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Abstract: The quality assurance of circuits is of major importance as the complexity of circuits is rising with their
capabilities. Thus a high degree of testing is required to guarantee proper operation. If, on the other hand,
too much time is spent in testing then this prolongs development time. The work presented in this paper
proposes a methodology to select a minimal set of test cases for validating digital circuits with respect to their
functional specification. We do this by employing hierarchical clustering algorithms to group test cases using a
hamming distance similarity measure. The test cases are selected from the clusters, by our proposed approach
of distance-based selection. Results are tested on the two circuits viz. Multiplier and Galois Field multiplier
that exhibit similar behaviour but differ in the number of test cases and their implementation. It is shown
that on small fraction values, distance-based selection can outperform traditional random-based selection by
preserving diversity among the chosen test cases.

1 INTRODUCTION

Testing is a crucial part of hardware design and manu-
facturing process. It evaluates the functionality of the
Circuit Under Test (CUT) and ensures it fully matches
the device specification and is fault free. In order to
ensure a top quality device, detailed conditions must
be defined that are specific to the expected behavior
of the design in terms of inputs and expected outputs
known as a test case1 (tc). A test case is a set of pos-
sible inputs, various execution conditions, expected
outputs and testing procedures (Sapna and Mohanty,
2010). It helps in improving design quality by provid-
ing good test coverage (Gupt et al., 2021b) and hence
decreases the post design maintenance budgets. Due
to process variation in the manufacturing of digital
circuits, it is impossible to achieve a 100% production
yield and it is common for testing to be performed
throughout the manufacturing process. Typically it
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is done in a clean room at Probe-Stage before pack-
aging, and again at Final-Test after packaging. The
equipment use for this testing is tremendously expen-
sive and every test case adds cost to the final product
as well as causing process delays. In this environment
it is vital that testing is as efficient as possible with
good coverage at minimum cost. This is every more
important as the circuit’s complexity increases, when
testing can become a key constraint or a bottleneck in
manufacture (Bushnell and Agrawal, 2002).

For a given CUT, testing methods can be sum-
marised as follows: (1) Define test objective; (2) Iden-
tifying a set of test cases; (3) Initiating CUT with
test case; and (4) Result analysis via simulation (Gupt
et al., 2021b). One fundamental testing approach in-
volves running through all possible test cases to com-
prehensively cover the CUT’s functionality; which
is known as exhaustive testing (McCluskey, 1987).
The problem can become intractable as the volume
of test cases increase with devices complexity. As
the CUT’s complexity and requirements evolve, the
volume of test cases increases explosively making ex-
haustive testing impractical as it consumes substantial
time and resources. Hence, optimisation and reduc-
tion of test cases become fundamental for the testing
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process.
One approach is to select a subset of test cases (by

using some algorithms/characteristics) from the entire
set of the test case domain. The testing time of a CUT
can be calculated as,

time(T ) = I× f (1)

where time(T ) is the testing time, I denotes the num-
ber of input test vectors, and f is frequency/clock rate
provided during testing. The actual problem arises
with an increase in the volume of test cases.

The test cases crucial in identifying errors are just
a fraction of the complete test data (Narciso et al.,
2014), as shown in Figure 1. For example, in a simple

Figure 1: Distribution of test cases (Narciso et al., 2014).

combinational circuit with n inputs and m outputs, a
total of 2n input test vectors (I) would be required to
perform exhaustive testing. Considering a circuit hav-
ing primary inputs n as 32, if a total of 232 test vectors
are applied during an exhaustive test process at a fre-
quency of 10MHz, it would take 232×10−7 seconds,
which is 7.15 minutes of testing. For a 32 bit adder
(without carry bit), it would take about 58.5k years to
complete testing (Bushnell and Agrawal, 2002). Of
course, this testing also involves comparing m× 2n

output signals against the expected output test vec-
tors. However, as noted above, the testing of a CUT
does not require exhaustively testing the entire test
cases. Testing generally focuses on some selected set
of test vectors and corner cases, which are cases a de-
signer believes are most likely to cause failures. In
such cases, it becomes important to select test cases
that are well distributed over tc space while removing
the test cases that are redundant and error free.

