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Abstract: While organisations move their infrastructure to the cloud, honest but curious Cloud Service Providers (CSPs)
threaten the confidentiality of cloud-hosted data. In this context, many researchers proposed Cryptographic
Access Control (CAC) schemes to support data sharing among users while preventing CSPs from accessing
sensitive data. However, the majority of these schemes focuses on high-level features only and cannot adapt to
the multiple requirements arising in different scenarios. Moreover, (almost) no CAC scheme implementation
is available for enforcement of authorisation policies in the cloud, and performance evaluation is often over-
looked. To fill this gap, we propose the toolchain COERCIVE, short for CryptOgraphy killEd (the honest but)
cuRious Cloud servIce proVidEr, which is composed of two tools: TradeOffBoard and CryptoAC. TradeOff-
Board assists organisations in identifying the optimal CAC architecture for their scenario. CryptoAC enforces
authorisation policies in the cloud by deploying the architecture selected with TradeOffBoard. In this paper,
we describe the implementation of CryptoAC and conduct a thorough performance evaluation to demonstrate
its scalability and efficiency with synthetic benchmarks.

1 INTRODUCTION

Cryptographic Access Control (CAC) allows organ-
isations to enforce Access Control (AC) policies
over cloud-hosted sensitive data while guaranteeing
strong confidentiality, i.e., neither external attackers
nor Cloud Service Providers (CSPs) can read the
data. Several researchers proposed CAC schemes us-
ing different cryptographic primitives, like Attribute-
Based Encryption (ABE) (Jang-Jaccard, 2018), hy-
brid cryptography (Garrison et al., 2016), proxy re-
encryption (Rezaeibagha and Mu, 2016) and onion
encryption (Qi and Zheng, 2019).

While attaining remarkable qualities on paper, the
majority of these CAC schemes seldom considers a
concrete use in a specific scenario. As the focus is
usually on high-level features only, little space is left
for those aspects (e.g., flexibility, portability) related
to CAC scheme deployments. In particular, the ar-
chitecture (i.e., the definition of the entities that com-
pose a scheme along with their logical or physical
locations) is usually not provided, or it is fixed and
cannot accommodate the requirements (e.g., enhance
architecture scalability or minimize the vendor lock-

in effect) of different scenarios. Moreover, few re-
searchers provided even a prototype implementing
their scheme, often just for measuring the perfor-
mance of read and write operations on data. Finally,
such prototypes usually can interact with one CSP
only (e.g., Amazon Web Services (AWS), Google
Cloud Platform (GCP) or Azure). In other words,
there is a gap between CAC schemes in the abstract
and a concrete approach for real-world deployment.

To fill this gap, we propose the toolchain
COERCIVE—open-source and available online1—
which is composed of two tools for achieving opti-
mal enforcement of role-based CAC policies in the
cloud. The first tool, TradeOffBoard, is a dashboard
intended to help organisations in finding the best ar-
chitecture for deployment of CAC schemes. We high-
light that TradeOffBoard is already extensively de-
scribed in (Berlato et al., 2020) as a “Web Dashboard”
and it is not a novel contribution of this paper. In-
stead, we only illustrate its use in the context of CO-
ERCIVE. Our main contribution lies instead in the
implementation and thorough performance evaluation

1https://github.com/stfbk/CryptoAC
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of the second tool, CryptoAC. CryptoAC is a Swiss
army knife tool for flexible and portable enforcement
of role-based CAC policies in the cloud. CryptoAC
implements the CAC scheme proposed by (Garrison
et al., 2016). Moreover, CryptoAC supports dozens
of different architectures seamlessly and it is cloud-
independent, i.e., it can be deployed in any CSP with-
out needing extra configuration.

The paper is structured as follows. In Section 2
we report the background. Then, in Section 3 we give
an overview of COERCIVE and motivate its need by
showing how it can be used, together with Trade-
OffBoard, in an eHealth scenario often considered
in cloud-related literature. Afterwards, we describe
design and implementation concerns of CryptoAC
in Section 4. To demonstrate the feasibility of our
approach, we provide a thorough performance evalu-
ation for CryptoAC to study its scalability and asymp-
totic behaviour with synthetic benchmarks in Sec-
tion 5. Finally, we report related work in Section 6
and conclude the paper in Section 7.

2 BACKGROUND

In this section, we introduce the concepts of AC (Sec-
tion 2.1) and CAC (Section 2.2).

2.1 Access Control

In (Samarati and de Capitani di Vimercati, 2000), AC
is defined as “the process of mediating every request
to resources maintained by a system and determining
whether the request should be granted or denied”. Re-
sources usually consist of data such as files and docu-
ments. Role-Based Access Control (RBAC) is one of
the most widely adopted AC models for cloud com-
puting (Cai et al., 2019). In RBAC, users are assigned
to one or more roles. In an organization, a role reflects
an internal qualification (e.g., employee). A permis-
sion p = 〈res,op〉 is defined as an operation op (e.g.,
read) over a resource res (e.g., a file). Permissions are
assigned to one or more roles by administrators of the
policy. Users activate a role to access the permissions
needed to finalize their operations on resources (e.g.,
read a file). Formally, the state of an RBAC policy can
be described by the set of users U, roles R, permis-
sions P and the assignments users-roles UR ⊆ U×R
and roles-permissions PA⊆ R×P. A user u can use a
permission p if ∃r : (〈u,r〉 ∈UR)∧(〈r, p〉 ∈ PA). Role
hierarchies can always be compiled away by adding
suitable pairs to UR.

Table 1: CAC schemes entities.

