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Abstract: In Industry, IT personnel commonly manipulate the object paradigm for software engineering. Industry 4.0
with its profusion of data requires the implementation of a knowledge engineering approach, breaking with
data processing habits. The way from an object practice to an ontological vision is a gap for most of the
staff, and transition from a business expert model to software implementation is the source of many errors and
delays. Moreover, in ontology engineering, namely that domain experts have significant difficulties learning
ontology languages and correctly using them. To overcome this problem, this paper presents the first results
of a modeling and reasoning approach based on the object paradigm by combining UML modeling and rea-
soning by constraint resolution with OCL. The ontology produced by domain experts can then be checked and
improved by a UML/OCL approach which is easily understandable and often more familiar to engineers.

1 INTRODUCTION AND
MOTIVATION

Ontology Engineering is a subfield of artificial in-
telligence. It provides a set of activities that con-
cerns methodologies, tools, and languages for build-
ing knowledge models or ontologies in the form of
concepts and their relationships (Corcho et al., 2004;
Mizoguchi, 2004). Deviating from its original philo-
sophical meaning, ontology in computer science de-
notes a formal explicit description of concepts and
their relationships in a specific domain. The role of
ontologies is to capture domain knowledge generi-
cally and provides a shared and commonly agreed-
upon understanding of a domain (Maedche et al.,
2000).

Various ontology research activities and develop-
ment methodologies are available. They deal with
the process and methodological aspects of ontology
engineering that enable the construction of ontolo-
gies from scratch at the knowledge level (Fernández-
López et al., 1997). Despite all these advancements,
ontology engineering is still a difficult process, and
many difficulties remain to be solved. Potential on-
tology developers are facing several challenges, in
particular a steep learning curve and the difficulty
of modeling, as well as choosing the right ontology
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tools and dealing with technological limitations (Tu-
dorache, 2020).

Ontology engineering is then a labor-intensive ef-
fort and the cost of entry for a developer into the
ontology engineering area is high (Stadnicki et al.,
2020). As of today, ontologies are mainly created
by highly specialized ontology engineers, and there
is no tool support for the methodology. They are
mainly based on approaches, criteria, and develop-
ment guides related to the skills of experts in a partic-
ular field, and are usually influenced by the targeted
application. Developing, understanding, and using
an ontology becomes a complex task and needs ad-
ditional skills especially for IT people coming from
software engineering and object-oriented program-
ming. This places strong requirements on the com-
petence and experience of the ontology engineering
team which in turn represents a major hurdle to the
industrial adoption of semantic technologies (Lupp
et al., 2020). It is then important to propose new
approaches inspired by the main activities performed
in the software engineering development process to
help users to create formalized knowledge, qualify
their coherence, and be able to adapt and enrich them
according to their needs and constraints. Our expe-
riences in developing ontology-based modeling and
reasoning solutions in an industrial environment are
hampered by a technical ignorance of this knowledge
engineering approach where the vast majority of the
company’s IT personnel have been trained in object
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programming and UML modeling for software engi-
neering.

In software engineering, Object-Oriented Model-
ing (OOM) has several interesting characteristics in
the representation and conceptualization of knowl-
edge (Engels and Groenewegen, 2000). It allows the
description of a collection of objects to describe sim-
ilar individuals, and relationships or associations to
group similar links between these objects. In this
field, the Unified Modeling Language (UML1) dia-
grams are created and used to visualize and concep-
tualize the design of a system. Moreover, UML mod-
eling, which a user can more readily understand, is
widely used in the industry on large projects to com-
municate and design processes.