This work presents a test case selection approach
using agglomerative hierarchical clustering (AHC) on
combinational circuits. A distance based selection
(DBS) methodology is used with the objective of min-
imizing the selected test case (ts) such that, ts ( tc.
During functional testing, it is important to have di-
versity in ts for good test coverage. By diversity, we
mean how dissimilar the test cases are. In order to
maintain diversity, the proposed DBS algorithm per-
forms selection based on the distance between two

given test cases. The diversity of the test cases se-
lected using DBS is compared with a random based
selection (RBS) approach.

2 BACKGROUND

With the growing complexity of digital circuits, test-
ing has always been a major concern in hardware de-
sign industries (Narciso et al., 2014). Exponential
growth in the volume of test vectors can be time-
consuming while testing. Hence, the selection of ap-
propriate test cases becomes important.

Other than exhaustive testing (McCluskey, 1987),
one fundamental testing approach involves simply se-
lecting test cases in a random manner from the test
case space (the set of all possible inputs), called ran-
dom testing (RT) (Orso and Rothermel, 2014). Sev-
eral sufficient methods have been developed for auto-
matic test case generations. A method of generating
test cases for some circuits used in Galois field (GF)
and prime field operations is presented in (Gupt et al.,
2021a,b), but test case minimization with high cov-
erage is always desired, as the test-cost is measured
in terms of the test data volume, and test time (Prad-
han and Bhattacharya, 2021). A black-box test case
selection method is presented in (Rosenbauer et al.,
2021). There have been many concerns about the ef-
fect of minimizing test case volumes on fault detec-
tion. Some of the empirical studies are mentioned
in (Wong et al., 1995; Rothermel et al., 1998).

(Thamarai et al., 2010) in their work, proposed
to minimize the number of test cases based on the
number of faults the test cases can detect. They
proposed heuristic methods for identifying essential
tests for circuits with smaller test sets. Motivated
by the challenges of the ever difficulty in identify-
ing defects in silicon chips due to the volume of test
data, (Pradhan and Bhattacharya, 2021) in their com-
prehensive survey, presented insights on various ma-
chine learning methods for digital logic testing and
diagnostics. (Muselli and Liberati, 2000) proposed
hamming clustering as a solution to the classification
of problems with binary inputs. In their work, they
formulated clusters by comparing input patterns and
their closeness to one another based on hamming dis-
tance. (Tamasauskas et al., 2012) evaluated the per-
formance of hierarchical clustering methods for bi-
nary data type. They concluded that complete link-
age, Flexible-beta, and Ward’s methods have the best
clustering performance on binary data. (Bushnell and
Agrawal, 2002) provides insights on algorithms such
as Automatic test-pattern generation (ATPG) for gen-
erating patterns for structural testing of digital circuits
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which can find redundant or unnecessary circuit logic,
and are useful to compare whether one circuit’s im-
plementation matches another circuit’s implementa-
tion. They discuss how functional ATPG programs
are useful to generate test patterns to completely ex-
ercise the circuit function. They also highlight the
impracticability of performing exhaustive testing of
a 64-bit ripple-carry adder having 129 inputs and 65
outputs, suggesting that such testing can be suitable
for only small circuits, whereas modern-day circuits
tend to have an exponential volume of test data.

(Chan et al., 1996) identified three patterns for er-
ror/failure causing test cases as shown in Figure 2.

(a) Strip pattern. (b) Block pattern. (c) Point pattern

Figure 2: Erroneous test patterns.

The outer boundaries represent borders of the in-
put domain and the filled regions denote the failure-
causing inputs. A strip pattern is when erroneous
test cases form the shape of a narrow strip, Fig-
ure 2a. Failing test cases concentrated in a closed
region are termed as block pattern, Figure 2b, while
those widely dispersed across the input domain are
categorised as point pattern, Figure 2c. Previous stud-
ies (Ammann and Knight, 1988; Bishop, 1993; White
and Cohen, 1980) indicate that strip and block pattern
are encountered more often than point pattern. So, a
sample of test cases should contain both, quality to
provide good test coverage, and ability to detect fail-
ure causing inputs.

