
Matching Entities from Multiple Sources with Hierarchical
Agglomerative Clustering

Alieh Saeedi1,2 a, Lucie David1 b and Erhard Rahm1,2 c

1University of Leipzig, Germany
2ScaDS.AI Dresden/Leipzig, Germany

Keywords: Entity Resolution, Hierarchical Agglomerative Clustering , Multi-source ER, MSCD-HAC.

Abstract: We propose extensions to Hierarchical Agglomerative Clustering (HAC) to match and cluster entities from
multiple sources that can be either duplicate-free or dirty. The proposed scheme is comparatively evaluated
against standard HAC as well as other entity clustering approaches concerning efficiency and efficacy criteria.
All proposed algorithms can be run in parallel on a distributed cluster to improve scalability to large data
volumes. The evaluation with diverse datasets shows that the new approach can utilize duplicate-free sources
and achieves better match quality than previous methods.

1 INTRODUCTION

Entity Resolution (ER) is the task of identifying enti-
ties in a single or several data sources that represent
the same real-world entity (e.g., a specific costumer or
product). ER is of key importance for improving data
quality and integrating data from multiple sources.
Most previous ER solutions perform ER process be-
tween at most two sources. By raising the number of
sources (> 2), data heterogeneity as well as the vari-
ance in data quality is increased. Multi-source ER,
i.e. finding matching entities in an arbitrary number
of sources, is thus a challenging task.

Multi-source ER works in two main steps. In the
first step, similar pairs of entities inside or across data
sources are determined. Then in the next step match-
ing entities are grouped within a cluster. We refer to
the first step as linking and record its output in a sim-
ilarity graph where each vertex represents an entity
and each edge a similarity relationship between two
entities. Edges maintain similarity values reflecting
the match probability and only edges with a similarity
above a certain threshold are recorded. Such a simi-
larity graph is the input of the clustering phase.

Most previous ER clustering approaches clus-
ter entities of a single source [Hassanzadeh et al.,
2009, Saeedi et al., 2017], or of multiple duplicate-

a https://orcid.org/0000-0002-1066-1959
b https://orcid.org/0000-0002-5751-696X
c https://orcid.org/0000-0002-2665-1114

free sources [Nentwig et al., 2016,Saeedi et al., 2018].
We recently started to address the more general multi-
source case with a combination of duplicate-free and
dirty (containing duplicates) sources [Lerm et al.,
2021]. Duplicate-free sources imply an important
constraint that can be utilized for improved cluster
quality, namely that any cluster of matching entities
can include at most one entity of any duplicate-free
source. While our previous Multi-Source Clean/Dirty
(MSCD) clustering approach utilized affinity propa-
gation clustering [Lerm et al., 2021] we investigate
here the use of Hierarchical Agglomerative Cluster-
ing (HAC) for MSCD entity clustering. The special
cases with only dirty or only clean sources are also
supported.

We make the following contributions:

• We propose the MSCD-HAC algorithm for multi-
source entity clustering with a combination of
clean (duplicate-free) and dirty sources. The clus-
ters to merge in the next iteration can be selected
based on the maximal, minimal, or average sim-
ilarity of their cluster members. The approach
utilizes the clustering constraint for clean sources
and can optionally ignore so-called weak links in
the similarity graph for improved quality and run-
time.

• We provide a parallel implementation of the ap-
proach on top of Apache Flink for improved run-
time and scalability.

40
Saeedi, A., David, L. and Rahm, E.
Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering.
DOI: 10.5220/0010649600003064
In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021) - Volume 2: KEOD, pages 40-50
ISBN: 978-989-758-533-3; ISSN: 2184-3228
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

• We perform a comprehensive evaluation of match
quality, runtime and scalability of the new ap-
proaches for different datasets and compare them
with previous clustering schemes. The evalua-
tion shows that the new approach achieves better
match quality than previous approaches.

After a discussion of related work, we introduce
the hierarchical cluster analysis in Section 3. Sec-
tion 4 presents the new clustering method MSCD-
HAC in detail as well as the parallel version. In Sec-
tion 5 we present our evaluation before we conclude.

2 RELATED WORK

A wide range of general purpose clustering schemes
have been used to group matches in a single source.
Hassanzadeh et al. [Hassanzadeh et al., 2009] give
a comprehensive comparative evaluation of them for
single source ER. Distributed implementations of
these approaches for multi-source ER have been pre-
sented and comparatively evaluated in [Saeedi et al.,
2017]. Multi-source clustering schemes exclusively
developed for clean sources [Nentwig et al., 2016,
Saeedi et al., 2018] could obtain superior results com-
pared to general purpose clustering algorithms. Re-
cently, Lerm et al. [Lerm et al., 2021] extended affin-
ity propagation clustering for multi-source clustering,
which is able to consider a combination of dirty and
clean sources as input. The method tends to form
many small clusters and achieves a high precision but
at the cost of relatively low recall, indicating room for
improvement.

