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Abstract: Data such as an individual’s income, favorite sports team, typical commute route, vehicle maintenance history,
medical records, etc. are typically not useful for making large-scale decisions such as where to build a new
hospital, identifying which roads are in need of upkeep, and the like. However, aggregates of of these data
across hundreds of individuals are useful to governments and to companies. Data cooperatives/unions offer a
place for individuals to store their data and a service of data aggregation and interpretation to governments,
non-profit organizations, and businesses while maintaining individuals’ anonymity. We propose the use of
anonymization techniques coupled with graph algorithms over homomorphically encrypted (HE) graphs as
a basis of analysis for this accumulated data. We believe this approach ensures individuals’ privacy and
anonymity while preserving the usefulness of the plaintext data.

1 INTRODUCTION AND
MOTIVATION

Data has become one of the world’s most prized com-
modities. Its value lies in its potential to provide in-
sight, be it to corporations, interest groups, or gov-
ernments (World Economic Forum, 2011). Large
amounts of data are harvested by these various enti-
ties for any number of economic, social, or cultural
purposes. Purchase history, browsing history, medi-
cal records, financial information—there is no limit
to the value of large datasets, and some organization
somewhere will have a use for them.

But who is in control of the world’s data? As of
now, data is largely the property of a few influential
companies (Walsh, 2019). This raises several con-
cerns. Firstly, individuals are not in control of their
data. They do not know who has access to their data
and how they are using it. Secondly, there is no guar-
antee that the data is secure and properly anonymized.
Identifiable information may be in plain view to those
who do not need to see it.

The formation of data cooperatives addresses both
concerns. A data cooperative is a legal construct
wherein members voluntarily pool data for the benefit
of the group (Geuns et al., 2020). Through a data co-
operative, individuals are given the choice to control
their data. They can choose to share their data, who
can use it, and how it is used. Furthermore, co-ops
have a vested interest in keeping their members safe

against data theft and advocating for their members’
rights (Ligett et al., 2019). This construct supports the
privacy and security of the individual’s information.

Despite being a somewhat novel concept, numer-
ous data cooperatives have already formed success-
fully. For example, there exists a Swiss co-op, Health-
bank, that aggregates personal health data for the pur-
pose of research and medical advancement. Another
project called Driver’s Seat is a co-op comprised of
on-demand drivers (e.g., Uber or Lyft drivers) who
choose to share data related to their travels. This
allows the members of the co-op to optimize their
workflow using insights from the data pool. More re-
cently, there is interest in creating a data cooperative
that collects information about contact tracing such
that super-spreaders of COVID-19 can be identified
(Dockendorf et al., 2021). Authors have also used
data cooperatives to mine and chain fake data. This
work was selected as one of the hard problems in the
science of security and we will be presenting at the
Hot Topics in Science of Security conference (Salau
et al., 2021; Salau et al., 2021). These applications
demonstrate the wide variety of functions that a data
cooperative can serve.

Data cooperatives are useful, but how can a co-
op ensure that their data is secure? A key concern is
that information from a cooperative can be misused to
obtain confidential data about individuals. Pieces of
information that aren’t anonymized properly can be
cross-referenced to obtain an individual’s entire pro-

Dockendorf, M., Dantu, R., Morozov, K. and Bhowmick, S.
Investing Data with Untrusted Parties using HE.
DOI: 10.5220/0010606908450853
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 845-853
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

845



file, including emails, addresses, and social security
information. This personally identifiable information
can be used for identity theft, blackmail, or surveil-
lance.

These security concerns can be mitigated through
graph anonymization and homomorphic encryption.
All data, particularly that from computer logs, net-
work logs, and financial logs, can be represented by
graphs. These graphs can be anonymized by modify-
ing their structure using k-core decomposition. This
method involves edge swapping at lower cores such
that the structure of the higher cores is retained, pre-
serving the network’s structure while obscuring iden-
tifiable information. These graphs can be secured fur-
ther using homomorphic encryption, a cornerstone of
modern cryptographic protocol design. To securely
analyze this encrypted data, graph operations are lay-
ered over the homomorphic encryption. By using
these two methods, a multi-modal security framework
is built that allows users of the data cooperative to see
data insights without accessing the data itself.

