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Abstract: In this work we present a constructive genetic programming method with penalty function for hw/sw 
cosynthesis of embedded systems. The genotype is a tree which contains in its nodes system construction 
options. Unlike existing solutions in this approach individuals which violate time constrains are investigated 
during evolution process. Therefore the algorithm is even more able to escape local minima of optimizing 
parameters. 

1 INTRODUCTION 

Artificial intelligence (AI) (Shastri et al. 2021) is 
widely used in computer science. Method of AI like: 
evolution algorithms and multi-agent systems (Jin et 
al. 2021) were applied to solve many problems. One 
of those are optimization problems like: hardware 
design (Dick et al. 1998), traveling salesman problem 
(Lust and Teghem 2010) Multi-skill resource-
constrained project scheduling problem (Lin et al. 
2020), and many others. 

Embedded system (Martins et al. 2020) is 
a computer system consisted of hardware elements 
optimized to execute appropriate tasks. According to 
De Michelli and Gupta (De Michelli and Gupta 1997) 
embedded system design can be divided onto three 
phases: modelling, verification and implementation. 
In (Górski and Ogorzałek 2016) authors propose 
another phase – assignment of unexpected tasks. 
Hardware/software co-syntesis (Yen and Wolf 1995, 
Oh and Ha 2002) is a process of concurrent 
generation of an architecture of embedded system and 
its software. The goal of the process is to find optimal 
architecture with optimal task assignment. The 
architecture can be composed of two groups of 
resources: Processing Elements (PEs) which are 
responsible for tasks execution and Communication 
Links (CLs) which provide communication between 
connected PEs.. There are two kinds of PEs: 
Programmable Processors (PPs) able to execute more 

than one task and Hardware Cores (HCs) which are 
specialized to execute only one task. Most of co-
synthesis algorithms can be divided on two groups – 
constructive (Deniziak and Górski 2008, Górski and 
Ogorzałek 2014a, Srinivasan and Jha 1995) and 
iterative improvement (Oh and Ha 2002, Górski and 
Ogorzałek 2021). Constructive algorithms build 
system step by step making decisions separately for 
each part. They have low complexity but are able to 
stop in local minima of optimizing parameters. 
Iterative improvement algorithms start from 
suboptimal solution and by local changes try to 
improve the quality of the system. The initial solution 
in such methods is usually the fastest implementation 
of all the tasks. In such a solution every task is usually 
executed by another HC. Genetic algorithms (Conner 
et. al 2005) were also applied to co-synthesis 
problem. They can provide an acceptable result in 
reasonable time and are able to escape local minima 
of optimizing parameters. However the disadvantage 
of those methods is that obtained results are sensitive 
to change of genetic parameters. Very good results 
were obtained using genetic programming (GP) 
(Górski and Ogorzałek 2021). In (Deniziak and 
Górski 2008) authors propose a constructive GP 
method. One of the biggest disadvantages of the 
method was that every generated individual could not 
violate time constrains. Therefore the algorithm had 
smaller chance to escape local minima of optimizing 
parameters. The time of computation was also 
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increasing. In (Górski and Ogorzałek 2014b) an 
iterative improvement algorithm for co-synthesis 
problem was proposed. The algorithm builds initial 
population by starting from the fastest 
implementation. The next generations are obtained 
using genetic operators: mutations, cloning and 
crossover. However this method also do not use 
a penalty function. Therefore only valid individuals 
are used to generate the final solution. In this paper 
we present a Genetic Programming method to 
hardware/software co-synthesis of distributed 
embedded system which uses the penalty function 
during generation of the results. Unlike other 
algorithms our method during evolution process 
investigates also individuals which violate time 
constrains. Therefore it is a greater chance that 
algorithm will not stop in local minima of optimizing 
parameters. 

The paper is organized as follows: section 2 
describes genetic programming – types and 
application. In section 3 the representation of 
embedded system is presented. Section 4 includes the 
description of the algorithm. Experimental results are 
given in section 5. The last section summarize the 
paper and indicates the direction of future work. 

2 GENETIC PROGRAMMING 

Genetic Programming (Suganuma et al. 2020) is an 
extension of Genetic Algorithm (Nayak and Panda, 
2020). The main difference between those 
methodologies is that in GP genotype is a tree. The 
tree, in its nodes, includes functions.  

In linear genetic programming (Zhang et al. 2020) 
the tree is represented in linear form.  

In cartesian genetic programming (Miller, 2011) 
the genotype is a graph. Thus the genetic operators 
needed to be modified. 

Multigene Genetic Programming (Riahi-Madvar 
et al. 2019) evolve strings of genes. However every 
gene is a tree in which nodes are functions. 