Hierarchical clustering is a popular clustering ap-
proach that has also been employed for ER [Mamun
et al., 2016]. Recently, Yan et al. [Yan et al., 2020]
propose a modified hierarchical clustering that aims
at avoiding so-called hard conflicts introduced by sys-
tematically missing information in different sources.
Many approaches try to make hierarchical clustering
faster, which is inherently iterative and thus sequen-
tial. Some approaches reduce the hierarchical clus-
tering to the problem of creating the Minimum Span-
ning Tree (MST) [Dahlhaus, 2000] while others ap-
proximate the results by utilizing Locality-Sensitive
Hashing (LSH) [Koga et al., 2007]. Another option
considered is to partition data evenly on processing
nodes before performing clustering [Hendrix et al.,
2012,Jin et al., 2015,Dash et al., 2007]. Furthermore,
a method based on the concept of Reciprocal Nearest
Neighbors (RNN) that fits graph clustering can be ap-
plied [Murtagh and Contreras, 2012, Murtagh, 1983].

In this work, we extend the usage of hierarchical
clustering for efficient and effective clustering of en-

tities from a combination of arbitrary portion of clean
and dirty sources. We further enable the algorithm to
improve the final results by removing potential false
links (weak links) in a preprocessing step. To im-
prove scalability, the parallel variant is implemented
based on the RNN concept using scatter-gather itera-
tions [Junghanns et al., 2017].

3 HIERARCHICAL CLUSTER
ANALYSIS

Hierarchical Cluster Analysis (HCA) [Ward Jr, 1963]
comprises clustering algorithms that pursue building
a hierarchy of clusters where a higher-level cluster
combines two clusters of the level and this construc-
tion principle is recursively applied leading to a hier-
archy of clusters. The hierarchies can be formed in a
bottom-up or top-down manner. The bottom-up ap-
proach known as agglomerative merges the two most
similar clusters as one cluster that is moved up the hi-
erarchy. In contrast, the top-down approach is divisive
and initially assumes all entities build a single cluster.
Then it performs splitting this cluster into two clusters
in a recursive manner. Each splitted cluster moves one
step down the hierarchy [Rokach and Maimon, 2005].

The results of hierarchical clustering form a bi-
nary tree that can be visualized as a dendrogram
[Nielsen, 2016]. The decision on merging (in agglom-
erative approach) or splitting (in divisive approach) is
based on a greedy strategy [Murtagh and Contreras,
2012]. Due to the fact that there are 2n possibilities
for splitting a set of n entities, the divisive approach is
not usually feasible for practical applications [Kauf-
man and Rousseeuw, 1990]. Therefore, we focus on
Hierarchical Agglomerative Clustering (HAC) in this
paper.

The agglomerative approach initially assumes that
each entity forms a cluster and it then selects and
merges the two most similar clusters as one cluster.
The process of selecting and merging continues in an
iterative way until a stopping condition is satisfied.
The hierarchical clustering scheme may lead into to-
tally different clustering results depending on the ap-
proach to determine the similarity between clusters
and depending on the stopping condition [Kaufman
and Rousseeuw, 1990]. The rule that determines the
most similar clusters is known as linkage strategy.

Considering two clusters ci and c j, the similarity
of them is denoted as Simci,c j . The similarity of a pair
of clusters is a function of similarity of their members
(entities). The similarity of two cluster members
(entities) em and en are denoted as sim(em,en). In this
paper, we implement and evaluate three commonly

Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering

41

Figure 1: Hierarchical clustering example.

used approaches for computing Simci,c j that offer low
computation cost. The three linkage strategies [Kauf-
man and Rousseeuw, 1990] are defined as follows:

S-LINK (Single-Linkage): is referred to as the
nearest-neighbor strategy. It determines the cluster
similarity based on the two closest entities from
each cluster, i.e., considering the maximal similarity
between members of the two clusters. The single
linkage implies that Simci,c j = max{sim(em,en)}
where em ∈ ci and en ∈ c j. This is an optimistic
approach that ignores that there may be dissimilar
members in the two clusters, which might help to
improve recall at the expense of precision.

C-LINK (Complete-Linkage): is known as the
furthest-neighbor strategy. The two most dissimilar
entities of two cluster determine the inter-cluster
similarity, i.e. based on the minimum similarity
between members of the two clusters. The complete
linkage implies that Simci,c j = min{sim(em,en)}
where em ∈ ci and en ∈ c j. This is a conservative
or pessimistic approach that might help to improve
precision at the expense of recall.

A-LINK (Average-Linkage): defines the
cluster similarity as the average similarity
of the entities of two clusters: Simci,c j =

1
|ci|·|c j | ∑em∈ci,en∈c j

sim(em,en).

The application of HAC results in a set of clus-
terings, one at each level of the cluster hierarchy.
Determining the optimal clustering from the hier-
archy is not a trivial decision with large datasets.
Therefore, metrics such as number of clusters or a
minimum merge threshold are used as the stopping
criteria. Due to the fact that the number of output
clusters are not predefined in ER applications, we
use the merge threshold (T) as stopping condition.
Hence, the algorithm stops as soon as there is no
further pair of clusters whose similarity is exceeding
the merge threshold.

Figure 1 shows an example of three clusters along
with the similarities between entities (from the sim-
ilarity graph). Table 1 lists the inter-cluster simi-
larity of all possible cluster pairs for our three link-

Table 1: Linkage types.