Entity Description

Proxy
Performs cryptographic computations, allowing users to access files
and the administrator to manage the AC policy

RM
Mediates users’ requests to add and write files by ensuring compli-
ance with the AC policy

MS Stores metadata
DS Stores encrypted data

2.2 Cryptographic Access Control

Partially trusted environments (e.g., the cloud) pre-
serve the integrity and availability of data but not
their confidentiality (Garrison et al., 2016). In this
case, cryptography is often used to enforce AC while
ensuring the confidentiality of sensitive data. These
data are encrypted and the permission to read the
encrypted data is embodied by the secret decrypting
keys. While implying a further computational burden
(i.e., the cryptographic computations) and additional
metadata (e.g., public keys), CAC allows encrypted
data to be stored in partially trusted environments.
Usually, CAC schemes involve four entities (Berlato
et al., 2020), i.e., a proxy, a Reference Monitor (RM),
a Metadata Storage (MS) and a Data Storage (DS),
which we describe in Table 1

Below, we give an intuition of the functioning of
the CAC scheme proposed in (Garrison et al., 2016)
for enforcing role-based CAC policies. Each user u
and role r is provided with a pair of secret and pub-
lic keys (ks

u,k
p
u) and (ks

r,k
p
r ), respectively. The con-

tent f of each file fn is encrypted with an individual
(i.e., different for each file) symmetric key ksym

fn′ . To
assign u to r, r’s secret key ks

r is encrypted with kp
u ,

resulting in {ks
r}kp

u
. To give permission over a file fn,

the symmetric key ksym
fn related to the file is encrypted

with kp
r , resulting in {ksym}kp

r
. The use of both asym-

metric and symmetric cryptography is usually called
“Hybrid Encryption” (Garrison et al., 2016). An op-
eration op can be either read (R) or read-write (RW ).
The CAC policy is represented by decorated versions
of the relations UR and PA, i.e. {ks

r}kp
u

is attached
to the pair 〈u,r〉 in UR whereas {ksym}kp

r
is attached

to the pair 〈r, p〉 in PA; by abusing notation, we write
〈u,r,{ks

r}kp
u
〉 and 〈r, p,{ksym

fn }kp
r
〉, respectively and,

together with public cryptographic keys, we refer to
these extended tuples as metadata. In (Garrison et al.,
2016), metadata contain additional information (e.g.,
digital signatures for authenticity and integrity) that
we omit here for the sake of simplicity.

Besides read and write operations, the CAC
scheme in (Garrison et al., 2016) specifies also admin-
istrative operations for managing the AC policy such
as adding and deleting users, roles, files and assign-
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Table 2: CAC scheme operations.

Operation Description
addU(u): add u in U

deleteU(u): delete u from U ; ∀r ∈ R : ∃〈u,r,{ks
r}kp

u

〉 ∈ UR, revokeU(u,r)
addR(r): add r in R

deleteR(r):
delete r from R; ∀fn :
∃〈r,〈fn,∗〉,{ksym

fn }kp
r

〉 ∈ PA,
revokePRW (r, fn)

addF(fn, f ): add 〈fn,∗〉 in P and f in DS

deleteF(fn): delete 〈fn,∗〉 from P and f from DS;
delete all 〈∗,〈fn,∗〉,∗〉 from PA

assignU(u,r): add 〈u,r,{ks
r}kp

u
〉 in UR

revokeU(u,r):

delete 〈u,r,{ks
r}kp

u
〉 from UR; update

r’s keys in all 〈∗,r,∗〉 ∈ UR; update
fn’s keys in all 〈∗,〈fn,∗〉,∗〉 ∈ PA :
∃〈r,〈fn,∗〉,{ksym

fn }kp
r
〉 ∈ PA

assignP(r, fn,op): add 〈r,〈fn,op〉,{ksym
fn }kp

r
〉 in PA

revokePW (r, fn): change 〈r,〈fn,RW〉,{ksym
fn }kp

r
〉 to

〈r,〈fn,R〉,{ksym
fn }kp

r
〉

revokePRW (r, fn): delete all 〈r,〈fn,∗〉,{ksym
fn }kp

r
〉 from PA;

update fn’s keys in all 〈∗,〈fn,∗〉,∗〉 ∈PA

readF(fn): decrypt {ks
r}kp

u
with ks

u, then {ksym }kp
r

with ks
r and finally { f}ksym with ksym

writeF(fn, f ′): encrypt f ′ with ksym

ing and revoking users and permissions to roles. We
briefly describe all operations in Table 2. We use the
character “*” as a wildcard in tuples for UR and PA
assignments. For instance, {〈∗,r,∗〉 ∈UR} represents
the set of UR assignments related with r (i.e., the set
of users assigned to r). We highlight that, whenever
RW permission over a file fn is revoked from a role
r (revokePRW (r, fn) operation), the related key ksym

fn

is discarded and a new key ksym
fn
′ is generated. This

mechanism prevents r from still being able to decrypt
the content f of fn. The same behaviour applies when-
ever a user u is revoked from a role r (revokeU(u,r)
operation), i.e., r’s keys are renewed to prevent u from
still having access to r’s permissions. As u may have
cached keys for future access, also the keys of all files
r has permission over are replaced. For better per-
formance, the content f of a file fn is not immedi-
ately re-encrypted (i.e., active re-encryption) but in-
stead it is re-encrypted with the new key ksym

fn
′ by the

next user to write to the file (i.e., lazy encryption).
For more details about the construction of the CAC
scheme, please refer to (Garrison et al., 2016).

3 COERCIVE OVERVIEW

In this section, we give an overview of the toolchain
COERCIVE (see Figure 1). We first motivate its need

*deploy Optimal 
Architecture* CryptoAC

Organisation

TradeOffBoard
Users

*use*

Proxy
MS
RM

optimisation

DS

 
Scenario

Requirements
Optimal
Architecture

Admin

Figure 1: COERCIVE overview.

by describing an eHealth scenario often considered in
the cloud-related literature (Section 3.1). Then, we
show how to apply TradeOffBoard in such a scenario
(Section 3.2). We highlight that CryptoAC is instead
extensively described in Section 4.

3.1 The eHealth Scenario

We start from the consideration that different scenar-
ios may have specific requirements to satisfy. At a
high-level, COERCIVE allows organisations to eval-
uate CAC scheme architectures against these require-
ments (TradeOffBoard box in Figure 1) and then de-
ploy the optimal architecture for the scenario under
consideration (CryptoAC box in Figure 1).