2 BACKGROUND

Network Analysis. Complex systems of interact-
ing entities such as social networks, computer net-
works, and financial systems are naturally represented
as graphs. In this context, network analysis algo-
rithms form a basis for secure data analytics in the
areas such as electronic commerce and computational
epidemiology. Network analysis is an active area of
research, where graph algorithms are used to explore
properties of complex interactive systems. Of partic-
ular importance are centrality metrics that are used
for measuring the importance of entities represented
as vertices. For example, in a contact graph, vertices
with high centrality point at potential superspread-
ers. Some of the popular metrics are degree centrality
(vertex degree), closeness centrality (mean distance
of the vertex from other vertices), betweenness cen-
trality (fraction of shortest paths passing through the
vertex), and eigenvector centrality and its variations
such as PageRank (the number of important neigh-
bors of the vertex) (Newman, 2010).
Homomorphic Encryption (HE). Such encryption
schemes support computation on encrypted data,
without access to a private key. Of particular inter-
est in this context are the so called fully homomor-
phic encryption (FHE) schemes, which support com-
putation of arbitrary functions—see (Halevi, 2017)
for a comprehensive survey. These cryptosystems
ideally fit the scenario of data cooperatives since the
former provide confidentiality of members’ personal

data while enabling computations on them. Multi-key
FHE schemes introduced by Lopez-Alt et al. (López-
Alt et al., 2012) will be particularly useful in this set-
ting, as they allow computation on data encrypted us-
ing different keys. FHE schemes are known to be de-
manding in terms of computational resources. There-
fore, the main challenge for their deployment in the
practical scenario is to ensure that a wide range of al-
gorithms can be run on large amounts of encrypted
data.

3 PROPOSED ARCHITECTURE

Figure 1 shows a high-level block diagram of of how
a data union/cooperative that employs HE graphs for
data analysis might be structured. Importantly, this
diagram is for a data union that does not utilize cloud
services.

Individuals or apps (on behalf of individuals) sub-
mit data to the data union through the Personal Data
API. These individuals own their respective data.
Multiparty encryption is used on all data submitted,
and all data owners are assumed to be opt-out of all
data analysis unless they grant consent to either a cat-
egory of usage or consent to participate in a specific
data study. This API validates the data to ensure it
meets a standard of input and enables the multiparty
encryption for permanent storage. The data owner
may retrieve this information from the data union by
validating their credentials (ie. with username and
password). However, the data returned will only be
decrypted by the data union, so the data owner must
still possess their own key to fully unlock it. When a
data owner grants new usage permission on their data,
the Personal Data API will send their data to them
(with both data union and data owner encryption in-
place). The data owner will unlock the data using his
or her key, and transmit back to the data union. Im-
portantly, not all data need be transmitted every time,
only the relevant data will be transmitted for decryp-
tion.

Encrypted Storage keeps a copy of all input data
in encrypted form using multiparty encryption. The
individual will keep a copy of their key, which could
be a physical USB keyring or similar, and the data
union/cooperative keeps the other key. If the data
union/cooperative wants to use a set of personal infor-
mation to generate aggregates, consent (and the key)
of the individual is required. The storage used should
be resilient without presence of electricity (ie. optical
storage). This portion of the data union/cooperative
is modeled after a traditional bank’s safety deposit
boxes where (i) identity verification, (ii) the owner’s
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Figure 1: High-level diagram for a data union. Architecture modules that are red handle sensitive data and either (i) handle
plaintext sensitive data or (ii) may possess the key to the sensitive data they handle. Modules in green handle exclusively
HE graph data and public graph data. The yellow blocks, use traditional multiparty encryption, so the data stored is not
computable.

key, and (iii) the bank’s key are all required for ac-
cess. The data union should also maintain an offline
backup of this encrypted storage that is updated peri-
odically (ie. daily, weekly, etc).

