant of an instant query or
the range start and end times of a range query. Oth-
ers, such as the metric to be retrieved and the Kuber-
netes nodes targeted, are specified as object proper-
ties. Aggregator functions (e.g. rate, sum, avg) can
be invoked by attaching instances of the correspond-
ing QueryAggregator subclasses (not shown) to the
query.

When a query is ready for execution, it is handed
over to an instance of the RestApiObject subclass
QueryProcessor. The query processor analyzes the
properties of the DatabaseQuery instance and gener-
ates a query in the appropriate query language such as
PromQL. The generated query is then sent over HTTP
to the appropriate API endpoint using the appropriate
request method, represented by the classes RestEnd-
point and HttpRequestMethod. Each query type
may have a different API endpoint associated with
it, represented by specific subclasses of RestEndPoint
(not shown).

Details about the query execution are recorded in
an instance of the QueryExecution class, facilitat-
ing reuse of previously created queries. When the
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Table 1: Required and desired features of the data integration API.

ID Requirement Type
R1 The user can retrieve data for any metric Required
R2 The user can specify a time range for queries Required
R3 The user can specify a set of nodes as the query target Required
R4 The user can store and reuse queries Required
R5 The user can store retrieved data locally Required
R6 The user does not need to be familiar with database APIs Required
R7 The user can extend the capabilities of the API Required
R8 The user can specify multiple metrics in a single query Desired
R9 The user can invoke aggregator functions in queries Desired

R10 The user can specify data transformation operations Desired

Figure 1: Class hierarchy of the ontology. The top-level classes in the figure have owl:Thing as their immediate superclass.
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query processor receives a response from the database
REST API, it extracts the data and creates an instance
of QueryResult representing the response. This is
then associated with the QueryExecution instance.
The returned data can be stored in the QueryResult in-
stance itself or in a local database, represented by the
AnalyticsDatabase class. The framework currently
supports the use of MongoDB as the local database
backend, represented by the MongoDatabase sub-
class.

Locally generated datasets are represented by the
AnalyticsDataset class, which, like QueryResult, is a
subclass of DataContainer. Analytics datasets are de-
rived from other data containers using data transfor-
mation operations, represented by the AnalyticsOp-
eration class. These are divided into atomic opera-
tions and compound operations, as shown in the fig-
ure; more specific subclasses of these (of which there
are only a few in the current version of the ontology)
are not shown.

5 THE FRAMEWORK

The overall architecture of the data integration and
analysis system is shown in Figure 2. The Python
framework consists of two modules, labeled in the fig-
ure as Interface Module and Ontology Module. The
ontology is loaded from an OWL file using the Owl-
ready2 Python package (Lamy, 2017). Other key
packages on which the framework depends include
Requests, which is used to communicate with the
REST APIs of the remote databases, and PyMongo,
which is used to access the local MongoDB database.

The Owlready2 package treats ontology classes
as Python classes, ontology individuals as instances
of these classes, and ontology properties as attributes
of these instances. Python code can be added to the
classes by defining class methods. The package also
enables a Python module to be executed automatically
when an ontology is loaded by specifying the name
of the module as the value of an annotation property.
This feature of Owlready2 is used by our API to load
the Ontology Module, which defines the following:

• Constants for different query types, HTTP request
types, database types and data representation for-
mats;

• In the class DataContainer, methods for manipu-
lating the contents of the container;

• In the class QueryProcessor, abstract methods for
formatting queries and parsing query results;

• Two subclasses implementing the QueryProces-
sor interface, PrometheusProcessor and Kairos-

DBProcessor;

• Single instances of PrometheusProcessor and
KairosDBProcessor, which are added to the on-
tology as individuals;

• In the class AnalyticsDatabase, abstract methods
for opening and closing a database connection and
for reading and writing data;

• One subclass implementing the Analytics-
Database interface, MongoDatabase.

The Interface Module defines a single class, Ku-
bernetesOntology, which provides the methods by
which the user of the API can build and execute
queries on the remote databases. The class construc-
tor takes as argument an IRI string pointing to the lo-
cation of the OWL file containing the ontology. This
is then loaded into memory using Owlready2, which
triggers the execution of the Ontology Module as de-
scribed above.

The KubernetesOntology class provides meth-
ods for looking up and creating instances of ontol-
ogy classes needed in queries. The most important
method is create query(), which is used to create a
new instance of the DatabaseQuery class. The query
is built by setting the data and object properties of this
instance; ontology individuals to be used as object
property values can be looked up with the general-
purpose method get individual() or with more spe-
cific convenience methods such as get metric() and
get node(). Invocations of aggregator functions can
be instantiated using the create invocation() method.