Developmental Genetic Programming (DGP) 
(Koza et al. 1997) starts with embryo. Embryo is the 
first node in genotype tree. Every other node contains 
function which modifies the embryo. This type of GP 
is often used for hardware design (Deniziak and 
Górski 2008, Górski and Ogorzałek 2017, Górski and 
Ogorzałek 2021). This kind of GP was also used in 
this paper. 

 
 

3 PRELIMINARIES 

Embedded system is represented as a task graph G = 
(T, E). This representation is one of the most popular. 
In the representation each node Ti in a graph is a task 
executed by the system. Each edge describes an 
amount of data (dij) that need to be transferred 
between two connected tasks Ti and Tj.  On figure 1 
the example of task graph is presented. 
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Figure 1: Example of task graph. 

The example consists of eight tasks: T0, T1, T2, 
T3, T4, T5, T6 and T7. Tasks T1, T2 and T4, T5, T6, 
T7 are parallel. Tasks T1 and  T2 can start their 
execution after finishing of T0 execution. Tasks T3 
and T5 can be started only if T2 is finished. Tasks T6 
and T7 can be executed after T3. 

The transmission time ti,j is dependent on the 
bandwidth (bu) of a communication link used to 
connected PEs. It is described by the following 
formula: 

u

ji
ji b

d
t ,

, =  (1)

The execution of a task is characterized by the cost 
(c) and time (t). We assume that a database which 
include all times and cost of execution for every tasks 
on every PEs is given. The database also contains cost 
of each PE and cost of connection PEs using each 
CLs. In table 1 the example of database for a graph 
from figure 1 is presented. In the example there are 
four kinds of possible PEs. Two of them are PPs and 
two of them are HCs. The cost (C) of PP1 is 100, the 
cost of PP2 is 300. The cost of HCs is added to a cost 
of tasks’ execution. PEs can be connected using one 
CL. The bandwidth of the CL is 13. Cost of 
connection of PP1 to CL1 is equal to 6. The cost of 
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connection of PP2 is equal to 3. The costs of 
connection of every HCs to CL1 are equal to 25. If 
one or more PEs execute more than one task, then 
those tasks need to be scheduled. We decided to use 
list scheduling. 

Table 1: Example of resource database. 

Task 
PP1 

C=100 
PP2 

C=300 HC1 HC2 

t c t c t c t c 
T0 12 6 15 4 10 200 3 160 
T1 11 8 23 10 7 90 12 80 
T2 30 2 21 8 6 100 5 140 
T3 18 4 20 3 4 150 1 350 
T4 26 10 22 5 3 200 2 240 
T5 22 5 36 12 6 90 8 70 
T6 34 11 44 9 11 88 13 80 
T7 45 15 30 16 9 180 10 190 

CL1, 
b=13 

c=6 c=3 c=25 

To estimate the quality of individuals we use the 
fitness function (F). We decided that during evolution 
process, to avoid stopping in local minima of 
optimizing parameters, every generated individuals 
can be used. Therefore every individuals which 
violate the time constrains must be given a penalty. 
The penalty is depended on the violation time. The 
function is depended on time of the solution (t), its 
cost (Cs) and given penalty (PF). It is described by the 
following formula: 

Fs PptlCkF *** ++=  (2)

Parameters k, l and p are given by the designer. 
There are no dependencies between the parameters k, 
l and p. The time of the solution is a time after which 
the last task finishes its execution. The cost of 
embedded system can be calculated as: 
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Where n is a number of tasks in a task graph, m is 
a number of PP in solution, u is a number of CLs 
connected to v PEs. 

Penalty can be calculated as follows: 

)( maxttPF −=  (4)

where tmax is a time constrain and t is a time of 
execution of all the tasks for investigated solution. 

4 THE ALGORITHM 

The algorithm which is presented in this paper is 
constructive method. Therefore design decisions are 
made for each task separately. The genotype is a tree. 
To be sure that every task is executed the genotype is 
a spanning tree of given task graph. The first node in 
the tree is embryo. Embryo is a random 
implementation of the first task. The rest of nodes 
contains genes. In our solution genes are system 
construction options. The options are presented in 
table 2.  

Table 2: Options for building system. 

Step Option Probability 

PE a. The fastest 
implementation of the 
task 

0.2 

b. The cheapest 
implementation of the 
task 

0.2 

c. min (t*c)  0.2 
d. The same as 
predecessor  0.2 

e. The rarest used PP 0.2 
CL  a. The fastest CL 0.2 

b. The cheapest CL 0.2 
c. The rarest used 0.3 
d. The same as 
predecessor 0.3 

Task 
scheduling list scheduling 

Unlike others constructive methods (Deniziak and 
Górski 2008) our algorithm do not separate options 
for used PEs and options for allocating new ones. The 
algorithm independently makes a decision if it is 
necessary to allocate a new PE. 

