Media,  13(01),  15-25.  Retrieved  from 
ojs.aaai.org/index.php/ICWSM/article/view/3205 
Alizadeh, M., Weber, I., Cioffi-Revilla, C. et al. Psychology 
and  morality  of  political  extremists:  evidence  from 
Twitter language analysis of alt-right and Antifa. EPJ 
Data  Sci.  8,  17  (2019).  https://doi.org/ 
10.1140/epjds/s13688-019-0193-9 
Angeli, G.,  Premkumar, M.  J.  J, Manning,  C. D.  (2015). 
Leveraging  Linguistic  Structure  for  Open  Domain 
Information Extraction. Proc. of the 53rd Ann. Mtg. of 
the ACL and the 7th Int. Joint Conference on Natural 
Language  Processing  (V.  1)  (pp.  344–354).  Beijing, 
ACL. 
Atanasov, A., Morales, G., & Nakov, P. (2019). Predicting 
the  Role  of  Political  Trolls  in  Social  Media.  ArXiv, 
abs/1910.02001. 
Badawy,  A.,  Ferrara,  E.,  and  Lerman,  K.,  (2018) 
"Analyzing  the  Digital  Traces  of  Political 
Manipulation: The  2016  Russian Interference Twitter 
Campaign," IEEE/ACM Int.  ASONAM,  pp.  258-265, 
2018. 
Cambria, E., Chandra, P., Sharma, A., Hussain, A. (2010). 
Do Not Feel The Trolls. CEUR Workshop Proceedings. 
664. 
Chun,  S.  A.,  Holowczak,  R.,  Dharan,  K.  N.,  Wang,  R., 
Basu, S., & Geller, J. (2019). Detecting political bias 
trolls in Twitter data. In A. Bozzon, F. J. D. Mayo, & J. 
Filipe  (Eds.),  WEBIST  2019  -  Proc.  of  the  15th  Int. 
Conf. on Web Information Systems and Technologies 
(pp. 334-342). 
Cypher (query language). (n.d.). Retrieved from Wikipedia: 
https://en.wikipedia.org/wiki/Cypher_(query_language
) 
Data  formats.  (n.d.).  Retrieved  from  spacy.io: 
https://spacy.io/api/data-formats#named-entities 
displaCy Named Entity Visualizer. (n.d.). Retrieved from 
explosion.ai/: https://explosion.ai/demos/displacy-ent 
Ehrlinger, L. and Wöß, W. (2016). Towards a Definition of 
Knowledge Graphs. 
Etudo, U., Yoon, V.Y., Yaraghi, N. (2019). From Facebook 
to  the  Streets:  Russian  Troll  Ads  and  Black  Lives 
Matter Protests. HICSS. 
Fivethirtyeight,  Russian-troll-tweets,  https://github.com/ 
fivethirtyeight/russian-troll-tweets/ Retr. 1/ 2019. 
Ghanem  B.,  Buscaldi  D.,  Rosso  P.  (2020).  TexTrolls: 
Identifying  Trolls  on  Twitter  with  Textual  and 
Affective  Features.  In:  Proc.  Workshop  on  Online 
Misinformation-  and  Harm-Aware  Recommender 
Systems  (OHARS),  Co-located  with  RecSys  2020, 
CEUR  Workshop  Proceedings.CEUR-WS.org,  vol. 
2758, pp. 4-22 
Golino, H., Christensen, A., Moulder, R., Kim, S., Boker, 
Steven. (2020). Modeling latent topics in social media 
using Dynamic Exploratory Graph Analysis: The case 
of the right-wing and left-wing trolls in  the  2016  US 
elections. 10.31234/osf.io/tfs7c. 
Hitzler, P., Lehmann, J., Polleres, A. (2014). Logics for the 
Semantic Web, Editor(s): Jörg H. Siekmann, Handbook 
of  the  History  of  Logic,  North-Holland,  Volume  9, 
Pages 679-710.  