To understand why these are crucial activities, we
consider the following scenario adapted from the lit-
erature on outsourcing medical data to the cloud (Ho-
randner et al., 2016; Sato and Fugkeaw, 2015; Pre-
marathne et al., 2016). Suppose a person with a men-
tal disorder is hospitalized in a specialized clinic. The
clinic is storing in the cloud the patients’ data en-
crypted under a CAC scheme. However, the CAC
scheme expects the patient’s name to be part of the
metadata (e.g., in the AC policy or in the files name);
the CSP may then infer that a specific person is a cus-
tomer of the clinic and share this information for tar-
geted advertisement. This is an instance of a well-
known requirement (see, e.g., (Domingo-Ferrer et al.,
2019)) which states to hide not only medical data but
also metadata from CSPs. Moreover, this may not
be the only requirement to consider; others may in-
clude the use of hardened devices only for process-
ing medical data, the prioritization of redundancy to
avoid data loss, the maximization of CSP (monetary)
savings and the minimization of the vendor lock-in.

However, different architectures satisfy these re-
quirements at different levels. Even worse, these re-
quirements may conflict with each other, leading to a
stalemate in which we need to carefully evaluate the
benefits and drawbacks of different architectures. For
instance, while enabling ubiquitous access, allowing
employees to use personal computers is against the re-
quirement of using hardened devices only. Then, the
setup of a data-centre on-premise may be unappeal-
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Figure 2: Two architectures for CAC schemes in the cloud.

ing for small clinics, for they may lack the skills and
resources to efficiently manage it. Although moving
some services to the cloud may enhance redundancy
and scalability, it would threaten (sensitive) metadata
and suffer from high CSP-related monetary costs and
the vendor lock-in effect. In this context, COERCIVE
supports the investigation of alternative CAC archi-
tectures (by using TradeOffBoard) and then deploy
the selected one (by using CryptoAC).

3.2 TradeOffBoard Optimisation

To accomplish its tasks, a CAC entity (i.e., proxy,
RM, MS or DS) must be deployed in a location or
“domain” (e.g., software needs to run on a machine).
For CAC schemes targeting cloud-hosted data, there
exist three possible domains (Berlato et al., 2020),
i.e., clientu (e.g., the user u’s computer), on-premise
(e.g., a data-centre within the organisation) and the
CSP. It naturally follows that there are multiple ways
to assign entities to domains, i.e., there are several ar-
chitectures for CAC schemes (e.g., see Figure 2 for
two examples). An architecture may have multiple
instances of the same entity under different domains.
Moreover, an architecture does not define which CSP
to use (e.g., AWS, Azure, GCP).

Figure 3: TradeOffBoard screenshot.

As an illustrative example, we input in TradeOff-

Board the requirements of the eHealth scenario de-
scribed in Section 3.1 (see Figure 3). TradeOffBoard
presents a first block “Pre-Filters” in which an or-
ganisation can exclude the presence of an entity in
a domain. For the eHealth scenario, we set the Pre-
Filters so to avoid the deployment of the proxy in
the clientu domain (to avoid personal devices) and the
MS in the CSP domain only (to avoid the disclosure
of sensitive metadata to the CSP). Then, the “Sce-
nario Requirements” block allows prioritizing a set
of relevant architectural requirements (e.g., reliabil-
ity, maintenance) identified in (Berlato et al., 2020).
This set is not fixed, and requirements can be added
and removed according to the scenario under investi-
gation. Following the description of the eHealth sce-
nario in Section 3.1, we prioritize redundancy by as-
signing a higher weight with respect to other require-
ments. Then, we set a (soft) constraint on the ven-
dor lock-in requirement (i.e., to allow architectures
suffering from the vendor lock-in effect at the cost
of a penalty). Finally, we set a (hard) constraint on
CSP (monetary) savings (i.e., to exclude architectures
leading to significant CSP related expenses).

Based on how each architecture satisfies these re-
quirements, TradeOffBoard solves the optimisation
problem and proposes a ranking of the architectures
in the “Best Architectures” block. For the eHealth
scenario, TradeOffBoard proposes three best archi-
tectures. These avoid the use of the clientu domain
as expected by the Pre-Filters. Moreover, the MS is
either deployed in the on-premise domain only (ar-
chitecture #1) or in a hybrid fashion between the on-
premise and the CSP domains (architectures #2 and
#3) so to always protect sensitive metadata. To en-
hance redundancy, the DS is always deployed in the
CSP domain. Nonetheless, to limit the vendor lock-
in effect and CSP monetary expenses, entities deploy-
ment is balanced between the on-premise and the CSP
domains. As a final remark, we highlight that Trade-
OffBoard solves the optimisation problem in few mil-
liseconds. For more details on TradeOffBoard and its
performance evaluation, we refer the interested reader
to (Berlato et al., 2020).

4 CryptoAC

As highlighted in Section 1, the (few) prototypes im-
plementing CAC schemes available in the literature
can usually interact with one CSP only and have a
fixed (or unspecified) architecture; this makes them
unsuitable for real-world deployment, as they lack in
particular portability (across different CSPs) and (ar-
chitectural) flexibility.
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To fill this gap, we propose CryptoAC, a fully
working and usable implementation of the CAC
scheme proposed by (Garrison et al., 2016). Con-
cretely, CryptoAC is composed of four software mod-
ules (see Table 3), one for each CAC scheme entity
presented in Section 2.2 (i.e., proxy, RM, MS and
DS). We highlight that we followed development best
practices (e.g., Test-Driven Development, Continuous
Integration pipelines) for producing quality software.

In this section, we first explain the use of
container technology to achieve cloud-independency
(Section 4.1). Then, we describe the implementa-
tion of the proxy (Section 4.2), RM (Section 4.3), MS
(Section 4.4) and DS (Section 4.5) modules. Finally,
we discuss CryptoAC multiple architectures support
and deployment (Section 4.6). For the sake of brevity,
here we do not discuss security aspects not relevant
research-wise such as the use of TLS for establishing
secure channels or of cryptographic certificates for
mutual authentication between CryptoAC modules.