Cluster pair S-LINK C-LINK A-LINK
c0,c1 0.80 0.00 0.48
c0,c2 0.75 0.50 0.62
c1,c2 0.60 0.60 0.40

vspace0.15cm

ages types. For S-LINK (first column), the most sim-
ilar cluster pair is {c0, c1} because the maximum
link between these clusters has the highest similar-
ity compared with the two other cluster pairs. For
C-LINK (second column) we have cluster similarity
0 for {c0, c1} due to the missing similarity links for
cluster members. Thus c1 and c2 with inter-cluster
similarity 0.6 are the most similar clusters. For A-
LINK, the cluster pair {c0, c2} has the highest aver-
age similarity. Hence, we have different merge deci-
sions for each of the three strategies.

4 MULTI-SOURCE
HIERARCHICAL CLUSTERING

In this section, we initially define some key concepts,
and then we explain the newly proposed approaches.

4.1 Concepts

Similarity Graph: A similarity graph G= (V , E)
is a graph in which vertices of V represent entities
and edges of E are links between matching entities.
There is no direct link between entities of the same
duplicate-free source. Edges have a property for the
similarity value (real number in the interval [0,1]) in-
dicating the degree of similarity.
Clean/Dirty Data Source: A data source without du-
plicate entities is referred to as clean, while sources
that may contain duplicate entities are called dirty.
There is no need to perform linking between entities
of a clean source so that there are no links between
cluster members (in different clusters) of the same
clean source. Assuming that in our running exam-
ple (Figure 1) the sources X (colored in red) and Y
(colored in blue) are clean explains why there is no
similarity link between red entities and between blue
entities (similarity 0).
Source Consistent Cluster: If the source X is
duplicate-free, all clusters must contain at most one
entity form source X . The cluster containing at most
one entity from a clean data source is called source-
consistent. For example, in Figure 1, all three clusters
are source-consistent. However, merging cluster pairs
{c0, c1} will violate source consistency because the

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

42

merged cluster would contain two entities from the
clean sources X and Y .
Weak Link: If a link l connects entities of two clean
sources and is not the maximum link from both sides
is called a weak link. In Figure 1, entity e1 from
source X is connected through a weak link with sim-
ilarity value 0.8 to e2 from source Y , because both e1
and e2 are connected to other entities from sources Y
and X respectively with higher similarity values than
0.8.
Reciprocal Nearest Neighbour (RNN): If entity ei is
the nearest neighbour of entity e j (NN(e j) = ei) and
vice versa (NN(ei) = e j), then ei and e j are reciprocal
nearest neighbours. In [Saeedi et al., 2018] such links
have been called strong links.

4.2 MSCD HAC

Performing ER for a mixed collection of clean
and dirty data sources requires determining source-
consistent clusters as the final output. Therefore, the
ER pipeline should take clean sources into account in
both linking and clustering phases. Hence, the link-
ing phase does not create similarity links between
entities of the same clean source. However, the in-
direct connections (transitive closures) can still lead
to source-inconsistent clusters. To address this issue,
we propose an extension to hierarchical agglomera-
tive clustering called Multi-Source Clean/Dirty HAC
(MSCD-HAC). The proposed algorithm aims at clus-
tering datasets of combined clean and dirty sources.
Our extension to HAC introduces the following con-
tributions:

1. When picking the most similar cluster pair, the al-
gorithm checks whether merging them would lead
to a source inconsistent cluster. Such pairs are ig-
nored to ensure that only source-consistent clus-
ters are determined. If the source consistency con-
straint is not satisfied, then the pair is removed
from the candidate pairs set and thus the algo-
rithm skips computing the inter-cluster similarity
of them. For our running example (Figure 1),
merging clusters c0 and c1 for all linking strate-
gies would thus be forbidden under the assump-
tion that X and Y are clean sources.

2. When there are several clean sources, the al-
gorithm can remove weak inter-links of clean
sources in order to improve output quality. When
this option is chosen (by a parameter), a similar-
ity graph with removed weak links is processed
for clustering. For the example of Figure 1, ignor-
ing the weak link between entities e1 and e2 would
decrease the maximal similarity between clusters

Algorithm 1: MSCD-HAC.

Input: G(V , E), T , linkage, weakFlag, S
Output: Cluster Set CS

1 if weakFlag then
2 G(V , E ′)← removeWeakLinks(G(V , E),

S)
3 end
4 CS ← initializeClusters(V)
5 do
6 simmax← 0
7 candidatePair←{}
8 foreach ci,c j ∈ CS do
9 if isSourceConsistent(ci,c j, S)

then
10 sim← computeSim(ci,c j, linkage)
11 if sim > simmax then
12 simmax← sim
13 candidatePair← ci,c j

14 end
15 end
16 end
17 if simmax > T then
18 merge(candidatePair)
19 CS ← update(CS)
20 end
21 while simmax > T ;

c0 and c1 from 0.8 to 0.7. Therefore, S-LINK does
not decide on merging them.