3 METHODOLOGY

The proposed architecture for test case selection on
digital circuits is shown in Figure 3. The hierarchical
clustering algorithm, distance metric used in experi-
mentation, and approaches for test case selection are
discussed in the subsequent sections.

3.1 Hierarchical Clustering for
Grouping Binary Data Test Cases

Clustering algorithms are a type of unsupervised ma-
chine learning method (Bindra et al., 2021). The hi-
erarchical clustering method helps in processing the
easy-to-acquire features based on certain similarity
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Figure 3: Key processes of the proposed methodology.

metrics and group processed test vectors into distinct
clusters. The AHC, as discussed in Algorithm 1, starts
with considering every test vector as a separate clus-
ter.

Algorithm 1: Agglomerative hierarchical cluster-
ing algorithm.

Input: Partition p with N sampled test cases
as T1...TN .

1 Compute distance matrix disMtx for all T.
2 Let T1...TN be N clusters.
3 repeat
4 Merge the two closest clusters.
5 Update the distance matrix.
6 until no. of cluster=1;

By employing the idea of complete linkage,
(Equation 2), they are repeatedly merged together
based on similarity, until all the test vectors are as-
signed to some group.

d(X ,Y ) = max
T1∈X ,T2∈Y

d(T1,T2) (2)

Where d(T1,T2) is the distance between test vectors
T1 ∈ X and T2 ∈Y ; and X, Y are two sets (clusters) of
test vectors.

In this work, the Hamming distance (Hamming,
1950) is used as similarity measure, as,

dH(T1,T2) =
n

∑
i=1
|T1i −T2i | (3)

where T1 and T2 and two test vectors with n binary
bits. However, in order to get meaningful information
while selecting distance metrics applied to test vec-
tors (T1,T2,T3, ...,Tn), the following conditions (Ak-
man et al., 2019) are adhered to:

1. distance (Ti,Tj) = distance (Tj,Ti),

2. distance (Ti,Tj) ≥ 0,

3. distance (Ti,Tj) = 0 iff Ti is same as Tj.

Here i, j ≥ 1. Condition (1) is symmetry, i.e. the dis-
tance between two test vectors should always be the
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same irrespective of the order used in measurement.
Condition (2) restricts that the distance between two
test vectors should always be non-negative, and con-
dition (3) enforces that distance from a test vector to
itself is always zero.

The result is visualized in the form of a tree-based
structure, dendrogram as shown in Figure 4 where T
is the test vectors.

T1 T2 T3 TnT7 Tn-1

Si
m

ila
rit

y

T1 T2 T3 T4 T5 T6 T7 - - - - - -Tn-1 Tn

Test cases

Figure 4: Dendrogram obtained with AHC.

The number of clusters depends on the level
(height) at which we cut the dendrogram. In our
experimental setup we obtain clusters by cutting the
dendrogram at heights 65% and 75%.

3.2 Methods for Test Case Selection

After clustering of test cases, the next objective is to
obtain a reduced number of test cases while maintain-
ing diversity. Hence the test case selection is done on
the input vectors of underlying digital circuits. We
select the test cases following random based selection
and distance based selection strategies as discussed
below.

3.2.1 Random based Selection

A random based selection is a popular approach used
in testing where test cases are selected randomly and
tested (Duran and Ntafos, 1984). This method se-
lects a fraction of test cases from each cluster based
on random generation. Experimentation is done on
three different fractions values, such as 0.07, 0.10,
and 0.15. The number of test cases to be selected from
each cluster is obtained as,

s = f ×N (4)

where s is number of test cases to be selected, N
is number of test cases in the cluster and f is the
fraction value applied. The approach is discussed in
Algorithm 2.

Algorithm 2: Random based selection.

Input: k clusters of N test cases as T1...TN
Input: f fraction to be selected
Output: Selected test cases (ts)

1 begin
2 for i in k do
3 s← N× f
4 Temp = /0

5 for j in s do
6 Select unique random T
7 uniqT ← T
8 end
9 Temp← uniqT

10 end
11 ts←Temp
12 end

3.2.2 Distance based Selection

This approach begins with measuring hamming dis-
tance between all test cases within each cluster. The
distances are then sorted in descending order, and we
choose the test cases employing greedy strategy based
on their distance. Thus, we select the two test cases
corresponding to highest distance first, afterwards the
second most distant test cases etc. as shown in Algo-
rithm 3. (Note that the duplicate test cases are ignored
during selection).