Graph Assembly takes data (currently not en-
crypted or with the infrastructure processing it know-
ing the key) and assembles graphs based on desired
relations. Each individual’s data can be encrypted in-
dependent of one-another: this allows the data union
to access the data with the owner’s consent, transform
the data into the appropriate form, and immediately
forward the organized data to Graph Encryption and
forget the plaintext values. Each data point can be
used in the creation of multiple graphs and matrices
that transform data, mapping from one type of graph
to another (ie. people to roads used in their com-
mutes), will also be created. This subsystem shreds
plaintext data (overwrites with random data) once the
values have been encrypted.

Graph Encryption takes values created by Graph
Assembly and converts them to HE Graphs; notably,
individual columns/rows can be encrypted without all
others being present. This allows the plaintext val-
ues to be removed from system memory. For each
attribute vector, there is an associated set of encryp-
tion schemes to encrypt the data under. A graph or
attribute vector may be encrypted in many forms (ie
binary, fixed-point, integer). This subsystem is re-
sponsible for updating HE graphs in Graph Storage as
their values change. This subsystem shreds plaintext
data once it is no longer needed and forgets ciphertext
data once it is stored in Graph Storage.

Graph Storage keeps HE Graphs and answers
queries. Functionally, this subsystem is a database.
This subsystem will deny read access to ciphertext
graphs for all subsystems other than Graph Opera-

tions.
Graph Operations performs operations re-

quested by the Data Contractor API after basic val-
idation. Specifically, this subsystem (1) parses aggre-
gate algebra into operations (a series of parallel op-
erations) and (2) executes the requested matrix math.
This subsystem has read access to graph storage and
is responsible for performing HE Graph operations
(centralities, BFSs, etc) and data transformations.

Reverse Lookups & Sanity Checking ensures no
one’s personal information will be exposed because
of the query (ie. enough participants to be sufficiently
anonymous). This subsystem is also responsible for
performing lookups that transform indices back into
the appropriate names (ie. road segment index 51253
to “5500-6000 block of Main St.”). Naturally, this
module does not have a lookup table for data like peo-
ple’s names: this would violate their privacy.

Result Decryption decrypts the aggregated re-
sults, which should not be able to identify any indi-
vidual. Companies, governments, and non-profit or-
ganizations submit queries to the Data Contractor API
and receive their results when this module finishes.

The Data Contractor API accepts, validates, and
answers requests for aggregates by companies, gov-
ernments, etc. This API will return an error when a
referenced value is not in a lookup table or when the
starting value for an aggregate is not part of a public
data set. These error might happen when an aggregate
references something that is not public data, such as
a person’s name, or the aggregate starts with a crafted
vector on vertices that represents data that is not pub-
lic.
Architecture Enabling Multi-modal Privacy. Ta-
ble 1 shows a comparison of the two methods ensur-
ing data privacy: anonymization and HE. In order to
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capitalize on both of these methods, we propose that
encrypted graphs be placed on the cloud, which we
conditionally call “public”—it will be accessible by
entities in the data co-op who need access to specific
information on the user data. The anonymized data
will be placed on the cloud, which we will call “pri-
vate”. This cloud will provide anonymized graphs to
those in the co-op who need to see the entire network
structure (e.g., for statistical analysis), but who do not
need specific user identities.

4 APPLICATIONS FOR THE
PROPOSED METHODS

Table 1: Comparison of graph anonymization and graph en-
cryption approaches.

Graph Anonymization Graph Encryption
Function Obscuring: (i) links be-

tween vertices and in-
dividuals (identity), (ii)
links between pairs of
individuals, and (iii)
inference of attributes
among individuals.

Data confiden-
tiality, and hence
protection against
data leakage, e.g.,
due to unautho-
rized access.

Security Data are available but
distorted to obscure
sensitive information.

Data are sealed
and hence their
privacy is pre-
served.

Inter-
operability

GDPR: Cross-border
data transfers (between
countries) mandate
anonymization

Encryption not al-
lowed for cross-
border data trans-
fers.