The pseudocode of MSCD-HAC is shown in Al-
gorithm 1. The input of the algorithm is a similarity
graph G in which the vertices V represent entities and
each edge in the edges E connects two similar entities
and stores the similarity value of them. Further input
parameters are the stopping merge threshold T , link-
age strategy, weak link strategy weakFlag, and the set
of clean sources S . The algorithm guarantees to create
a set of source-consistent clusters CS as output. If the
weak link strategy is selected, weak links are removed
prior to performing the clustering process (lines 1-2).
As for the basic hierarchical agglomerative clustering,
the algorithm first initializes the output cluster set CS
by assuming each entity as a cluster (line 4). Then it
iterates over all cluster pairs in CS (line 8). If merging
a cluster pair would lead to a source-consistent cluster
(line 9), the inter-cluster similarity of the pair is com-
puted using the linkage method in line 10. The pair
with the maximum similarity is considered as candi-
date pair for merging (lines 11-14) and if the similar-
ity of candidate pair (simmax) is higher than T , then
the clusters of the candidate pair are merged, and the
cluster set is updated (lines 17-20). The iterative algo-
rithm terminates when simmax is lower than the mini-
mum threshold T (line 21).

Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering

43

Algorithm 2: Parallel MSCD-HAC.

Input: G(V , E), T , linkage, weakFlag, S
Output: Cluster Set CS

1 if weakFlag then
2 G(V , E ′)← removeWeakLinks(G(V , E),

S)
3 end
4 CS ← initializeClusters(V)
5 do
6 isChanged← false
7 foreach ci ∈ C S in Parallel do
8 c j← findConsistentNN(ci, T , S)
9 if c j 6= Null then

10 if findNN(c j) = ci then
11 merge(ci, c j)
12 C S ← update(C S)
13 isChanged← true
14 end
15 end
16 end
17 while isChanged

4.3 Parallel Approach

For parallelizing our approaches, we follow the con-
cept of Reciprocal Nearest Neighbour (RNN) which
has been used for parallel graph clustering algorithms
including HAC [Murtagh and Contreras, 2012] and
Center clustering [Saeedi et al., 2017]. If two clus-
ters are both at the same time the nearest neighbor of
each other (defined in Section 4.1), it means they are
the two most similar clusters that can be merged with
each other. This is utilized in our parallel MSCD-
HAC algorithm shown in Algorithm 2. The input and
output are the same as for the sequential MSCD-HAC
(Algorithm 1). Similar to the sequential algorithm in
lines 1-3 weak links are removed and cluster set ini-
tialization is done (line 4). Then for each cluster ci
in the cluster set CS the nearest neighbour which sat-
isfies the source consistency constraint is determined
(line 7-8). If any source-consistent nearest neighbour
c j is found (line 9) and the nearest neighbour of c j is
ci, then ci and c j are assumed as RNN (line 10) and
thus will be merged and the C S is updated (lines 11-
12). Any occurring merge represents a change in the
cluster set CS which sets the isChanged flag as true
(line 13). The iterative algorithms terminates when no
change is possible in the CS (line 17).

The algorithm is implemented on top of Apache
Flink framework using the Gelly library for parallel
graph processing. Each clustered vertex stores the
clusterID as a vertex property so that vertices with the
same clusterID belong to the same cluster. In order
to facilitate computing inter-cluster similarity and up-

dating cluster information, each cluster is represented
by a center vertex which maintains all cluster infor-
mation. The center vertex is chosen randomly and
stores the list of cluster members, the list of neighbour
centers, the list of links to the neighbour centers, and
the list of data sources of the members. We use the
scatter-gather iteration processing of Gelly that pro-
vide sending messages from center vertex to any tar-
get vertex such as neighbor centers and cluster mem-
bers. For merging two clusters, one cluster accepts
the clusterID and center of the other cluster. Then
all lists of the center are updated. Each iteration of
the algorithm consists of four supersteps explained as
follows:

1. During the first scatter-gather step the source-
consistent RNNs are found. In addition, the cen-
ter status of one cluster center in each RNN is re-
moved.

2. The old centers (vertices that lost their center sta-
tus in the previous superstep) now produce the fol-
lowing messages to complete the cluster merge:
one for each cluster member informing it about
the new cluster center and clusterID, one for the
new center including the new cluster members,
and one for each neighbor including the new cen-
terID. In the gather step vertices that receive any
message from the old center update their informa-
tion. The neighbor centers can update their edges
accordingly so that all edges in the edge list are
only connecting center vertices.

3. Now that all edges are adjusted, the old center ver-
tices produce messages for their new cluster cen-
ters including all their neighbors and correspond-
ing link values.

4. In the last step the nearest neighbor vertices are
recalculated. If the similarity to the nearest neigh-
bour is less than the stopping threshold, the vertex
will not produce any messages during the follow-
ing phase. Thus, after each round of four itera-
tions the number of active vertices as well as the
number of clusters decreases.

5 EVALUATION

We now evaluate the effectiveness and efficiency of
the proposed clustering approaches and provide a
comparison to basic HAC and previous clustering
schemes. We first describe the used datasets from four
domains. We then analyze comparatively the effec-
tiveness of the proposed algorithm. Finally, we eval-
uate runtime performance and scalability.

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

44

5.1 Datasets and Configuration Setup

The new approaches are evaluated with four multi-
source datasets of clean sources (MSC) from four
different domains (geographical points, music, per-
sons, and camera products) and eight datasets of
clean and dirty sources (MSCD) from one domain
(camera products). Table 2 shows the main char-
acteristics of the datasets1 specifically the number
of sources and the number of entities. The MSCD
datasets are derived from the camera dataset of the
ACM SIGMOD 2020 Programming Contest2. Ta-
ble 3 lists the sources, the size of each source and
the number of duplicates in each source in camera
dataset. We created eight different combinations of
clean and dirty sources (listed in Table 4) and named
each one according to the percentage of entities from
clean sources, so that DS-C0 is composed of only
dirty sources while DS-C100 is a dataset of all clean
sources.