The number of individuals in each population is 
described by the following formula: 

e*n* = αΠ  (5)

where n is number of tasks (nodes in the task 
graph), e is possible number of embryos. 

After generating an initial population the 
algorithm builds new individuals using genetic 
operators: selection, crossover, mutation and cloning. 
In this paper we decided to use rank selection. Every 
generated individuals are ranked by the minimum 
value of fitness function. The individuals have 
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probability (P) depended on the position on the rank 
list (r): 

Π
−Π= rP  (6)

The probability describes the chance that every 
individual will be used during evolution process. 
Individuals with lower value of fitness function have 
greater probability of being selected, however the 
solutions with higher value are not necessary rejected. 

Mutation randomly selects (using selection 
operator) Ὠ individuals: 

ΠΩ *= δ  (7)

For each individual one node is selected 
randomly. Mutation substitutes the option in selected 
node on another using available options (from table 
2). 

Crossover chooses Ψ individuals. Selected 
individuals are connected in pairs. Then a crossing 
point is selected randomly. The point is the same for 
both individuals in each pair. The operator substitutes 
subtrees between the solutions. The number of 
individuals created by crossover is equal to the 
following formula: 

ΠΨ *= γ  (8)

Cloning operator copies Φ individuals to the next 
population. formula: 

ΠΦ *= β  (9)

To have the same number of individuals in each 
population must be satisfied the condition:  

β + γ + δ = 1 (10)

The algorithm stops if in ε next generations better 
individual was not found. 

5 FIRST RESULTS 

To check the quantity of presented algorithm we 
decided to use benchmarks with 10, 20 and 30 nodes. 
The results are presented in table 3 below. For each 
graph 10 runs were made and the best obtained results 
were put in table 3. They were compared with Genetic 
Programming algorithm proposed by Deniziak and 
Górski (Deniziak and Górski 2008) which is also 
a developmental genetic programming constructive 
method. The parameters were set as follows: α=2, 
β=0.2, γ= 0.7, δ=0.1, ε=3, k=8, l=1, p=4. 

Table 3: The results.  

Algorithm Graph t c Gen. F 

DGP08 10 479 1667 3 13815 
20 970 3575 9 29570 
30 1273 6323 28 51857 

DGP2021 10 531 2095 15 17322 
20 937 2749 29 22929 
30 937 6035 44 49217 

The time constrains for each graph were set as 
follows: graph with 10 nodes – 500, graph with 20 
nodes – 1000, graph with 30 nodes – 1300. As it can 
be observed in table 3 the results obtained by the 
presented algorithm are much better in most of cases 
than obtained by DGP08. Only for a graph with 10 
nodes the best solution obtained by presented 
algorithm has fitness function equal to 17322, 
meanwhile the best solution obtained by DGP08 has 
fitness function equal to 13815. For graphs with 20 
nodes presented algorithm generated results with 
fitness function equals to 22929. For that graph 
presented algorithm generated individual with better 
value of time (937) and cost (2749) than DGP08 (cost 
equal to 3575, and time equal to 970). What is worth 
to underline using the presented approach during the 
evolution process despite the fact that in some of the 
generations best individuals violated time constrain, 
the final solution has time under maximum value. The 
same situation can be observed for graph with 30 
nodes. The time of a final solution obtained by 
presented algorithm (937) does not violate time 
constrains. It is also lower than time obtained using 
DGP08 (1273). The solution generated by presented 
approach has also lower value of cost (6035) than 
result obtained by DGP08 (6323). This suggest that 
algorithm presented in this paper has greater ability to 
escape local minima of optimizing parameters. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this paper a constructive genetic programming 
method for hardware/software cosynthesis of 
distributed embedded system was presented. The 
method uses a penalty function. Some of the 
individuals in each generation can violate time 
constrains. Therefore those individuals can be used to 
construct next generations. Thus the algorithm is 
more able to escape local minima of optimizing 
parameters. The first experimental results indicates 
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bigger effectiveness of presented algorithm than 
DGP08. Only in one case better results were 
generated by DGP08 algorithm – for graph with 10 
nodes. However more experiments must be 
performed using presented algorithm to be sure why 
in such a case the results were worse. Maybe with 
different value of genetic parameters or another 
values of probability of system construction options 
results could be better even for graph with 10 nodes. 
Therefore more experiments are needed to find the 
best values of genetic operators. In future work we 
also plan to check another combination of system 
construction options and different genetic operators 
and their impact on final results. 
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