4.1 Cloud-independency

We choose to use the microservice architecture,2

that consists of logically splitting an application into
loosely coupled services (usually called containers),
where each service is self-contained and implements
a single functionality with clear interfaces.

To enable the microservice paradigm in our con-
text, we ship our modules in Docker images.3, a
read-only templates containing instructions to cre-
ate containers, which run on the Docker platform in
an isolated environment. All major CSPs provide
support for running containers (e.g., AWS,4 Azure5

and GCP6). Using Docker, CryptoAC achieves cloud-
independency and can therefore be used in any (com-
bination) of these CSPs.

As it usually happens, CryptoAC Docker images
are built on other base images, with some additional
customization. The Docker image of the MS mod-
ule is built on top of the official MySQL database im-
age over which we provide an .sql file for creating
the database (e.g., tables, views, triggers) of metadata.
The remaining three entities (i.e., proxy, RM and DS)
cannot be implemented just as easily since they need
to support particular functionalities. To avoid code
duplication and enhance maintainability, we imple-

2https://developer.ibm.com/articles/why-should-we-use-
microservices-and-containers

3https://www.docker.com/
4https://aws.amazon.com/ecs/?nc1=h ls
5https://azure.microsoft.com/en-gb/product-
categories/containers/

6https://cloud.google.com/sdk/gcloud/reference/container

Table 3: CryptoAC software modules.

Entity Base Docker Implementation HTTP RESTful APIs

Proxy Java Program 22 (10 profiles,12 AC)

RM Java Program 3 (add/write file, configure)

MS .sql file - (MySQL protocol)

DS Java Program 4 (CRUD Paradigm)

ment all three entities in a single Java program. Its
Docker image is built on top of the official OpenJDK
Docker image. At startup, each container is config-
ured with an operation mode that specifies which en-
tity (i.e., either proxy, RM or DS) the instance should
support. Each container can support one entity at a
time. Besides, it is possible to fine-tune several pa-
rameters (e.g., cryptographic algorithms, key size) di-
rectly from the command line.7

4.2 Proxy

The proxy module interfaces users with data (e.g.,
through read and write requests, as explained in Sec-
tion 2.2) by performing cryptographic computations.
Besides users, the administrator uses the proxy mod-
ule to manage the AC policy. In particular, the admin-
istrator can create and delete users, roles, files and dis-
tribute assignments and permissions, i.e., the admin-
istrator can modify U, R, P UR and PA by sending an
(authenticated and signed) request to the MS module.
The proxy module has to be configured with relevant
information to interact with the other modules (e.g.,
URLs, cryptographic certificates, credentials).

Each operation performed by a user u (e.g., write
a file) or the administrator (e.g., assign a user to a
role) is digitally signed with ks

u (or, since we are con-
sidering RBAC, with the private signing key of the
role ks

r that was assumed by the user to perform the
operation). Digital signatures protect encrypted data
and metadata against accidental or malicious modifi-
cations by providing integrity and authenticity. Users,
roles and files have an identifier (i.e., username, role
name and file name) and a random token of 50 bytes
acting as a pseudonym. When a user digitally signs
an operation, he/she appends his/her (or the assumed
role’s) token instead of his/her (or the role’s) identi-
fier. In this way, users can fetch public signing keys to
verify signatures without learning the identity of the
user (or role) that created the signature. Finally, users
and roles are assigned a status, either “incomplete”
(i.e., created but not fully configured), “operational”
(i.e., ready for use) or “deleted” (by the administra-

7https://github.com/stfbk/CryptoAC
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tor). Public cryptographic keys of deleted users and
roles are kept to verify digital signatures.

Web Application. The proxy module offers a web
User Interface (UI), developed with JQuery,8 Boot-
strap9 and the Apache Template Engine.10 The proxy
module uses the Spark Java framework11 to setup a
web server and expose two sets of RESTful APIs. The
first set is related to the management of users’ pro-
files; a user’s profile contains the user’s secret cryp-
tographic keys (generated within the proxy) along
with other configurations data (set through the UI)
like username, password and URLs of other modules.
The second set is related to the management of the
AC policy; these APIs have a 1-to-1 mapping with
administrative operations, i.e., add and delete users,
roles and files, read and write files and distribute and
revoke assignments and permissions. These opera-
tions are available via a UI for administrators, which
presents only add, read and write operations to nor-
mal users. All the inputs to the web UI are validated
against OWASP-approved regular expressions12 to
avoid web-based attacks (e.g., injection, Cross-Site
Scripting).

4.3 Reference Monitor

When CryptoAC is configured to act as a RM, it reg-
isters three APIs. The first one is reserved for the
administrator and allows to configure the RM mod-
ule (e.g., by providing URLs of other modules). The
other two APIs are for adding and writing files, re-
spectively. When a user wants to add a new file,
the RM module checks whether the user is granting
to the administrator all permissions over the file. To
counter malicious users who keep adding useless files
to exhaust resources (e.g., storage space), we can sim-
ply implement a mechanism to limit the number (or
size) of files each user can upload. When a user u
wants to write over a file, the RM queries the AC
policy in the MS to ensure that u has the permis-
sion to do it. While it would provide two layers of
security, we follow the scheme in (Garrison et al.,
2016) and do not make the RM module mediate read
requests too, as this control is cryptographically en-
forced (see Section 2.2). Again, to counter malicious
users and Denial-of-Service attacks, we can imple-

8https://jquery.com/
9https://getbootstrap.com/
10https://velocity.apache.org/
11http://sparkjava.com/
12https://owasp.org/www-community/OWASP Validation

Regex Repository

ment a mechanism to limit the number of files a user
can upload or send a warning to the administrator.