When the properties of the query have been set,
the execute query() method is used to run it. The
method starts by checking if the query is a compound
query; if it is, the method is run recursively for each
subquery. If the query is not a compound query, the
method first finds the target database of the query,
which may be either asserted explicitly or, in the case
of metric value queries, inferred from the target met-
ric. From this information, the method then infers the
query processor that will handle the query, as well as
the endpoint URL, HTTP request method and authen-
tication credentials that will be used to send the query
to the remote database.

To obtain the query data in a format that can be
sent to the database REST API, the method calls the
format query() method of the query processor object.
After this, the private method send query() is called,
which in turn calls the appropriate Requests method
(get() or post()) and returns the response received
from the REST API. The parse result() method of the
query processor is then used to extract the relevant
data from the response and to create a QueryResult

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

156



Figure 2: An architectural diagram of the data integration framework and its dependencies. Within the Python environment,
3D boxes denote modules that are part of the framework, while 2D boxes denote other key Python packages used in the imple-
mentation of the framework. Solid arrows denote internal dependencies, and dashed arrows represent external dependencies.

instance as a container for this data. The above se-
quence is illustrated in Figure 3.

The data contained by the query result can be
accessed using the get content() and get metadata()
methods defined for the DataContainer class (which is
a superclass of QueryResult) in the Ontology Module.
In the case of metric value queries, the convenience
methods get values() and get times() can be used to
get the metric values and the corresponding times-
tamps, respectively. The convenience methods pro-
vide an optional parameter that can be used to spec-
ify the representation format of the returned data; the
timestamps, for example, can be returned as UNIX
timestamps (the default), Python datetime objects or
ISO-formatted datetime strings.

The data inside data containers can be stored in
the container objects themselves, in which case it is
represented as JSON-formatted strings and there is no
need for an external local database. However, this is
a rather cumbersome and inelegant way to store the
data, so the Python framework provides the option to
specify an instance of AnalyticsDatabase as the local
storage backend, in which case data containers will
use it to store their data persistently. Once the back-
end has been set up, everything else works exactly the
same way from the user’s perspective, because the im-
plementation details of data storage and retrieval are
hidden by the DataContainer interface.

6 USING THE API

In our data center monitoring use case, the API is ini-
tialized using the following script:
1 kube_onto = KubernetesOntology(ONTO_FILE)

2 db_mongo = kube_onto.create_backend(...)
3 db_mongo.open_connection()
4 kube_onto.set_default_backend(db_mongo)
5 db_prometh = kube_onto.create_database(...)
6 db_kairos = kube_onto.create_database(...)
7 kube_onto.get_available_metrics()
8 kube_onto.get_cluster_nodes()

On line 1, the main API class is instantiated. On
line 2, a new AnalyticsDatabase instance represent-
ing a locally installed MongoDB server is created;
the arguments passed to the creation method are not
shown, but they consist of a unique name by which the
database can be referred to, the type of the database
and all the information necessary to establish a con-
nection to the database (e.g. host address and port).
A connection to the MongoDB server is then opened
(line 3) and the database is registered as the default
backend for storing data container contents (line 4).

On lines 5–6, two MonitoringDatabase instances
representing the remote Prometheus and KairosDB
databases are created. The arguments passed to
this creation method again include a name for the
database, database type and the information required
to connect to it. Additionally, there is an optional
boolean argument that, if passed and if true, desig-
nates the database as the primary database that will
provide information about the composition of the Ku-
bernetes cluster. In this case, the first database created
(db prometh) is the primary one.

Finally, on lines 7–8, information about the met-
rics supplied by the databases and about the nodes in
the Kubernetes cluster is retrieved and added to the
ontology as MonitoringMetric and KubernetesNode
instances. Information about metrics is retrieved from
both databases, information about nodes from the pri-
mary database. To avoid repeating this process later,
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Figure 3: A sequence diagram using adapted UML notation, showing how a query is created and processed using the API.

the modified ontology can be stored persistently using
the save ontology() method of the KubernetesOntol-
ogy class.

With the API thus initialized, the KubernetesOn-
tology class instance can be used to run queries on
the remote databases. In the example below, a com-
pound query consisting of two subqueries is used to
retrieve CPU usage (supplied by Prometheus) and
electric power (supplied by KairosDB) for a single
node in the Kubernetes cluster:
1 q = kube_onto.create_query(QUERY_TYPE_RANGE)
2 q.hasTargetUnit = kube_onto.get_nodes(

["a04r01srv07"])
3 q.hasRangeStartTime = "2021-02-01T12:00:00"
4 q.hasRangeEndTime = "2021-02-01T18:00:00"
5 q.hasResolutionStep = "1m"
6 sq1 = kube_onto.create_query()
7 sq1.isForMetric = kube_onto.get_metric(

"Prometheus",
"node_cpu_usage_seconds_total")