All datasets have been used in previous studies as
well. Similarly, the blocking and matching configura-
tions for MSC (listed in Table 5) and MSCD datasets
correspond to the ones in previous studies [Lerm
et al., 2021]. For the camera dataset, the manufacturer
name, a list of model names, manufacturer part num-
ber (mpn), European article number (ean), digital and
optical zoom, camera dimensions, weight, product
code, sensor type, price and resolution from the het-
erogeneous product specifications are extracted. Then
standard blocking with a combined key of manufac-
turer name and model number is applied to reduce the
number of comparisons. Within these blocks, all pairs
with exactly the same model name, mpn or ean are
classified as matches. The similarity value assigned to
each matched pair is determined from a weighted av-
erage of the character-3Gram Dice similarity of string
values and a numerical similarity of numerical values
(within a maximal distance of 30%).

5.2 ER Quality of Clustering
Algorithms

To evaluate the ER quality of our approaches we use
the standard metrics precision, recall and their har-
monic mean, F-Measure. These metrics are deter-
mined by comparing the computed match pairs with
the ground truth.

1https://dbs.uni-leipzig.de/de/research/projects/
object matching benchmark datasets for entity resolution

2http://www.inf.uniroma3.it/db/sigmod2020contest/
index.html
We removed the sources www.alibaba.com, because it
mostly contained non-camera entities.

Table 2: Overview of evaluation datasets.

Domain Entity properties #entity #src
DS-G geography label, longitude, 3,054 4

(MSC) latitude
DS-M music artist, title, 19,375 5

(MSC) album, year, length
DS-P1 persons name, surname, 5,000,000 5
DS-P2 (MSC) suburb, postcode 10,000,000 10
DS-C camera heterogenous 21,023 23

(MSCD) key-value pairs

Table 3: DS-C.

ID #entity dedup.
1 358 244
2 198 94
3 832 630
4 118 56
5 120 59
6 164 163
7 14,009 3,255
8 190 75
9 118 47
10 130 69
11 895 578
12 181 137
13 102 64
14 347 279
15 211 126
16 327 282
17 366 325
18 740 475
19 516 334
20 630 556
21 129 73
22 195 115
23 147 87
sum 21,023 8,123

Table 4: MSCD datasets.

Name %cln1 cln2 #cln3 #dirt4

DS-C0 0 0 21,023

DS-C26 26
1-6,
8-23

4,868 14,009

DS-C32 32 7 3,255 7,014

DS-C50 50
7, 18,
19,20,
22, 23

4,822 4,786

DS-
C62A

62

1, 4, 6
7, 9, 11,
13, 15,
17, 19, 20

5,748 3,536

DS-
C62B

62

2, 3, 5,
7, 8, 10,
12, 14,
16, 18,
21-23

5,630 3,478

DS-C80 80
1-12
14-18

6,894 1,719

DS-
C100

100 1-23 8,123 0

1 Percentage of entities from clean sources
2 Clean source IDs
3 Number of entities from clean sources
4 Number of entities from dirty sources

Table 5: Linking configurations of clean multi-source
datasets.

Blocking key Similarity function

DS-G preLen11 (label) Jaro-Winkler (label) &
geographical distance

DS-M preLen1 (album) Trigram (title)
DS-P1/P2 preLen3 (surname) avg (Trigram (name)

+ preLen3 (name) + Trigram (surname)
+ Trigram (postcode))
+ Trigram (suburb))

1 PrefixLength

Figure 2 shows the average precision and recall
results for graphs with the lowest match threshold (θ)
for merge thresholds T in [0,1). The top row shows
the results for only clean sources, while the lower
row shows results for MSCD sources (mix of clean
and dirty camera sources). We compare the basic hi-
erarchical clustering schemes (S-Link, C-Link etc.)

Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering

45

Precision

R
ec

al
l

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

DS-G, θ = 0.75
0 0.2 0.4 0.6 0.8 1

DS-M, θ = 0.35
0 0.2 0.4 0.6 0.8 1

DS-C100, θ = 0.30
0 0.2 0.4 0.6 0.8 1

DS-P2, θ = 0.60

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

DS-C0, θ = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C26, θ = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C50, θ = 0.30
0 0.2 0.4 0.6 0.8 1

DS-C80, θ = 0.30
0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

PrecisionMSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak
MSCD A-LINK A-LINK A-LINK w/o weak

Figure 2: Precision/recall for hierarchical clustering schemes.