Ensuring Privacy Through Anonymization and
Homomorphic Encryption. The two main meth-
ods of protecting privacy and security of data are (i)
Anonymization and (ii) Encryption. As per their dif-
ferent features, as listed in Table 1, we posit that data
analysts who need to explore new algorithms work
with the anonymized graph, and co-op members who
need data insights use the encrypted graph. Hence,
our framework includes homomorphic encryption for
processing queries on the encrypted networks, and
anonymization based on core-periphery structure of
the graph for analyzing structural properties of the
networks.
Graph Anonymization Using K-core Decomposi-
tion. The primary issue of graph anonymization is
that the anonymized graph should retain the important
structural properties of the network, while obscuring
information that can identify an individual to a node
in the network. We posit that anonymizing graphs
based on their k-core property is particularly suited
for our application because of the following proper-

ties:

1. Utility. It has been demonstrated (Meyer et al.,
2014; Laishram et al., 2018) that high centrality
vertices have higher core numbers. Moreover, k-
core is used as a submodule to compute clusters
and fast dissemination algorithms which are based
on super-spreaders.

2. Accuracy. All anonymization techniques change
the structure of the network, which can affect ac-
curacy of the analysis. We have shown (Sakar et
al., 2018) that changes are more disruptive within
the inner cores of the network, than in the periph-
eral cores. Therefore, retaining structure of the
inner cores will reduce the effect of noise.

3. Efficiency. Compared to most other anonymiza-
tion methods, computing k-core of graphs is much
faster with complexity of only O(dmax|V |+ |E|).
We aim to develop anonymization algorithms of
comparable complexity.

Most graph anonymization algorithms try to mini-
mize the number of changes. Our studies in (Ufimtsev
et al., 2016; Cheon et al., 2018) have shown that the
changes to the higher cores disrupt the centrality val-
ues more than changes to the periphery.

We therefore propose to develop an anonymiza-
tion scheme that disrupts the periphery but retains the
structure at the higher cores. We achieve this using the
two steps: (i) edge swapping for vertices with lower
cores; and (ii) adding nodes and edges to preserve k-
(core, property) anonymity at higher cores.
Edge Swapping at Lower Cores. Swapping edges
between nodes of low core numbers, i.e., nodes at the
periphery, retain the overall degree distribution of the
graph, but changes the degrees of the individual nodes
whose edges were swapped. This leads to a restruc-
turing of the periphery of the graph (see Figure 2(b)).
Rationale. This step helps in reducing active at-
tacks to de-anonymize the network. Active attacks
(Narayanan et al., 2009) are done by planting new
entities (nodes) to the original network before it gets
anonymized and linking these entities to some impor-
tant nodes. Once the network is anonymized, the at-
tacker knows the structure of the nodes that he planted
and can identify them in the anonymized graph. He
can then use links in these nodes to identify important
nodes.

Since the planted entities rarely occupy an impor-
tant position in the graph, they are likely to have lower
core numbers. Edge swapping is likely to distort the
structure of the planted nodes (and other peripheral
nodes), making it difficult for the attacker to identify
them after anonymization. For example, let the at-
tacker create a planted subgraph of a chain of degree-
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Figure 2: K-core decomposition-based graph anonymiza-
tion. (a) Original graph. (b) Graph after edge swapping.
The periphery structure (cores 1, 2) is disrupted. (c) Graph
after k-(core, degree) anonymity. Vertices in the higher core
(3), all have the same degree and core number.

1 core-1 node connected to a degree-3 core-2 node
(P-L in Figure 2(a)), which is connected to high core
nodes. After edge swapping disrupts the periphery,
the attacker cannot find his planted subgraph.
Preserving k-(core, property) Anonymity at
Higher Cores. The k-(core, property) anonymity
asserts that for a given vertex property, there would
be at least k vertices with high core numbers that
have the same core number and the same value of the
property. For example, if the property is degree, then
there should be at least k-1 vertices with the same
core number and the same degree (see Figure 2(c)).
We aim to modify the graph by adding nodes to the
lower cores and connecting them with higher cores,
as that will reduce the disruption of the network.
Rationale. Consider that the attacker knows some
vertices with a unique property. The anonymization
process aims to create k vertices with that property,
such that the attacker can guess the vertices correctly
with probability of only 1/k.