4.4 Metadata Storage

When starting the MS module, we initialise the
MySQL database by creating tables “users” for U,
“roles” for R, “roleTuples” for UR and “permission-
Tuples” for PA. Furthermore, we create two addi-
tional tables to contain file-related metadata like sta-
tus flags and version numbers, i.e., “files” and “file-
Tuples”.13 To hide (potentially sensitive) identifiers
and avoid the disclosure of the AC policy to the users,
we limit users’ Select privileges to grant access to
tokens only and employ views and row-level permis-
sions. In practice, we define views over the “role-
Tuples” and “fileTuples” tables which automatically
filter assignments not associated with the user query-
ing the database, whose username is available through
the USER() MySQL function.14 In this way, each user
knows his portion of the AC policy only and we re-
spect the need-to-know principle (i.e., each user has
access only to the information strictly needed to ac-
complish his task).

Finally, to avoid SQL injection and (stored) Cross-
Site Scripting attacks, inputs to the database are san-
itized with the PreparedStatement Java class,15

while outputs from the database are sanitized using
the OWASP Java Encoder.16

4.5 Data Storage

The DS module registers four APIs following the
Create, Read, Update and Delete (CRUD) paradigm.
Normal users can invoke the Read API, while Cre-
ate, Update and Delete APIs can be invoked by the
administrator and the RM module only. The CAC
scheme in (Garrison et al., 2016) expects both new
and overwritten (encrypted) files to be uploaded from
the proxy to the RM. Then, the RM has to check the
legitimacy of users’ requests and, if everything is con-
firmed, send the files to the DS. However, we note that
this two-hop approach may waste bandwidth and cre-
ate a bottleneck in the RM module. As such, we mod-
ify this behaviour so that files are instead uploaded
from the proxy module to the DS module and stored
in a temporary upload directory. Then, the proxy asks
the RM module to check the users’ requests and, if

13https://github.com/stfbk/CryptoAC
14https://dev.mysql.com/doc/refman/8.0/en/information-

functions.html
15https://docs.oracle.com/javase/tutorial/jdbc/basics/

prepared.html
16https://owasp.org/owasp-java-encoder/
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everything is confirmed, the RM module asks the DS
module to move the files in the actual storage direc-
tory from which users can download them. Other-
wise, the files are simply discarded.

4.6 Multiple Architectures Support

CryptoAC initially inherits the ability to support mul-
tiple architectures from the CAC scheme we chose to
implement (Garrison et al., 2016). Indeed, the au-
thors proved that in their scheme the proxy entity can
be deployed both in the clientu and on-premise do-
mains. Moreover, they assumed the RM, DS and MS
entities to stay in the CSP domain; it follows that de-
ploying these entities on-premise instead is possible,
as they would move from a partially trusted domain
(i.e., CSP) to a fully trusted one (i.e., on-premise).

We preserve support for multiple architectures
by making the proxy, RM and DS modules ex-
pose RESTful APIs (documented with Swagger Ope-
nAPI) returning JSON-formatted responses to guar-
antee maximum flexibility. By defining clear inter-
faces for accessing inner functionalities, each module
is self-contained and independent from the location of
other modules. Besides, this approach allows Cryp-
toAC to be easily integrated with other services (e.g.,
as a plugin for a text editor). Finally, we implement
the proxy module so that one instance can serve mul-
tiple users (i.e., the proxy module can be deployed
both in the clientu and on-premise domains). By ef-
fectively decoupling the deployment from the imple-
mentation, CryptoAC results to be fully agnostic with
respect to the chosen architecture, i.e., the code of
CryptoAC requires no modification when supporting
different architectures.

Deployment. An organisation can easily use avail-
able tools such as Cloudify,17 Kubernetes18 or
Docker-compose19 to deploy CryptoAC, based on the
chosen architecture. As a proof-of-concept, we pro-
pose a simple docker-compose file for quick local de-
ployment and make it available along with the source
code of CryptoAC.20 We note that the local deploy-
ment can automatically be ported to the cloud us-
ing new docker-compose features for integration with
AWS and Azure. Finally, as we employ the Data Ac-
cess Object (DAO) pattern for decoupling the logic of
the CAC scheme from the management (e.g., storage,
retrieval) of metadata and encrypted data, CryptoAC
modules can be easily replaced by other services. For

17https://cloudify.co/
18https://kubernetes.io/
19https://docs.docker.com/
20https://github.com/stfbk/CryptoAC

instance, the code of the RM module could be ported
in an AWS Lambda service, while AWS RDS could
be used as MS and AWS S3 as DS.

5 PERFORMANCE EVALUATION

In this section, we propose a thorough performance
evaluation for CryptoAC. First, we measure the ex-
ecution time of each operation described in Table 2
(Section 5.1). However, the performance of some op-
erations is not constant, but instead it is influenced by
the state of the AC policy. For instance, whenever the
administrator revokes a permission from a role r over
a file fn, the related key ksym

fn is discarded and a new

key ksym
fn
′ is generated (see Section 2.2). However,

the new key ksym
fn
′ has to be distributed to (i.e., en-

crypted with the public key of) all other roles which
still have access to f n. Depending on the number of
these roles, this operation may take more or less time.
Therefore, we also explore more in detail the perfor-
mance of those operations whose execution time de-
pends on the state of the AC policy (Section 5.2).

5.1 Evaluation Per Operation

We report in Table 4 the performance evaluation of
CryptoAC for each operation described in Table 2.
We omit the operations for deleting users and roles as
their timings can be derived in a straightforward way
from revokeU(u,r) and revokePRW (r, fn), respectively.
We use the symbol |·| for representing the cardinality
of a set (i.e., the number of its elements). We run all
tests 1,000 times to reduce measurements errors on a
Ubuntu 18.04 Virtual Machine with 4 threads on an
Intel(R) Core(TM) i7-7700HQ and 8GB of RAM.

In the “Cryptographic Computations” column, we
list the number and type of cryptographic computa-
tions involved in each operation, as described in (Gar-
rison et al., 2016), namely generation, encryption, and
decryption for symmetric-key (GenS,EncS,DecS)
and public-key (GenP,EncP,DecP) cryptography to-
gether with generation and verification of digital sig-
natures (GenSig,VerSig). Asymmetric keys are RSA
2048, while symmetric keys are AES 256. EncP and
DecP encrypt and decrypt a pair of asymmetric keys
(4096 bits) while the execution times of EncS and
DecS are calculated per MB of data. Signatures are
256 bytes long and are generated from 16,743 bytes
of data (i.e., the biggest block of metadata that is pro-
duced (Garrison et al., 2016)). We measure the execu-
tion time of each computation individually using the
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Table 4: Cryptographic computations per operation and execution time (in milliseconds).