Several research works adapt existing object-
oriented development methodologies, in particular
UML modeling, for the task of ontology develop-
ment (Mkhinini et al., 2020). Their objectives are
mainly to propose graphical modeling of ontologies
using UML diagrams, to unify knowledge representa-
tion models, or to validate UML diagrams. However,
no study addresses the perspective of using object-
oriented modeling for reasoning purposes to infer new
knowledge and help users to better understand and
adapt the ontology reasoning process to their needs
and constraints. We believe that this lack is mainly
related to the fact that the ontology is theoretically
found on Description Logic (DL) allowing automated
reasoning, which is not the case for UML modeling.
To deal with this limitation, we propose to add a logic
capability to object-oriented modeling by using Ob-
ject Constraint Language (OCL2). In this paper, we
discuss how OCL constraints verification on the UML
model can be used to, on the one hand, verify the con-
sistency of the ontology, and on the other hand, infer
new knowledge according to the verification results
of OCL constraints related to the semantics of ontol-
ogy’s axioms. The results can help engineers better
understand their models, easily manage the reasoning
process, detect possible inconsistencies, and provide
solutions.

2 COMBINING OBJECT
ORIENTED MODELING AND
ONTOLOGY ENGINEERING

Ontology development has many parallels with soft-
ware development for knowledge representation.
Object-oriented modeling, and in particular UML

1https://www.omg.org/spec/UML/About-UML
2https://www.omg.org/spec/OCL/About-OCL

models, are often accepted as a practical ontology
specification, mostly because of their ability to model
knowledge in a natural way, and their widespread use
in industry. The similarity between these two lan-
guages has been studied in different research work
combining UML and ontologies (Mkhinini et al.,
2020). In this work, UML is regarded as a suitable
candidate for ontology modeling. In particular, UML
class diagrams provide a rich notation for defining
classes, their attributes, and the relationships between
them. Compared to existing research work combining
UML modeling and ontologies, few studies propose
the integration of OCL language and even less for a
reasoning objective. In (Cranefield and Purvis, 1999;
Cranefield et al., 2001), Cranefield and Purvis discuss
the potential for reasoning about ontologies expressed
using UML with logical expressions in OCL, and
present it as an important subject for future research.
In (Cranefield et al., 2001), authors compared De-
scription Logic (DL) and UML in terms of different
categories of reasoning. They affirm that is possible to
equip UML design tools with similar capabilities, and
further research is needed to clarify what types of in-
ference it would be desirable and possible to support
for ontologies represented in UML. In many cases, we
believe that OCL constraints can be regarded as ex-
tra detail specifying how systems that implement the
ontology should behave, and new knowledge can be
derived from UML models by reasoning about their
contents. To our knowledge, no effort or research
work has been done to prove or implement this per-
spective, and few research work exists on the use of
OCL language in ontology development. In (Fu et al.,
2017) for example, we can find an inverse approach
in which authors propose to translate OCL invariant
into OWL2 DL axioms for checking inconsistency of
UML models. An automatic approach to analyze the
consistency and satisfiability of UML statechart dia-
grams with OCL state invariants using logic ontology
reasoners is presented in (Khan and Porres, 2015).
Some research work is interested in proposing a solu-
tion to interchanging rules and queries between OCL
language and semantic web language (Parreiras and
Staab, 2010; Hafeez et al., 2018; Milanović et al.,
2006; Timm and Gannod, 2007), and others mention
OCL language to represent some attribute constraints
to facilitate the mapping from knowledge model to
software model (Wang and Chan, 2001; Baclawski
et al., 2001).
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3 ONTOLOGY REASONING
USING OCL CONSTRAINTS
VERIFICATION

Ontology reasoner or inference engine is mostly used
to derive new facts from the existing knowledge and
can be used to verify the logical consistency of the
ontology model. There are several types of reasoner
tools proposed by many researchers (Abburu, 2012).
Some of the most popular reasoners are Pellet (Par-
sia and Sirin, 2004), HermiT (Shearer et al., 2008),
and FACT++ (Horrocks, 1998). The inference rules
are commonly specified by means of a Description
Logic (DL) to perform reasoning tasks about individ-
uals, classes, and properties.