Similar schemes have been proposed to obtain a
set of vertices of the same property, such as k-degree
anonymity (Chen et al., 2020) (degree), (k,d)-core
anonymity (Assam et al., 2014) (core number) and k-
isomorphism (Cheng et al., 2010) (subgraphs). Our
approach of anonymizing based on pairs rather than
only one element provides more flexibility of group-
ing the nodes and modifying the structure of the net-
work. For example, in Figure 2(c) after adding a new
vertex U and connecting C to K, all the vertices in
core 3 have the same core number and the same de-
gree.
Novelty of Our Approach. The novelty of our ap-
proach is that we partition the network into smaller
subgraphs that contain or primarily contribute to data
analysis (the higher cores), and the larger subgraphs
that do not have as much effect on the analysis (the

lower cores). Since there are fewer nodes with high
core numbers, we apply aggressive anonymization
techniques, such as k-(core, property) anonymization.
For the lower cores, with larger number of vertices,
there is “safety in numbers” and we can apply less
stringent and thus less expensive techniques.
Homomorphic Encryption Enabling Graph Anal-
ysis. We will develop a framework for computing
graph algorithms on encrypted data. We will focus
on algorithms related to centrality and clustering.
Secure Matrix Multiplication Mechanism. This
mechanism will be at the core of our framework. We
will depart from the encrypted matrix multiplication
algorithm by Jiang et al. (Jiang et al., 2018).

As bootstrapping time typically dominates the
cost of computation over encrypted data, it is impor-
tant to minimize the multiplicative depth of the circuit
to be computed. Jiang et al. deploy the fully homo-
morphic encryption scheme HEAAN by Cheon et al.
(Cheon et al., 2017; Cheon et al., 2018) and an in-
tricate combination of ciphertext packing, rotations,
and SIMD-like parallelization to run the multiplica-
tion of d × d dense matrices using O(d) homomor-
phic operations with multiplicative depth one. When
analyzing data from the data co-op pool, we wish to
make considerations for sparse matrices. Therefore,
we will develop our own secure matrix computation
mechanism, leveraging parallelization used, e.g., in
the sparse matrix multiplication algorithm of Buluc et
al. (Bulu¸c et al., 2009). We will also use the HEAAN
scheme, as we will need matrix computation over the
reals, which this scheme is designed to support. Fig-
ure 3 presents a high-level overview of matrix opera-
tions to be covered by our approach. We next sketch
two examples of how this framework will support net-
work analysis.
Secure Computation of Label Propagation. To ex-
emplify our methodology, let us consider our pro-
posed secure computation of clustering in detail.
Specifically, we will implement the label propagation
algorithm of (Zhu et al., 2003). Typically, label propa-
gation is computed by applying matrix multiplication
iteratively. However, this may result in prohibitively
high multiplication depth, and hence computational
cost. Zhu and Ghahramani (Zhu et al., 2003) pre-
sented the following fixed-point solution to the label
propagation, which will allow us to avoid iterations
(Mallawaarachchi, 2020; Zhukov, 2015).

Let A denote the adjacency matrix of a graph. Let
D be a degree matrix, which is a diagonal matrix
whose diagonal elements are computed as di = Σiai j,
where ai j are the elements of A. For simplicity of
this presentation, we will assume that the probability
of transitioning from a node its neighbors is the same
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Figure 3: The proposed framework for graph network anal-
ysis on encrypted data. The listed graph operations will
be implemented to support the data cooperative graph al-
gorithms. We plan to contribute the corresponding libraries
to the software projects such as PALISADE. The blue ar-
row highlights the operations underlying the clustering al-
gorithm.