Operation Cryptographic Computations Cryptographic Time Implementation Time
addU(u): 2 ·GenP 225.346 276.612
addR(r): 2 · (GenP +EncP)+GenSig 227.836 255.192

addF(fn, f ): 2 · (GenSig +VerSig)+GenS +EncS +EncP 4.300 + EncS 59.804 + EncS

deleteF(fn): No cryptographic computation involved 0 45.817
assignU(u,r): 2 · (EncP +DecP)+GenSig +VerSig 26.731 68.770

revokeU(u,r):
DecP +(2 ·EncP +GenSig +VerSig)·|{〈∗,r〉∈UR}|+
(GenS)·|{〈r,∗〉∈PA}|+(EncP +GenSig +VerSig)·
|{〈∗,〈fn,∗〉〉∈PA:∃〈r,〈fn,∗〉〉∈PA}|+2 ·GenP

(2.759)·|{〈∗,r〉∈UR}|+
(0.033)·|{〈r,∗〉∈PA}|+
(2.342)·|{〈∗,〈fn,∗〉〉∈PA:∃
〈r,〈fn,∗〉〉∈PA}|+ 237.33

(19.423)·|{〈∗,r〉∈UR}|+
(9.872)·|{〈r,∗〉∈PA}|+
(6.791)·|{〈∗,〈fn,∗〉〉∈PA:∃
〈r,〈fn,∗〉〉∈PA}|+ 247.735

assignP(r, fn,∗): if ∃〈r,〈fn,∗〉〉∈PA, GenSig +2 ·VerSig;
else, GenSig +2 ·VerSig +EncP +DecP

if ∃〈r,〈fn,∗〉〉∈PA, 2.194;
else, 14.597

if ∃〈r,〈fn,∗〉〉∈PA, 7.385;
else, 49.167

revokePW (r, fn): 2 · (VerSig +GenSig) 3.850 45.674

revokePRW (r, fn): GenS +(VerSig +EncP +GenSig)·|{〈r′,〈fn,∗〉〉∈PA:r 6=r′}|
(2.342)·|{〈r′,〈fn,∗〉〉∈PA:
r 6=r′}|+ 0.033

(37.360)·|{〈r′,〈fn,∗〉〉∈PA:
r 6=r′}|+ 0.034

readF(fn): 3 ·VerSig +2 ·DecP +DecS 24.779 + DecS 45.559 + DecS

writeF(fn, f ′): 5 ·VerSig +2 · (DecP +GenSig)+EncS 28.629 + EncS 62.145 + EncS

Table 5: Cryptographic computations execution time.

GenS 0.033ms GenP 112.673ms
EncS 11.860ms/MB DecS 16.820ms/MB
EncP 0.417ms DecP 11.986ms

GenSig 1.656ms VerSig 0.269ms

default SUN Java cryptographic provider21 and report
the results in Table 5. In the “Cryptographic Time”
column, we calculate the execution time of each op-
eration by summing the execution time of all crypto-
graphic computations involved (taken from Table 5).
For instance, the addU(u) operation involves the gen-
eration of two pairs of asymmetric keys (for encryp-
tion and digital signatures). As the execution time for
GenP is 112.673ms, the execution time of addU(u)
is 2 · 112.673 ms = 225.346 ms. The performance
of revokeU(u,r) and revokePRW (r, fn) depends on the
status of the RBAC policy; they are discussed in Sec-
tion 5.2. In the “Implementation Time” column, we
measure the execution time of each operation when
running CryptoAC. This includes the time spent for
the cryptographic computations and the overhead due
to retrieving metadata from the MS database, connec-
tions among the modules, parameters validation, and
so on. To exclude network latency, we deployed all
docker containers on the same device used for testing.

From Table 4, we can see that the maximum
overhead brought by CryptoAC implementation is
58.504 ms addF(fn, f )) while the minimum is 20.78
ms (readF(fn)). While the overhead in percentage
points can be high (as the cryptographic time of some

21https://docs.oracle.com/en/java/javase/11/security/oracle-
providers.html

operations is really low), the absolute values are rea-
sonably bounded to few dozens of milliseconds.

5.2 Policy-dependent Operations

We now discuss the performance of the
revokePRW (r, fn) and revokeU(u,r) operations.
The former is influenced by a single parameter, i.e.,
the number of roles having permission over fn (except
r), while the latter is influenced by three parameters,
i.e., the number of users assigned to r, the number of
files r has permission over and the number of roles
sharing a permission with r. We stress that these
parameters are related to the users, roles and files
concerned by the revokePRW (r, fn) and revokeU(u,r)
operations, and not to the total number of users, roles
and files in the AC policy (which may be more).
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Figure 4: revokeP varying |{〈r′,〈fn,∗〉〉 ∈ PA : r 6= r′}|.

RevokeP. To determine whether the cryptographic
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Figure 5: revokeU when
varying |{〈∗,r〉 ∈ UR}|.
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Figure 6: revokeU when
varying |{〈r,∗〉 ∈ PA}|.
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Figure 7: revokeU when varying
|{〈∗,〈fn,∗〉〉 ∈ PA : ∃〈r,〈fn,∗〉〉 ∈
PA}|.
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Figure 8: revokeU when
varying |{〈∗,r〉 ∈ UR}|
and |{〈r,∗〉 ∈ PA}|.
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Figure 9: revokeU when
varying |{〈r,∗〉 ∈ PA}| and
|{〈∗,〈fn,∗〉〉 ∈ PA : ∃〈r,〈fn,∗〉〉 ∈
PA}|.
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Figure 10: revokeU when varying
|{〈∗,〈fn,∗〉〉 ∈PA : ∃〈r,〈fn,∗〉〉 ∈PA}|
and |{〈∗,r〉 ∈ UR}|.

and implementation execution times presented in Ta-
ble 4 are accurate, we measure the actual execution
time of the revokePRW (r, fn) operation when varying
its influencing parameter from 1 to 100 (i.e., we run
the operation 100 times, each time increasing the
parameter by 1). We report the 100 measurements
in Figure 4 (dotted line) and model the actual ex-
ecution time through linear regression (solid line).
We derive the cryptographic (dashed line) and imple-
mentation (long-dashed line) execution times for each
point on the X axis by simply multiplying the base
values in the “Cryptographic Time” and “Implemen-
tation Time” columns of Table 4, respectively. Near
each line, we report the relative angular coefficient.