In this section, we describe our approach using the
object-oriented paradigm, in particular, UML/OCL
modeling, to verify the consistency of an ontology
and infer new knowledge. The idea is to automati-
cally generate the UML model from ontology descrip-
tion with OCL constraints related to the semantics of
ontology axioms3. Our approach allows, on the one
hand, to ensure the consistency of the ontology, and
on the other hand, to provide a reasoning system able
to generate and integrate new knowledge according
to OCL constraint verification results on the associ-
ated UML model. The obtained results will be used
to help ontology designers by alerting them to pos-
sible inconsistencies or knowledge lacks. This will
increase the level of expressiveness and decidability
of the ontology, and allow it to reach the closed world
assumption (CWA) necessary for the reasoning pro-
cess in the case of critical systems. The purpose of
this work is to provide a configurable tool allowing to
assist the design, the enrichment, and the consistency
verification of an ontology using UML modeling and
OCL constraint verification. The main steps of our
approach are described in figure 1. We have mainly
five tasks in our reasoning process:

3.1 Ontology Transformation

The objective of this task is to automatically generate
the UML/OCL model related to the input ontology.
This transformation process allows the definition of
the class diagram and OCL constraints related to the
ontology terminological components and axioms se-
mantics (TBox level), and object diagram represent-
ing individuals defined in the ontology and their re-
lationships (ABox level). An example of transforma-
tion rules is described in section 4.

3In this paper, we only present the first results on atomic
classes and object properties.

In UML modeling, OCL constraints verification
must be performed on instances of the model de-
scribed by a UML object diagram. To ensure the
verification of all generated OCL constraints and not
be limited by individuals defined in the ontology, and
also to take into account unpopulated ontologies, we
propose to automatically generate an object diagram
with an instance of each class of the ontology.

3.2 OCL Constraints Verification

After generating the UML/OCL model, constraints
verification will be applied to the object diagram
to find unverified constraints. There are several
UML/OCL tools allowing efficient and automatic
constraints verification and analysis (González and
Cabot, 2014; Richters and Gogolla, 2002). In our ap-
proach, we propose to use the UML Specification En-
vironment USE4 which supports UML modeling and
OCL constraints description and validation (Gogolla
et al., 2007). The purpose of this task is to provide the
verification result of each OCL constraint, as well as
the list of individuals concerned by this verification.

3.3 Analysis of Constraints Verification
Results

In this task, we proceed to the extraction and analysis
of unverified constraints with concerned individuals.
In the object-oriented paradigm, if an OCL constraint
is not verified, this may be related to either an error in
the design of the model or a knowledge lack in the on-
tology description. This is the closed world assump-
tion (CWA) which asserts that a statement is true only
if it is known to be true and that knowledge of a sys-
tem is known to be complete. The result of this analy-
sis task will be used to detect inconsistency or missing
knowledge that can be generated and integrated into
the ontology.

3.4 Results Generation

Depending on the unverified constraint type and the
semantics of ontology axioms, this task allows detect-
ing either the presence of an inconsistency in the on-
tology and then alert the designer, or a lack of knowl-
edge that can be automatically generated and inte-
grated into the ontology using our transformation pro-
cess and after expert validation.

4https://sourceforge.net/projects/useocl
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Figure 1: Main steps of the UML/OCL reasoning process.

3.5 Integrating New Knowledge or
Alerting Human Expert

According to the result of the previous task, this step
consists of displaying a warning message to alert the
designer in the case of inconsistency detection or dis-
playing the list of new knowledge that can be inte-
grated into the ontology. This process is iterative and
will continue until all OCL constraints are verified
and no new knowledge to generate.

4 TRANSFORMATION EXAMPLE
OF ONTOLOGY IN UML/OCL
MODEL

This section presents a simple example of transforma-
tion rules of OWL2 axioms to the UML/OCL model
for reasoning purpose. In our approach, we use
UML class diagram and OCL constraints to model
the domain of interest as a set of terminological ax-
ioms (TBox statements); and UML object diagram
to model individuals as a set of assertional axioms
(ABox statements), and on which OCL constraints
will be verified to prove the consistency of the model
and infer new knowledge.

All transformation rules are based on the seman-
tics of OWL2 axioms according to the W3C struc-

tural specification and fonctional-style syntax5. In our
study, we use the Protégé tool6 for ontology descrip-
tion, and the UML Specification Environment USE7

to support UML modeling and OCL constraints veri-
fication.