for each neighbor. In the label propagation algorithm,
given an adjacency matrix and labels for the labeled
nodes-which we will represent using the matrix Yl-
we will compute a vector of labels for the unlabeled
nodes. Again, for simplicity, we will assume that the
following two steps will be done by the data enabler
as preprocessing:

1. Compute the transition probability matrix T =
D−1A. As a result of this computation, this matrix will
have the following form: T =

[ I 0
Tul Tuu

]
, where I is the

identity matrix, and Tuu and Tul are the submatrices of
the probability transition matrix, which are responsi-
ble for probability to get from unlabeled nodes to un-
labeled nodes, and that to get from unlabeled nodes to
labeled nodes, respectively.

2. Compute the matrix T ′ = (I − Tuu)
−1 · Tul ,

which represented the fixed-point solution.
For simplicity, we assume that the data enabler

will send to the cloud a homomorphic encryption of
T ′ (denoted by Enc(T ′)) instead of encryption of the
adjacency matrix A. Implementation of the above
computation steps over an encrypted adjacency ma-
trix is left as a future work. Now, as evidenced in
(Zhu et al., 2003; Mallawaarachchi, 2020), computa-
tion of the label propagation reduces to (i) a matrix
multiplication of T by the label matrix Yl , and then
(ii) computations of the maximums over the rows of
the resulting matrix. Let n be the number of unlabeled
nodes, and let Yu denote their label vector (which is to
be computed).

5 EXPERIMENTS

We successfully implemented breadth-first search,
degree centrality, farness centrality (the reciprocal of
closeness centrality), and page rank on HE graphs
with greater than 99.999% accuracy for all algorithms
when compared to a cleartext calculation. Most of
these results are not optimized and are preliminary in
nature. Heuristically choosing optimized configura-
tions for the HE schemes that encrypt graphs is part
of our active research. These results prove that it is
possible to run well-established graph operations on
HE graphs with high accuracy.

Algorithm Sketch 1: HE Degree Centrality.

(1 and 2 may be done offline)
Input: G, an adjacency matrix.
Output: v
1. Trusted machine selects prime modulus, p, such
that p >V (G), and initializes BFVrns scheme.
2. Trusted machine encrypts G, into column-packed
ciphertexts, forming cG, which is stored for later use.
3. When degree centrality is invoked, cloud ma-
chine(s) sum all columns of cG, return cipher vector,
cv, to trusted machine.
4. Trusted machine decrypts cv into v and returns v to
client.

Degree centrality is the fastest of all algorithms
currently as it utilizes packed ciphertexts (each col-
umn of G is encrypted into a single ciphertext), which
allows for vectorization to improve performance. No-
tably, degree calculation is faster than encryption
now: calculation was optimized, encryption is not yet
optimized.

Figure 4: Degree centrality calculation is near-linear time
due to packed ciphertexts.

Among other algorithms, we implemented a pre-
liminary binary BFS (binBFS). Unlike degree cen-
trality, which uses somewhat-homomorphic encryp-
tion (SHE), this algorithm uses fully-homomorphic
encryption (FHE). As a result, this algorithm is slower
but can be called any number of times. The core
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of binBFS is a naive binary matrix multiply. This
algorithm repeatedly calls b = BGb, where BG =
BinFHE(G). This work is preliminary and has not
been optimized.

Figure 5: A single ring of expansion on a breadth-first
search requires O(n2) time as a result of the current naive
binary matrix-vector multiply.

Farness centrality is another fast algorithm due to
packed ciphertexts. The calculation of the ciphertext
distance matrix, DG, is currently not optimized and
very slow. However, calculating DG can be started
once GHE is received and is not applicable to trans-
formation matrices (discussed later).

Figure 6: Unlike the calculation of the distance matrix, the
time to calculate farness centrality is approximately O(n).