0.75 0.80 0.85 0.90
0.8

0.85

0.9

0.95

1

θ

D
S-

G

Precision

0.75 0.80 0.85 0.90
0.8

0.85

0.9

0.95

1

θ

Recall

0.75 0.80 0.85 0.90
0.8

0.85

0.9

0.95

1

θ

F-Measure

0.35 0.40 0.45
0.5

0.6

0.7

0.8

0.9

1

θ

D
S-

M

0.35 0.40 0.45
0.5

0.6

0.7

0.8

0.9

1

θ

0.35 0.40 0.45
0.5

0.6

0.7

0.8

0.9

1

θ

0.60 0.70 0.80

0.7

0.8

0.9

1

θ

D
S-

P2

0.60 0.70 0.80

0.7

0.8

0.9

1

θ

0.60 0.70 0.80

0.7

0.8

0.9

1

θ
0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure 3: Comparative evaluation of clustering schemes for MSC datasets.

with the ones applying the proposed MSCD exten-
sion. For all datasets except DC-C0 (with only dirty
sources), MSCD approaches improve precision dra-
matically while keeping the same recall; for DS-C0,
MSCD-HAC has the same results as the basic HAC.
Hence, the new MSCD approaches can clearly out-
perform the basic HAC schemes. Ignoring weak link

for the basic schemes can help improve precision in
several cases, but to a much smaller degree that with
MSCD. As expected, C-Link (S-LINK) achieves the
highest (lowest) precision and the lowest (highest) re-
call for all datasets due to the use of the minimal
(maximal) similarity between cluster members to de-
termine merge candidates. A-LINK follows a more

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

46

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C
0

Precision

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

Recall

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

F-Measure

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C
50

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S-

C
80

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S-

C
10

0

0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ
0.30 0.50 0.70

0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP0.30 0.50 0.70
0.6

0.7

0.8

0.9

1

θ

D
S
-C

10
0

MSCD S-LINK S-LINK S-LINK w/o weak MSCD C-LINK C-LINK C-LINK w/o weak MSCD A-LINK A-LINK A-LINK w/o weak ConCom CCPiv MSCD-AP CLIP

Figure 4: Comparative evaluation of clustering schemes for Camera datasets.

moderate strategy compared to the strict C-LINK and
relaxed S-LINK strategies. In addition, applying the
MSCD strategy or removing weak links improves S-
LINK the most, while C-LINK yields the same results
as basic HAC. Due to the fact that entities of the same
clean source are never directly linked to each other, C-
LINK obtains source-consistent clusters as the MSCD
approaches.

Figure 3 and Figure 4 show the results of our
proposed approaches for different match thresholds
θ and merge thresholds T (equal match and merge
threshold) for clean (MSC) and mixed (MSCD)
datasets in comparison with the baseline algorithm
connected components, Correlation clustering
(CCPivot variation) [Chierichetti et al., 2014] as
popular ER clustering schemes, the MSC algorithm

named CLIP [Saeedi et al., 2018] and the MSCD-AP
approach based on Affinity Propagation [Lerm et al.,
2021]. We give a brief explanation of all mentioned
algorithms for a better understanding of the output
results.

Connected Components (ConCom): The sub-
graphs of a graph that are not connected to each other
are called connected components.

CCPivot (CCPiv): It is an estimation to the so-
lution of Correlation Clustering problem [Bansal
et al., 2002]. In each round of the algorithm, several
vertices are considered as active nodes (cluster center
or pivot). Then the adjacent vertices of each center
are assigned to that center and form a cluster. If

Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering

47

DS-G DS-M DS-C100 DS-P2
0

0,2

0,4

0,6

0,8

1

F-
M

ea
su

re

CLIP MSCD-AP MSCD S-LINK

DS-C0 DS-C26 DS-C50 DS-C80
0

0,2

0,4

0,6

0,8

1

F-
M

ea
su

re

CLIP MSCD-AP MSCD S-LINK

Figure 5: Average F-Measure results with range between minimal and maximal threshold values.

one vertex is adjacent of more than one center at
the same time, it will belong to the one with higher
priority. The vertex priorities are determined in a
preprocessing phase.

Multi-Source Clean Dirty Affinity Propaga-
tion (MSCD-AP): The basic Affinity Propagation
(AP) clusters entities by identifying exemplars
(cluster representative member or center). The goal
of AP is to find exemplars and cluster assignments
such that the sum of inter-cluster similarities are max-
imized. MSCD-AP incorporates source-consistency
constraints into the basic AP.

CLIP: The algorithm classifies the graph links
into three groups of Strong, Normal, and Weak by
considering all data sources as duplicate-free. It
then groups entities into source-consistent clusters
by omitting weak links in two phases. In phase one,
the strong links that form clusters with maximum
possible size (number of sources) are considered and
in phase two the remaining strong and normal links
are prioritized to form source-consistent clusters.

As expected for MSC datasets (Figure 3), con-
nected components and S-LINK obtain the lowest
precision. Removing weak links improves precision
for S-LINK, but it is still not sufficient to compete
with the best algorithms. The C-LINK approaches
and MSCD-AP achieve the best precision, but at the
cost of low recall. In contrast, CLIP and MSCD
S-LINK obtain similarly high recall and precision.
Therefore, for all datasets, MSCD S-LINK and CLIP
are superior in terms of F-Measure and outperform
the basic HAC approaches as well as the previous
MSCD-AP approach for mixed datasets. For the big-
ger dataset DS-P, CLIP and MSCD S-LINK obtain
lower precision compared to MSCD A-LINK, be-
cause they form clusters with the maximum possible
size (10, one entity per source) which leads to obtain-
ing false positives. Therefore, MSCD A-LINK sur-
passes MSCD S-LINK and CLIP for the low thresh-
old 0.6.