Algorithm 3: Distance based selection.

Input: k clusters of N test cases as T1...TN
Input: f fraction to be selected
Output: Selected test cases (ts)

1 begin
2 for i in k do
3 s← N× f
4 Get distance matrix disMtx of T1..TNi
5 // by distance, descending order
6 L = sort {(Tj,Tl)|0≤ j, l ≤ Ni}
7 Temp = /0

8 for (a, b) in L do
9 // add most distant remaining tests

10 Temp = Temp ∪{a,b}
11 if |Temp|== s then
12 break
13 end
14 end
15 Temp← (T1...Ts)

16 end
17 ts← Temp
18 end
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Three different fraction values for f at 0.07, 0.10
and 0.15 are used. The number of test cases to be se-
lected is calculated using Equation 4. The selected
test cases size (Size(ts)) is calculated as shown in
Equation 5,

Size(ts) =
k

∑
i=1

f ×Ni (5)

where Ni is number of test vectors in ith cluster, k is
total number of clusters, and f is fraction value.

4 RESULTS AND DISCUSSION

In this section we present the digital circuits used
in our experimentation and illustrate the clusters ob-
tained after running the AHC algorithm on our cir-
cuits. We introduce a new performance measure,
named diversity, that is useful to calculate the unique-
ness and coverage of test cases within each cluster.

4.1 Experimental Setup

The test vectors used in the experiment are considered
for two different circuits popular in the digital circuit
domain, as discussed. A binary multiplier is a com-
binational logic circuit built-up using binary adders
and is used to multiply two binary numbers. A Ga-
lois field (GF) multiplier is a finite field operational
circuits used in cryptography (Benvenuto, 2012). An
automatic test case generation approach for various
Galois field arithmetic operational circuits was pre-
sented recently (Gupt et al., 2021b). A short descrip-
tion of both the benchmark circuits are mentioned in
Table 1. Prior to the experiment, a complete set of
test cases (tc) are generated using expert knowledge
of each circuits’ behaviour.

4.2 Complexity Measure

Since the distance matrix is stored in the RAM during
hierarchical clustering, for 2n test cases, space com-
plexity being O((2n)2) becomes too high. In addi-
tion to that, hierarchical clustering performs iterations
while adding data to clusters, and updates the distance
matrix in each iteration, hence the time complexity is
O((2n)3). To overcome this issue, instead of loading
the entire distance matrix into memory, we follow the
approach of splitting the test cases into different par-
titions (p). It is worth mentioning that the partitions
are done in sequence, and after clustering the obtained
clusters are merged in the same order. In this way, the
total number of selected test cases (ts) representing

the huge volume of test cases (tc) is the sum of sam-
ples obtained from clusters of every partition. Due to
the high volume of test cases, we split multiplier’s test
vector into 3 partitions, and GF multiplier’s test vec-
tors in 11 partitions where each p have almost equal
size.

4.2.1 Results of AHC

After merging the clusters obtained from all 3 parti-
tions of the multiplier test cases, a total of 149 clusters
(Figure 5a) and 85 clusters (Figure 5b) were obtained
at 65% and 75% respectively, whereas the total num-
ber of clusters obtained from GF multiplier test cases
are 569 (Figure 5c) and 306 (Figure 5d) at heights
65% and 75% respectively. The number of test cases
per cluster is shown below.
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Figure 5: Clusters at different heights for the two circuits.

Figure 5 shows the number of clusters obtained
for both the benchmark circuits’ test cases, using the
height parameter as 65% and 75%. After clustering,
the test case samples are chosen from every distinct p,
using RBS and DBS.

4.2.2 Diversity Measure

Test cases with a larger distance between them are
more diverse relative to each other. To calculate the
diversity of the selected test cases from each clusters
divts(C), we compute the distance matrix between
them and do an average sum as given in Equation 6
& 7.

divts(C) =
∑

s
i=1 ∑

s
j=1 dist(Ti,Tj)

s
(6)
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Table 1: Circuits used in experimentation.