Our transformation process is mainly based on
two steps:

1. Transforming each element of the ontology to its
equivalent in the UML model with the associated
OCL constraints.

2. Adding OCL constraints describing the semantics
of each axiom and its relation to other axioms in
the model.

For the subclass axiom SubClassOf (Ci C j )8 for
example, which means that Ci is a subclass of C j,
we, first, translate the axiom on its equivalent in the
UML model. In this case, we propose to use the
UML generalization to express subclass relations and
hierarchy. The subclass axiom is then represented in
the UML model by a generalization link between Ci
and C j, and the following OCL constraint to ensure
this property:
context Ci inv:
self.oclIsKindOf(C j)

5https://www.w3.org/TR/owl2-syntax/
6https://protege.stanford.edu/
7https://sourceforge.net/projects/useocl
8https://www.w3.org/TR/owl2-syntax/#Subclass

Axioms
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Table 1 gives a simple example of the application
of this first transformation step.

Table 1: First transformation step example.

Input OWL2 model:

SubClassOf(Child Person)

Output UML/OCL model:

context Child inv:
self.oclIsKindOf(Person)

Second, we generate for this subclass axiom all
OCL constraints allowing us to ensure its semantics
in relation to the other ontology’s axioms. For ex-
ample, in relation to the equivalent classes axiom
EquivalentClasses(C1 ... Cn), which states that
all of the classes Ci, 1≤i≤n, are semantically equiv-
alent to each other, if Ci is a subclass of C j, and if an
equivalent classes axiom is defined between C j and Ck,
then Ci is also a subclass of Ck, and a subclass of each
class defined as equivalent to Ck. To ensure this prop-
erty, we add the following OCL constraints:
context Ci inv:
self.oclIsKindOf(Ck),
and:
context Ci inv:
self.oclIsKindOf(Cm), for each Cm equivalent to
Ck.

Table 2 gives a simple example of the application
of this second transformation step. In this example,
we show only the UML model and OCL constraints
related to the subclass axiom. Those related to the
equivalent classes axiom are not described in the ex-
ample.

The verification of generated OCL constraints al-
lows the detection of errors or missing information in
the ontology if Ci is not defined as a subclass of Ck
(or a subclass of Cm in the case of equivalent classes).
Based on this verification result, we can automati-
cally generate the associated new knowledge that can
be added to the ontology. This new knowledge is

Table 2: Second transformation step example.

Input OWL2 model:

SubClassOf(Child Person)
EquivalentClasses (Human Person)

Output UML/OCL model:

context Child inv:
self.oclIsKindOf(Person)
context Child inv:
self.oclIsKindOf(Human)

related to the following axioms: SubClassOf(Ci Ck),
and SubClassOf(Ci Cm), for each Cm equivalent to Ck.
In our example (Table 2), the second OCL constraint
verifying that any individual of type Child must also
be of type Human will not be verified since in the auto-
matically generated UML model, the Child class does
not inherit from the Human class. This verification re-
sult will be used to automatically generate the new
knowledge SubClassOf(Child Human) that can be in-
tegrated into the ontology.

We note that in our transformation process, and
to resolve the semantic difference between UML and
OWL2 languages, we proposed in some specific cases
adapted transformation rules. For example, the equiv-
alent classes axiom between Ci and C j means that
every instance of Ci class is also an instance of C j
class, which is equivalent to the following two ax-
ioms: SubClassOf(Ci C j), SubClassOf(C j Ci). How-
ever, in UML modeling, it is not possible to define
cycle in generalization hierarchy. We cannot express
in the same model that Ci is a subclass of C j, and C j
is a subclass of Ci. To address this limitation, we
proposed in the transformation process to add a new
generic class CiC j that inherits from Ci and C j. In this
case, each individual in the ontology of type Ci or C j
will be implicitly transformed and considered in the
UML model as an instance of the new generic class
CiC j. Another specific case is related to the transfor-
mation of object properties. We proposed to repre-
sent each object property by an association class in-
stead of a simple association link. This allows to eas-
ily associate OCL constraints to the object property
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Figure 2: Reasoning time comparison.

that are necessary for the generation of new knowl-
edge related to its axioms. We note that the obtained
UML model can be simplified by removing specific
elements like generic classes and association classes
to be more intuitive and easy to understand for users.
Due to the page limit, we can’t detail all transforma-
tion rules and specific adaptations we have done to
deal with the modeling difference between semantic
paradigm and object-oriented paradigm.