Im, J., Chandrasekharan, E., Sargent, J., Lighthammer, P., 
Denby, T., Bhargava, A., Hemphill, L., Jurgens, D., & 
Gilbert,  E.  (2020).  Still  out  there:  Modeling  and 
Identifying  Russian  Troll  Accounts  on  Twitter. 12th 
ACM Conference on Web Science. 
Iqbal, S., Keshtkar, F., Chun, S. A. (2020) Extract Semantic 
Pattern from Trolling Data, FLAIRS-33 (pp. 509-514). 
Iqbal,  S.,  Chun,  S.  A.,  Keshtkar,  F.  (2020)  Using 
Computational Linguistics to Extract Semantic Patterns 
from  Trolling  Data.Proceedings  of  IEEE  14th 
International  Conference  on  Semantic  Computing 
(ICSC 2020): 369-374 
Jachim,  P.,  Sharevski,  F.,  Treebridge,  P.  (2020). 
TrollHunter [Evader]: Automated Detection [Evasion] 
of  Twitter  Trolls  During  the  COVID-19  Pandemic. 
New Security Paradigms Workshop (pp. 59-75). New 
York, NY: ACM. 
Ji,  X.,  Chun,  S.  A.,  and  Geller,  J.,  "Monitoring  Public 
Health  Concerns  Using  Twitter  Sentiment 
Classifications,"  2013  IEEE  International  Conference 
on  Healthcare  Informatics,  Philadelphia,  PA,  USA, 
2013, pp. 335-344, doi: 10.1109/ICHI.2013.47. 
Kersting,  J.,  Geierhos,  M.  (2020).  Neural  Learning  for 
Aspect  Phrase  Extraction  and  Classification  in 
Sentiment  Analysis.  The  33rd  International  FLAIRS 
(pp. 282-285). 
K-means  clustering.  (n.d.).  Retrieved  from  Wikipedia: 
https://en.wikipedia.org/wiki/K-means_clustering 
Koch, K., 2020. A Friendly Introduction to Text Clustering, 
https://towardsdatascience.com/a-friendly-introduction 
-to-text-clustering-fa996bcefd04,  Retrieved  Jan.  29, 
2021. 
Kumar,  S.,  Spezzano,  F.,  Subrahmanian,  V.S.,  2014. 
Accurately  detecting  trolls  in  slashdot  zoo  via 
decluttering.  In  Proc.  of  ASONAM  ’14,  188–195, 
Beijing, China. 
Lewinski,  D.,  Hasan,  M.  R.,  “Russian  Troll  Account 
Classification with Twitter and Facebook Data”, arXiv 
e-prints, 2021. 
Linvill, D., Boatwright, B., Grant, W., Warren, P. (2019). 
“The  Russians  are  Hacking  my  Brain!”  investigating 
Russia's internet research agency twitter tactics during 
the  2016  US  presidential  campaign.  Computers  in 
Human Behavior. 99. 10.1016/j.chb.2019.05.027. 
Miao,  L.,  Last,  M.,  Litvak,  M.  (2020).  Detecting  Troll 
Tweets  in  a  Bilingual  Corpus.  Proc.  of  the  12th 
Language Resources and Evaluation Conf. (pp. 6247–
6254).  Marseille,  France:  European  Language 
Resources Association. 
McKinney,  W.,  2017.  Python  for  Data  Analysis,  Data 
Wrangling with Pandas, NumPy, and IPython. O'Reilly. 
Mojica, L. G., 2017. A Trolling Hierarchy in Social Media 
and a Conditional Random Field for Trolling (Richard 
Socher, 2013) Detection, arXiv:1704.02385v1 [cs.CL]. 
Monakhov,  S.  (2020)  Early  detection  of  internet  trolls: 
Introducing an algorithm based on word pairs / single 
words  multiple  repetition  ratio.  PLoS  ONE  15(8): 
e0236832.  https://doi.org/10.1371/journal.pone.0236 
832