Circuits Input
(n)

tc Description

Multiplier 14 16384 7-bit binary multiplier implemented using basic longhand algorithm.
GF multiplier 16 65536 GF multiplication in GF(28) and irreducible polynomial=11100010.

Where s is the number of selected test cases. The di-
versity of ts can be calculated as,

div(ts) =
∑

k
C=1 Divts(C)

k
(7)

where k is number of clusters from which the test
cases are being selected.

Figure 6 shows the diversity comparison of the test
cases selected across 85 clusters, obtained with height
75%, and f=0.07 using RBS and DBS.

Figure 6: Comparative analysis of diversity scored for ts
using RBS and DBS on multiplier circuit.

Figure 7 represents the diversity of RBS and DBS
across 306 clusters for the GF multiplier test cases
with f=0.07 using RBS and DBS.

Figure 7: Comparative analysis of diversity scored for ts
using RBS and DBS on GF multiplier circuit.

Due to the random nature of the RBS selection al-
gorithm, five independent runs for test case selection
on each cluster were done for all fraction values, and
an average value is considered. The diversity mea-

sure for DBS shown is obtained using single run on
each clusters as it produces same output. The diver-
sity obtained on other fraction ( f ) value and height
parameter (65%) have similar performance.

5 STATISTICAL VALIDATION

Test case selection based on two different selection
approaches are performed on two widely used digital
circuits. While using RBS, there are many chances of
getting test cases that are close/similar to each other,
DBS overcomes this problem as it selects test cases
based on maximum distance. Along with having good
diversity in ts, it also eases the selection of corner
cases as test cases at two corners have maximum dis-
tance between them. For the performance analysis of
the proposed method, we examine the null hypothesis
as ‘on average, the RBS selects test cases having bet-
ter diversity than DBS for selected circuits’. To test
the hypothesis, we rely on one sided Wilcoxon tests
with a significance level of 0.05. The p-values are
shown in Table 2. The row represent the circuits’ test
case on which the test case selection algorithms are
performed using height parameters (H) of 65% and
75% during clustering, and the column test case se-
lection algorithm to compare with. The p-value of the
null hypothesis examines that the RBS with the given
fractions f gives better diversity than DBS during test
case selection for the given circuits.

Table 2: P-values for one-sided Wilcoxon tests.

Height Circuit RBS RBS
(0.07) (0.1)

multiplier 4.08e-14 2.76e-10
65% GF multiplier 4.085-12 2.58e-12

multiplier 8.88e-16 6.66e-16
75% GF multiplier 5.55e-16 0

The p-values are not only below our significance
value but basically zero (10−10 ≈ 0). Thus the like-
lihood that the null hypothesis is true given our data
is zero. Hence we reject the null hypothesis and infer
that DBS leads to more diverse test cases.
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6 CONCLUSIONS

This paper investigated hierarchical clustering as a
design approach for obtaining minimal set test cases
for functional verification of combinational circuits.
The authors propose a novel distance-based selection
method for choosing a fraction of test cases from the
clusters obtained as an output of the hierarchical clus-
tering process. Furthermore, the quality of clusters is
evaluated based on the score of the proposed diversity
metric. The diversity score is computed as the ratio
of an average value of diversity score across each in-
dividual cluster to the total number of test cases dis-
tributed across all clusters. The results indicate hier-
archical clustering with the distance-based selection
approach can be a promising strategy for obtaining
a wide number of unique test cases with maximum
coverage. In the preliminary work undergone in this
paper, the proposed approach is performed on the cir-
cuits with specific behavior. For example, a multi-
plier does multiplication on all test cases. For circuits
like an arithmetic logic unit (ALU) where a circuit’s
behavior changes by changing the control bits, test
cases should be grouped on the basis of control bits
before clustering and selection. In the future, the au-
thors will investigate this approach for grouping test
cases for sequential circuits, where several factors like
the order of test vectors, previous state, etc. need to be
considered. The extended work by the authors would
also test the feasibility of this approach on other prob-
lem domains such as identifying minimal test cases
for real-world regression datasets.
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