6 RELATED WORK

Our work is on HE operations for graphs with the op-
tion for use on any generic distributed system with-
out compromising data privacy. This work runs
parallel to similar efforts for data analysis such as
machine learning over homomorphically encrypted
data and MIT’s Enigma, which offers data integrity
over a distributed system. These analysis could be
completed on untrusted distributed systems, such as
MIT Enigma(Zyskind et al., 2015), without compro-
mising data privacy. In addition to inter-personal
graph constructs, personal data can be assembled into
attribute vectors, encrypted, and used for machine
learning(Aslett et al., 2015), which, in turn can be
part of a federated learning technique. Even when

these other schemes are used, our approach offers the
ability to refine training datasets based on graph oper-
ations, thus offering more accurate training for neural
networks.

7 CONCLUSION

In this paper, we discussed problems that arise from
“big data” and acknowledge the partial solution that
data cooperatives provide. Next, we introduced a high
level architecture for data cooperatives/unions that
use anonymization and/or encryption to secure par-
ticipants’ data. We believe this new architecture we
are developing will serve to complete the data coop-
erative model by adding privacy-protecting measures.

We outlined our approach to anonymization: edge
swapping for vertices with lower cores and adding
nodes/edges to preserve k-(core, property) at higher
cores. Although our anonymization is in active devel-
opment, we have no results to share at this time.

We used homomorphic encryption to ensure pri-
vacy where anonymization may degrade the accuracy
of some metrics or where anonymization alone may
not be sufficient to preserve the privacy of partici-
pants. Finally, we present results from our experi-
ments showing the time complexity of several com-
mon graph operations on HE graphs: degree central-
ity, BFS, and farness centrality. These results show
that use of homomorphic encryption is feasible for
preserving privacy in data cooperatives.

The major limitation of our current work is that
there is no efficient way to transform a ciphertext of
one encryption scheme (HEAAN, BFV, etc.) into a
ciphertext of a different encryption scheme other than
decryption and re-encryption. While this is not a
problem now, it will significantly impact our future
work.

8 FUTURE WORK

While we have previously applied graph operations
over HE graphs to locate super-spreaders, all of the
graphs used were contact graphs. That is, each graph
mapped vertices of a given type to vertices of that
same type: people to people or location to location.
Bridging different graphs would involve the use of
transformation matrices (composed of attribute vec-
tors) to map one graph’s vertex set to another graph’s
vertex set. This is how we would accomplish linking
graphs that contain different types of data. Consider
the following example:
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Let E be a transformation matrix mapping peo-
ple (columns) to their current employers (rows). This
matrix contains personal information and needs to be
encrypted.

Let R be a graph of road segments in a city with
outbound edges to every road segment that can be
reached from a given road segment. This graph is
public data and does not need to be encrypted.

Let T be the transformation matrix that maps peo-
ple (columns) to the segments of road they use com-
muting to and from work. This information is per-
sonal and also needs to be encrypted.

Given a ciphertext vector of people, p, which can
be obtained by selecting an employer in vector e0
(single-member set), and performing p = ET e0, we
can calculate r, the degree to which their commutes
are centered on each segment of roadway r = T p.
Likewise, an alternative query might be to take a road
segment that is excessively congested during rush
hour, and perform p = BinMult(T T ,r), which would
result in p, the people who use that segment of road
during their commute. From there, p could be multi-
plied by E to get e1, the degree centrality of each em-
ployer relative to that congested road segment. With
this result, a city could ask the most central employers
in e to stagger the start of their business day, reducing
pollution caused by commuters sitting in traffic and
the strain on the city’s infrastructure.

With the mix of graphs and transformation matri-
ces, a large number of meaningful aggregates can be
composed through matrix operations. These transfor-
mation matrices have the added bonus of being mean-
ingful attribute vectors. This means they can poten-
tially be used to effectively train machine learning al-
gorithms beyond their use in computing.

If we are to standardize these HE graph operations
for analysis, there must be a well-defined algebra for
transforming one type of graph data into another. We
are working on adapting our HE graph algorithms to
optimize for a hybrid approach where some data is
public (plaintext) and other data, personal informa-
tion, is encrypted. Our goal is to reduce all meaning-
ful metrics to matrix operations.
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