RevokeU. We repeat the same process for the
revokeU(u,r) operation, with the only difference that
the execution time depends on three parameters. As
such, we measure the actual execution time when
varying these three parameters from 1 to 100 one by
one. In other words, we fix two parameters to the
value of 1 while ranging on the remaining from 1 to

100. We report the results in Figure 5, 6 and 7.
To check the interdependency of these three pa-

rameters, we execute a further experiment. We repeat
the analysis while ranging two parameters at the same
time and report the results in Figure 8, 9 and 10.

Discussion. Excluding outliers in measurements
(due to, e.g., cache misses, operative system tasks),
in Figure 4, 5, 6 and 7 we observe that the crypto-
graphic execution time is a lower bound of the actual
time, while the implementation execution time is an
upper bound. We can justify this behaviour by consid-
ering that some costs (e.g., opening a MySQL connec-
tion toward the MS database) are incurred only once,
independently from the number of users, files or roles
involved. Consequently, these costs do not increase
proportionally to the number of elements involved,
while cryptographic costs instead do. In general, the
execution time of revokePRW (r, fn) and revokeU(u,r)
when varying a single parameter remains within rea-
sonable boundaries (i.e., less than half a second)
for any practical RBAC policy. This is true also
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when varying the pairs of parameters (|{〈∗,r〉 ∈UR}|,
|{〈r,∗〉 ∈ PA}|) and (|{〈∗,〈fn,∗〉〉 ∈ PA : ∃〈r,〈fn,∗〉〉 ∈
PA}|, |{〈∗,r〉 ∈ UR}|), the overhead being around 3
seconds (Figure 8) and at most 2 seconds (Figure 10).
In all cases, the slope of the lines obtained by linear
regression are gentle and suggest good scalability.

The behavior of revokeU(u,r) when varying the
pair (|{〈r,∗〉 ∈ PA}|, |{〈∗,〈fn,∗〉〉 ∈ PA : ∃〈r,〈fn,∗〉〉 ∈
PA}|) of parameters is less scalable because of the in-
terplay between them. Indeed, the third parameter
(i.e., the number of roles sharing a permission with
r) includes also the permissions of r itself (i.e., the
second parameter). Therefore, increases in the sec-
ond parameter imply increasing the third one as well.
The slope of the lines obtained by linear regression is
steeper than before; however, the overhead is at most
2 seconds for the maximum values of the parameters.

Finally, we observe that revokePRW (r, fn) and
revokeU(u,r) are administrative operations. As such,
they can be scheduled during low-load states (e.g.,
overnight) without affecting users’ operations. All ex-
perimental results are available online.22

6 RELATED WORK

To the best of our knowledge, there is no toolchain
combining automated trade-off analysis for select-
ing the most suitable architecture with the deploy-
ment of CAC schemes as in COERCIVE. While refer-
ring to (Berlato et al., 2020) for the works related to
TradeOffBoard, we observe that several researchers
proposed high-level designs of CAC schemes, e.g.,
(Rezaeibagha and Mu, 2016) and (Bacis et al., 2016).
Given our focus on the implementation of crypto-
graphic enforcement of AC policies, below we focus
on works that are closely related to CryptoAC by con-
sidering tools from both the academia (Section 6.1)
and commercial contexts (Section 6.2).

6.1 Cryptographic Access Control
Schemes Implementations

In (Berlato et al., 2020), we proposed an architec-
tural model for CAC schemes to assist administra-
tors to evaluate different architectures. Our contribu-
tions stem from (Berlato et al., 2020), on top of which
we propose the toolchain COERCIVE and CryptoAC.
We avoid the use of Cloudify,23 favor a (more ag-
ile) microservice approach based on containers (i.e.,

22https://st.fbk.eu/complementary/SECRYPT2021 2
23https://cloudify.co/

Docker) and provide the implementation of all enti-
ties (i.e., proxy, RM, MS and DS).

In (Sato and Fugkeaw, 2015), the authors im-
plemented a scheme with multiple data owners in
CLOUD-CAT to investigate scalability and performance
in read and write operations. However, they as-
sumed a fixed architecture and did not discuss the in-
teraction with the CSP. In (Zhou et al., 2013), the au-
thors proposed a scheme with a fixed architecture in
which a public cloud stores encrypted data (i.e., DS)
while a private cloud stores metadata (i.e., MS). How-
ever, we note that it may be unappealing for small
organisations to maintain both a public and a private
cloud. The authors implemented their scheme just for
analysing the performance of read and write op-
erations. In (Zarandioon et al., 2012), the authors
proposed a CAC scheme emphasizing users’ privacy
by enabling anonymous access to data. They imple-
mented a prototype (with a fixed architecture) inter-
acting with AWS. Noticeably, they provided an inter-
face so that further CSPs can be supported. In (Tang
et al., 2012), Tang et al. proposed a scheme with a
quorum of key managers deployed as a centralized en-
tity. Users interact with a proxy running either in the
clientu domain or on-premise; this is the first scheme
allowing to slightly modify the architecture. More-
over, multiple CSPs can theoretically be supported.
In (Ghita et al., 2017), the authors implemented a
role-based CAC scheme. However, the architecture
is fixed and many pragmatic aspects, like run-time
modifications to the AC policy, were overlooked. As
such, the scheme cannot be used in dynamic sce-
narios where permissions are assigned and revoked.
In (Qi and Zheng, 2019), the authors proposed a CAC
scheme similar to (Garrison et al., 2016) while using
onion encryption for revocation but obtaining worse
performance with respect to (Garrison et al., 2016)
(i.e., 7.2%). Each time a permission is revoked, the
CSP adds an encryption layer on each affected file.
For reading a file, an authorized user has to decrypt
all layers. The authors implemented their scheme in
a proof-of-concept prototype, Crypto-DAC. We note
that this approach implicitly assumes that no collu-
sion can happen between revoked users and the CSP.
In (Jang-Jaccard, 2018), the authors implemented a
CAC scheme based on ABE with AWS. Unfortu-
nately, the authors themselves admitted using a not
portable programming library. More importantly, the
scheme does not support the dynamicity of the pol-
icy. In (Djoko et al., 2019), the authors proposed a
CAC scheme leveraging Trusted Execution Environ-
ments (TEEs). The authors developed NEXUS to en-
force AC policies over shared volumes (i.e., at direc-
tory level) by encrypting each file in a volume with a
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symmetric key. Each key is encrypted with the vol-
ume rootkey. Volume sharing happens by sending the
rootkey to other users through SGX Remote Attesta-
tion. Unfortunately, this scheme requires that each
user is equipped with a TEE.