8 sq1.invokesAggregator = [
kube_onto.create_invocation(
"RateFunction",
{"sampling": "5m"})]

9 sq2 = kube_onto.create_query()
10 sq2.isForMetric = kube_onto.get_metric(

"KairosDB", "power")
11 q.hasComponentQuery = [sq1, sq2]
12 q.isCompoundQuery = True
13 result = kube_onto.execute_query(q)

On lines 1–5, the main query q is created and its
properties are set. The type of the query is passed
as argument to the query creation method; the con-
stant QUERY TYPE RANGE is defined in the On-
tology Module. The target node is an object prop-

erty, so its value must be an ontology individual; this
is retrieved from the ontology using the get nodes()
method, which returns a list of KubernetesNode in-
stances based on their names. The range start and
end times and the resolution step of the query are
data properties. These master properties are applied
to each subquery, so for the subqueries it is only nec-
essary to set the properties that are not the same for
all subqueries.

Subquery sq1 (lines 6–8) retrieves the CPU us-
age. The target metric is again an object property,
and its value is retrieved from the ontology based
on the name of the supplying database (given when
the database was registered during initialization) and
the name of the metric using the get metric() method.
This is done similarly for subquery sq2 (lines 9–10),
which retrieves the power. Subquery sq1 additionally
applies a rate aggregator to transform the values of
the CPU usage seconds counter into a more useful
representation of CPU usage; this is done by calling
the create invocation() method, which takes as argu-
ments the name of the aggregator function to be in-
voked and a dictionary containing the invocation pa-
rameters. The return value of this method is then asso-
ciated with the subquery via another object property.

On lines 11–13, the two subqueries are added
as components of the main query and the query is
executed. The variable result will now contain the
query result, which is an instance of the QueryResult
class. Associated with this object will be two more
QueryResult instances, one for each subquery, which
can be accessed via an object property. These, in turn,
provide access to the data returned by the subqueries,
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which the user can retrieve using the methods of the
DataContainer class. These use the methods of the
MongoDatabase class to retrieve the data from the lo-
cal MongoDB server, but the user does not need to be
aware of this.

Figure 4 depicts a machine learning application
that uses the API to retrieve metric data on resource
usage and electricity consumption, exported into two
separate databases from a Kubernetes cluster (1). The
load forecasting component uses the resource usage
data to generate predictions of future load (2), and
these are then combined with the electricity consump-
tion data by the resource allocation control compo-
nent (3). This outputs resource management strate-
gies that are handed over to the Kubernetes cluster
and used to determine optimal times for starting up
and shutting down virtual machines (4).

Figure 4: An overview of a machine learning application
designed to optimize resource management in a Kubernetes
cluster. The application uses the ontology-based API (la-
beled ‘Data access and integration’) to retrieve input data
from multiple databases.

7 EXTENDING THE API

The API includes several abstract classes designed to
be subclassed by the user to extend the capabilities
of the API. The most important one of these is the
QueryProcessor class. As discussed in Section 5, the
API depends on implementations of the QueryProces-
sor interface to translate between semantic (system-
independent) and system-specific representations of
queries and query results; each database registered
using the create database() method of KubernetesOn-
tology must have a query processor associated with
it before queries can be sent to the database. By de-
fault, the create database() method makes this asso-

ciation automatically by searching the ontology for
a QueryProcessor individual whose hasDatabaseType
property value matches the type of the database.

Implementations of the QueryProcessor inter-
face are required to implement two methods, for-
mat query() and parse result(). The format query()
method takes as argument the query to be formatted (a
DatabaseQuery instance), and additionally the HTTP
request method to be used to send the query, since this
may affect the formatting. The return value is a dictio-
nary or string that can be passed as an argument to an
invocation of Requests.get() or Requests.post(). The
parse result() method takes as argument the HTTP
response received, and additionally the type of the
query, which affects the parsing. The return value is a
QueryResult instance representing the result.

Another abstract class that the user of the API
can derive subclasses from is the AnalyticsDatabase
class. By creating a new implementation of the An-
alyticsDatabase interface, the user can use a database
system other than MongoDB as the local storage
backend for data containers. Implementations of
the AnalyticsDatabase inteface must implement the
methods set connection params(), open connection()
and close connection() for connection management,
and the methods write content(), read content(),
write metadata() and read metadata() for data ma-
nipulation.

Users of the API are also intended to be able to
create their own subclasses of the AnalyticsOpera-
tor class. This aspect of the API is currently under
construction, but the general idea of the operators is
that they accept one or more data containers as inputs,
process their contents and generate one or more data
containers as outputs. Implementing these operators
as ontology classes enables them to be stored in the
ontology and reused in a similar way that database
queries can be stored and reused.