5 IMPLEMENTATION AND
EXPERIMENTATION

To test our approach, we have implemented ReCoRe
(Reasoning by Constraint Resolution) application to
automate all steps described in figure 1, and we tested
its application for several ontologies such as: SSN9,
Time10, Winecloud11, Illumination12, and WiseNet13.

The number of inferred triples generated by our
application is summarized in table 3 and figure 3. We
have compared all inferred triples generated by our
application with that generated by Pellet reasoner14,
and it matches for studied axioms related to atomic
classes and object properties. We have also compared
time reasoning and the obtained results are interesting
as shown in table 3 and figures 2. We are rather care-
ful in interpreting the results given by the comparison
tests with Pellet. We see in table 3 that the Pellet rea-
soner is slower. However, we have only dealt with

9https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
10https://www.w3.org/TR/owl-time/
11https://ontology.winecloud.checksem.fr
12https://hal.archives-ouvertes.fr/hal-02329636
13https://hal.archives-ouvertes.fr/hal-01342886
14https://github.com/stardog-union/pellet

a sub-part of the constraints that Pellet can manage.
Our goal is not to do faster than Pellet but to build a
bridge between knowledge engineering and software
engineering. This result shows the feasibility of our
approach using UML modeling and OCL constraint
verification to infer new knowledge. In our applica-
tion, each inferred knowledge is explained, and the
user can select which ones he wants to be integrated
into the ontology according to its needs.

6 CONCLUSIONS AND FUTURE
WORK

Industry 4.0 is a new challenge for IT departments.
Used to the development of data storage, exchange,
and visualization solutions, they must now manage
the meaning of data with regard to its context of cre-
ation and operation. Unfortunately, knowledge engi-
neering methods and tools are still poorly understood
and little practiced in these environments. To facili-
tate the adoption of these approaches by IT person-
nel, we have developed an approach based on UML
and OCL to model knowledge and allow reasoning.

This paper presents the first results of our ap-
proach using UML modeling and OCL constraints
verification to infer new knowledge from an ontology.
Our approach consists of transforming ontology in a
UML model with OCL constraints according to the
semantics of ontology axioms. We have shown that
OCL constraint verification results can be used to au-
tomatically infer new knowledge from an ontology.
The objective of this approach is to facilitate the use
of ontologies in the industrial field. Obtained results
clearly show the feasibility of our approach, and that
UML and OCL modeling has good promises in mod-
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Table 3: Experimentation results.

Ontology Number
of triples

Number
of classes

Number
of inferred
triples

ReCoRe rea-
soning time
(s)

Pellet reason-
ing time (s)

SSN 156 51 60 1,160 3,576
Time 146 20 155 0,815 3,079
WineCloud 244 42 231 1,507 4,241
Illumination 289 49 778 2,302 3,726
WiseNet 177 27 212 0,943 3,280

Figure 3: Number of inferred triples.

eling and reasoning on ontologies.
This study is part of ongoing work. Presented

results mainly concern transformation rules related
to atomic classes and object properties. Less triv-
ial transformations of other parts of the ontology are
in progress and under evaluation. Future works will
finalize transformation rules of all ontology axioms,
do a comparative study with several reasoners such
as HermiT15 and FACT++16. A comparative study
of our approach with other validation models such as
ShEx (Shape Expression Schema) (Prud’hommeaux
et al., 2014; Staworko et al., 2015) and SHACL
(Shapes Constraint Language)17 will be conducted,
and a template or a common structure will be pro-
posed to help users in writing OCL constraints to con-
trol and specialize their ontology. Other perspectives
are related to the use of UML modeling to implement
the ontology as an object-oriented program and man-
age its dynamic part.

15http://www.hermit-reasoner.com/
16http://owl.cs.manchester.ac.uk/tools/fact/
17https://www.w3.org/TR/shacl/
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