Summarising, the focus of these works is mainly
proposing new CAC schemes with novel features. As
such, little space is left for additional analysis on al-
ternative architectures responsive to different scenar-
ios. As far as we know, CryptoAC is the only CAC
scheme implementation designed for real deployment
and not for performance evaluation only.

6.2 Commercial Tools

There are many free and commercial tools to protect
sensitive data stored in the cloud. However, the ma-
jority of these tools (e.g., Mega,24 AxCrypt,25 Krup-
tos 2,26 Cubbit27) target individuals or have 1-to-1
sharing of data. Below, we focus on those tools which
target organisations and support protection against the
honest but curious CSP while enabling controlled in-
formation sharing among employees.

Qumulo28 offers a software-defined file system
running both on-premise and on CSPs like AWS and
GCP. From version 3.1.5, Qumulo features encryp-
tion at rest to preserve the confidentiality of sensitive
data in on-premise clusters. Unfortunately, Qumulo
still relies on cloud-side encryption for cloud clusters,
not preventing CSPs from accessing sensitive data.
Zadara29 is a storage solution compatible with AWS,
GCP and Azure. Although Zadara offers encryption
at rest, this feature is on a coarse-grained volume-by-
volume basis and is disabled by default. A volume is
encrypted with a symmetric key which is in turn en-
crypted with a master key derived from a user’s pass-
word. Boxcryptor30 provides end-to-end encryption
and data sharing at both user and group level. Each
user has a pair of public-private keys, encrypted with
a symmetric key derived from the user’s password and
stored client-side. The modification of the AC policy
following the revocation of permissions is not spec-
ified in the technical report. LucidLink31 simulates
a Network Attached Storage on users’ devices, while
data are stored in one of the supported CSPs. Each file
is encrypted using AES-256, and the encryption key

24https://mega.nz/
25https://www.axcrypt.net/
26https://www.kruptos2.co.uk/
27https://www.cubbit.io/technology
28https://qumulo.com/
29https://www.zadara.com/
30https://www.boxcryptor.com
31https://www.lucidlink.com/

Table 6: Comparison with commercial tools.
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Policy Dynamicity l l l l ? ? l
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Flexible Architecture l l l

Optimised Architecture l

Confidentiality w.r.t. CSP l l l l l l l l

Two-Factor Authentication l l l
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28Free for non-commercial use only; 29Through browser only;

of the parent folder wraps each file key. The admin-
istrator gives a user access to a folder (or file) by en-
crypting the key of the folder (or file) with the user’s
public key. Metadata are synchronized through a cen-
tral service provided by LucidLink. Again, the mod-
ification of the AC policy following the revocation of
permissions is not specified in the technical reports.

Summarising, there are several tools for preserv-
ing the confidentiality of data stored in partially
trusted CSP while also enforcing AC policies. How-
ever, these tools suffer several drawbacks with respect
to COERCIVE, including the lack of support for or-
ganisations (i.e., Mega, AxCrypt, Kruptos 2, Cubbit),
incomplete protection of data (i.e., Qumulo), coarse-
grained AC (i.e., Zadara), or constraints on the archi-
tecture to adopt (i.e., Boxcryptor and LucidLink re-
quire a central service to function). While not hav-
ing the same level of maturity of these tools—for
instance, some tools support two-factor authentica-
tion and chats and video-calls—CryptoAC instead ad-
dresses exactly these issues, as shown in Table 6.

7 CONCLUSION

In this paper, we have proposed COERCIVE, a
toolchain for optimal enforcement of CAC policies
in the cloud. COERCIVE is composed of two tools:
TradeOffBoard and CryptoAC. The former is al-
ready described in (Berlato et al., 2020) and it al-
lows for identifying the most suitable architecture
among dozens of possible alternatives for a given
use case scenario by automatically solving an opti-
mization problem. The latter is instead an original
contribution and allows for the portable and efficient
deployment of a cryptographic enforcement of role-
based AC policies in several CSPs by using (Docker)
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containers technology. Furthermore, we conducted
a thorough performance evaluation of CryptoAC to
demonstrate its scalability and efficiency. COER-
CIVE is available online as open-source software.32

Future Directions. We are implementing further
functionalities of CryptoAC, like multi-administrator
support and tree-based file sharing. Moreover, we
are working on the secure management of crypto-
graphic material (e.g., users’ private keys) to seam-
lessly support solutions like Trusted Execution Envi-
ronments. To extend the applicability of COERCIVE,
we are planning to integrate CryptoAC with Hyper-
ledger Fabric to replace the cloud with a decentralized
solution. Finally, in this paper we analyzed the per-
formance of CryptoAC with respect to scalability and
asymptotic behaviours, which may be unlikely in real-
world scenarios. To further study the performance of
CryptoAC, we are developing a dedicated simulator to
evaluate CryptoAC on arbitrary AC policies through
real-world workflows (i.e., sequences of operations).
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