To adapt the API to a different application domain,
it is first necessary to model the domain semantics
as ontology classes and properties. Query processors
capable of interpreting these semantics can then be
implemented. The existing query processor classes
cannot be subclassed for this purpose, but if the same
database systems are being used, much of the code of
the existing query processors can still be reused.

8 DISCUSSION

The query mechanism of the API satisfies the essen-
tial requirements R1–R3, as well as the non-essential
requirements R8 and R9. The time range of the query
(R2) is specified via data properties of the Database-
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Query object representing the query, and the target
metric (R1), target nodes (R3) and possible aggre-
gator invocations (R9) via object properties. Multi-
ple target metrics (R8) can be specified by creating a
compound query where each of the desired metrics is
retrieved by a distinct subquery.

Something worth noting about the query API here
is that it is an abstraction of concepts and features that
are found in both Prometheus and KairosDB. This
means that if a given feature is found in one of the
supported database systems but not the other, it is not
supported by the API, because if it were, this would
involve exposing system-specific implementation de-
tails to the user, which we have specifically aimed to
avoid. On the other hand, this functionality trade-off
means that the API can do something that none of the
APIs of the supported database systems can, namely
run queries that retrieve data from several different
databases as if they formed a single data store with a
unified interface.

Reuse of queries (R4) is enabled by the storage
of queries as individuals in the ontology. An iden-
tifying name can be assigned to each query in the
form of a data property value, enabling the user to
retrieve the query later. Local storage of retrieved
data (R5) is possible directly in the ontology or, us-
ing the MongoDatabase implementation of the Ana-
lyticsDatabase interface, on a MongoDB server. By
default, the MongoDB server is assumed to be run-
ning on localhost, but the MongoDatabase class can
also be configured to connect to a remote host.

Requirement R6 is also satisfied, since the queries
are expressed using classes and properties defined in
the ontology rather than any system-specific query
language. To set up the MonitoringDatabase ob-
jects, the user needs to know the base URLs of the
REST APIs of the databases used and the username
and password to be used to access each database.
Additionally, the user needs to designate one of the
databases as the primary database. The Python frame-
work sets up the API endpoints for different query
types and associates the appropriate query processor
with each database. Some trade-offs are made here
between supporting a specific application domain and
making the API as generic as possible, and this is
something we intend to address in future work in or-
der to improve the adaptability of the API, with the
aim to release it to the community as open-source
software.

Requirement R10 is taken into account in the
design of the ontology with the AnalyticsOperation
class and its subclasses, but the Python framework
does not currently implement any logic for these
classes. This is another aspect of the API that we

are planning to address in future work. The API
should provide data transformation operators with
wide applicability, such as atomic operators for com-
mon pre-processing tasks and a compound operator
for chaining multiple atomic operators to be applied
as a pipeline.

An example of a useful real-world application that
can be implemented using the API is given in Section
6. Although this is just an example, it is worth not-
ing that the API has been designed specifically with
the development of machine learning and data mining
applications in mind. With tight integration between
the ontology and the Python language enabled by the
Owlready2 package, the API provides an intuitive
syntax for data access where the application developer
can specify queries using Python object representa-
tions of query targets as described above. The query
results are represented in a format that preserves their
semantics while making it convenient for the devel-
oper to process the retrieved data using the wide array
of data analytics libraries available for Python.

This approach distinguishes our API from the sys-
tems reviewed in Section 2, which place more em-
phasis on modeling the semantics of the data in the
databases on a detailed level. We have opted to model
the domain on a higher level of abstraction, resulting
in a lightweight ontology that can be populated auto-
matically with information such as metric and node
names and adapted with relatively little effort to sup-
port different applications. Building additional levels
of detail into the ontology might cost us some of these
benefits but bring others, such as more potential for
making use of automated reasoning. Therefore an-
other question we intend to explore in future work is
what is the most appropriate level of semantic model-
ing for the purposes of our API.

9 CONCLUSIONS

In this paper we presented a domain ontology and
Python software framework designed for accessing
and integrating time series data stored in remote
databases. The ontology defines a language for spec-
ifying queries in terms of system-independent con-
cepts instead of system-specific query language con-
structs, and the Python framework provides an engine
for translating queries and query results between se-
mantic representations and system-specific formats.
The ontology and framework together form a time se-
ries database API in which queries are built in a mod-
ular fashion from Python object representations of on-
tology elements.
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The original motivation for the API is an ap-
plication where monitoring metrics collected from a
Kubernetes-based data center are integrated from two
different time series database systems for the purpose
of developing predictive models and optimization al-
gorithms. However, the API is designed to be adapt-
able to different use cases, and users can extend its ca-
pabilities by writing new implementations of abstract
classes provided for this purpose. In future work we
aim to further improve the adaptability of the API and
to extend it with data transformation operators that
make it more convenient for users to pre-process re-
trieved data for analysis.
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