For MSCD datasets (Figure 4), MSCD-HAC and
HAC give the same results for the dataset with all
dirty sources (DS-C0). Therefore, for DS-C0, MSCD
S-LINK along with connected components obtains
the lowest precision and the highest recall. As the
ratio of clean sources increases, MSCD S-LINK ob-
tains better precision while keeping the recall high.
Therefore, for all MSCD datasets, MSCD S-LINK
obtains the best F-Measure. The algorithm CLIP
yields very low F-Measure, because it is designed for
clustering clean datasets. The algorithm MSCD-AP
can not compete with MSCD-HAC approaches due
to its lower recall (about 10% less than MSCD S-
LINK). When the dataset comprises a large portion
of or only dirty sources, the strict method MSCD C-
LINK obtains the best results for lower thresholds. In
all datasets except for DS-C0, CCPiv can not com-
pete with the best algorithms in both terms of preci-
sion and recall. With DS-C0, CCPiv is slightly better
than A-LINK due to the higher recall it achieves. Due
to space restrictions, we omitted results for DS-P1 and
some MSCD datasets, but they follow the same trends
as discussed.

Figure 5 confirms the results shown in Figure 3
and Figure 4. It shows the average F-Measure results
of the CLIP (MSC clustering scheme), MSCD-AP,
and S-LINK over all matching threshold (θ) config-
urations. As depicted in Figure 5, for clean datasets
(left figure) MSCD-HAC with S-LINK strategy com-
petes with CLIP, while for the dirty datasets (right fig-
ure), it is superior (except for DS-C0 which does not
contain any clean source) compared to both CLIP and
MSCD-AP clustering schemes. Moreover, the aver-
age F-Measure of S-LINK shows robustness against
the degree of dirtiness.

5.3 Runtimes and Speedup

We evaluate runtimes and speedup behavior for the
larger datasets from the person domain for the graph
with match and merge threshold θ = T = 0.8. The
experiments are performed on a shared nothing clus-

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

48

ter with 16 worker nodes. Each worker consists of
an E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4
TB SATA disks and runs openSUSE 13.2. The nodes
are connected via 1 Gigabit Ethernet. Our evaluation
is based on Hadoop 2.6.0 and Flink 1.9.0. We run
Apache Flink standalone with 6 threads and 40 GB
memory per worker. Table 6 lists runtimes of all intro-
duced approaches evaluated on 16 machines. The first
row shows that S-LINK is the slowest algorithm, but
MSCD S-LINK improves the runtime of S-LINK dra-
matically. Moreover, removing weak links decreases
runtime slightly. Neither applying MSCD strategy
nor removing weak links improves the runtime of C-
LINK and A-LINK, because the approaches are strict
enough in merging clusters. The last four rows of
Table 6 list the runtime of approaches that are com-
pared with HAC-based schemes. Among them, con-
nected components is the fastest approach while CLIP
and MSCD-AP are 1.4x-2x faster and CCPiv is 2x-
3.5x slower than HAC-based approaches. Figure 6
shows the speedup for DS-P1 with 5M entities. All
approaches have speedup close to linear, expect S-
LINK. Removing weak links improves the speedup
of S-LINK, but it is still far from linear speedup. The
approaches can not utilize 16 machines so that a good
speedup is achieved until 8 workers.

6 CONCLUSION AND OUTLOOK

We proposed an extension of hierarchical agglomera-
tive clustering called MSCD-HAC to perform multi-
source entity clustering for a mix of clean and dirty
data sources. The evaluation of MSCD-HAC with
different linkage types showed that MSCD S-LINK
obtains superior cluster results compared to previous
clustering schemes specifically for MSCD datasets
with dirty sources. For the case of clean sources the
same or better quality than the best methods such as
CLIP is achieved. In some cases such as for larger
clusters (many sources), MSCD S-LINK is outper-
formed by other linkage strategies. We will therefore
investigate how to automatically select the best link-
age strategy for MSCD clustering.

Table 6: Runtimes (second).

DS-P1 DS-P2
- MSCD NW - MSCD NW

S-LINK 2256 130 2149 6818 506 6789
C-LINK 128 128 130 422 417 401
A-LINK 127 129 128 430 417 411
ConCom 37 59
CCPiv 463 1030
MSCD-AP 93 207
CLIP 80 200

4 8 16
20

21

22

No. of Machines

Sp
ee

du
p

MSCD S-LINK
S-LINK
S-LINK w/o weak
MSCD C-LINK
C-LINK
C-LINK w/o weak
MSCD A-LINK
A-LINK
A-LINK w/o weak
Linear

Figure 6: Speedup.

ACKNOWLEDGEMENTS

This work is partially funded by the German
Federal Ministry of Education and Research un-
der grant BMBF 01IS18026B in project ScaDS.AI
Dresden/Leipzig.

REFERENCES

Bansal, N., Blum, A., and Chawla, S. (2002). Correla-
tion clustering. In 43rd Symposium on Foundations
of Computer Science (FOCS 2002), 16-19 Novem-
ber 2002, Vancouver, BC, Canada, Proceedings, page
238. IEEE Computer Society.

Chierichetti, F., Dalvi, N. N., and Kumar, R. (2014). Corre-
lation clustering in mapreduce. In Macskassy, S. A.,
Perlich, C., Leskovec, J., Wang, W., and Ghani, R.,
editors, The 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014,
pages 641–650. ACM.

Dahlhaus, E. (2000). Parallel algorithms for hierarchical
clustering and applications to split decomposition and
parity graph recognition. J. Algorithms, 36(2):205–
240.

Dash, M., Petrutiu, S., and Scheuermann, P. (2007). ppop:
Fast yet accurate parallel hierarchical clustering using
partitioning. Data Knowl. Eng., 61(3):563–578.

Hassanzadeh, O., Chiang, F., Miller, R. J., and Lee, H. C.
(2009). Framework for evaluating clustering algo-
rithms in duplicate detection. Proc. VLDB Endow.,
2(1):1282–1293.

Hendrix, W., Patwary, M. M. A., Agrawal, A., Liao, W.,
and Choudhary, A. N. (2012). Parallel hierarchical
clustering on shared memory platforms. In 19th Inter-
national Conference on High Performance Comput-

Matching Entities from Multiple Sources with Hierarchical Agglomerative Clustering

49

ing, HiPC 2012, Pune, India, December 18-22, 2012,
pages 1–9. IEEE Computer Society.

Jin, C., Liu, R., Chen, Z., Hendrix, W., Agrawal, A., and
Choudhary, A. N. (2015). A scalable hierarchical
clustering algorithm using spark. In First IEEE In-
ternational Conference on Big Data Computing Ser-
vice and Applications, BigDataService 2015, Red-
wood City, CA, USA, March 30 - April 2, 2015, pages
418–426. IEEE Computer Society.

Junghanns, M., Petermann, A., Neumann, M., and Rahm, E.
(2017). Management and analysis of big graph data:
Current systems and open challenges. In Zomaya,
A. Y. and Sakr, S., editors, Handbook of Big Data
Technologies, pages 457–505. Springer.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis. John
Wiley.

Koga, H., Ishibashi, T., and Watanabe, T. (2007). Fast
agglomerative hierarchical clustering algorithm using
locality-sensitive hashing. Knowl. Inf. Syst., 12(1):25–
53.

Lerm, S., Saeedi, A., and Rahm, E. (2021). Extended affin-
ity propagation clustering for multi-source entity res-
olution. In Sattler, K., Herschel, M., and Lehner,
W., editors, Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2021), 19. Fachtagung des
GI-Fachbereichs ,,Datenbanken und Informationssys-
teme” (DBIS), 13.-17. September 2021, Dresden, Ger-
many, Proceedings, volume P-311 of LNI, pages 217–
236. Gesellschaft für Informatik, Bonn.

Mamun, A.-A., Aseltine, R., and Rajasekaran, S. (2016).
Efficient record linkage algorithms using complete
linkage clustering. PloS one, 11(4):e0154446.

Murtagh, F. (1983). A survey of recent advances in hierar-
chical clustering algorithms. Comput. J., 26(4):354–
359.

Murtagh, F. and Contreras, P. (2012). Algorithms for hierar-
chical clustering: an overview. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov., 2(1):86–97.

Nentwig, M., Groß, A., and Rahm, E. (2016). Holis-
tic entity clustering for linked data. In Domeni-
coni, C., Gullo, F., Bonchi, F., Domingo-Ferrer,
J., Baeza-Yates, R., Zhou, Z., and Wu, X., edi-
tors, IEEE International Conference on Data Mining
Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 194–201. IEEE Com-
puter Society.

Nielsen, F. (2016). Introduction to HPC with MPI for Data
Science. Undergraduate Topics in Computer Science.
Springer.

Rokach, L. and Maimon, O. (2005). Clustering methods. In
Maimon, O. and Rokach, L., editors, The Data Mining
and Knowledge Discovery Handbook, pages 321–352.
Springer.

Saeedi, A., Peukert, E., and Rahm, E. (2017). Com-
parative evaluation of distributed clustering schemes
for multi-source entity resolution. In Kirikova, M.,
Nørvåg, K., and Papadopoulos, G. A., editors, Ad-
vances in Databases and Information Systems - 21st
European Conference, ADBIS 2017, Nicosia, Cyprus,

September 24-27, 2017, Proceedings, volume 10509
of Lecture Notes in Computer Science, pages 278–
293. Springer.

Saeedi, A., Peukert, E., and Rahm, E. (2018). Using link
features for entity clustering in knowledge graphs.
In Gangemi, A., Navigli, R., Vidal, M., Hitzler, P.,
Troncy, R., Hollink, L., Tordai, A., and Alam, M., ed-
itors, The Semantic Web - 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece, June 3-
7, 2018, Proceedings, volume 10843 of Lecture Notes
in Computer Science, pages 576–592. Springer.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244.

Yan, Y., Meyles, S., Haghighi, A., and Suciu, D. (2020).
Entity matching in the wild: A consistent and ver-
satile framework to unify data in industrial applica-
tions. In Maier, D., Pottinger, R., Doan, A., Tan, W.,
Alawini, A., and Ngo, H. Q., editors, Proceedings of
the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, pages 2287–
2301. ACM.

KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development

50

