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Abstract: Future distributed reconfigurable systems need to provide smarter services. Therefore the used software need
to include advanced mechanisms such as the context-awareness, artificial intelligence, collaboration between
distributed parts of the system, as well as the secure data exchange. Most of the existing context-aware
frameworks are restricted to a part of the mentioned scopes and are generally not suitable to reconfigurable
systems. Hence, there is a need for a software engineering solution that reconciles all the said requirements. In
this paper, we propose a software framework for developing collaborative, intelligent, and secure applications
of distributed systems. This paper extends an existing framework with the mentioned features and shows its
new structure and design. A software tool developing the proposed contributions is implemented using Java
programming language. An example of microgrids software applications is used to show the suitability of the
contributions.

1 INTRODUCTION

Smart behaviour is the main objective of current and
future context-aware reconfigurable systems. These
latter have to meet the challenge of providing more
sophisticated behaviour. Therefore, its software ap-
plications need to be strong enough to offer such fea-
tures. The advanced features can not only be reached
by means of context-awareness computing, but also
by means of different other concepts. Artificial in-
telligence concepts can play a major role to support
smartness since they allow to develop knowledge rea-
soning for multiple use cases (e. g. the prediction,
planning, learning). Besides, distribution paradigm is
becoming more and more substantial and most of the
current systems are considering it thanks to its assets
when compared to the centralized one. In fact, cen-
tralized approach has the limitation of single-point-
of-load and single-point-of-failure, which is less effi-
cient for many cases. Furthermore, secure informa-
tion exchange between the distributed parts is an un-
deniable condition for reliable system behaviour. In
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addition to all that, common requirements such as the
real-time as well as functional constraints, need also
to be satisfied.

The development of context-awareness software
applications of such systems is a complicated task to
perform. For this, different context-awareness soft-
ware frameworks have been proposed at the aim of
facilitating their development. However, most of
them handle limited features due to the complexity
of their orchestration. It is hard to provide a generic
software solution that can cover intelligence, coor-
dination and security for different case studies in a
same software support. In fact, a design challenge
rises in the definition of the structure of a framework
that needs to cover miscellaneous requirements. Few
are the frameworks that consider the coordination re-
quirement of distributed systems along with intelli-
gence or security. The work reported in (Fkaier et al.,
2016a) introduces and important framework that al-
lows to implement context-aware reconfigurable ap-
plications running under real-time and functional con-
straints but despite its importance, it is still missing
the ability to handle advanced intelligence issues, to
operate smoothly in a distributed system, and to guar-
antee security of exchanged data.

To overcome the aforementioned limitations, the
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current paper proposes an extension to the framework
reported in (Fkaier et al., 2016a). We mainly enhance
the first and second layers (the Reconfiguration Layer
and Context Control Layer) by adding new pools and
refining the definition of existing ones. We propose a
generic artificial intelligence mechanism that can be
used for different purposes. We also introduce a co-
ordination mechanism that helps to achieve coherent
reconfigurations. Moreover, we define a module to be
a container of security mechanisms. Hence, besides
the existing techniques, the new enhanced framework
allows to implement more features promoting appli-
cations smartness and autonomy. Furthermore, we
implemented the proposed framework in a software
tool using Java programming language.

In order to show the suitability of the new frame-
work, an example of microgrids software applica-
tions is addressed. In fact, smart microgrids are
a type of systems that are knowing an evolution
through integrating the Information and Communica-
tion Technologies (ICT). Despite the numerous chal-
lenges identified in this system, most of works tackle
the electric power level or the automation and control,
and the software side is generally omitted although
it is a key responsible for system smartness (Anvaari
et al., 2012), (Ghosh et al., 2020).

The outline of this paper is organized as follows.
Section 2 presents the state of the art. Section 3 intro-
duces the definition of the new framework. Section
4 shows how the new concepts are suitable through a
microgrids software application case study. Section 5
evaluates the performances of the contributions. Fi-
nally, Section 6 concludes the paper and opens per-
spectives.

2 STATE OF THE ART

In this section, we present in Section 2.1 an overview
of the existing context-awareness frameworks. Then,
we show in Section 2.2 the importance of context-
awareness, intelligence, security, and coordination for
smart grids.

2.1 Context-awareness Frameworks

Since its appearance, context-awareness computing
has been an important enabler of systems smart be-
havior. However, alone, this concept cannot provide
expected results especially with the never-ending ex-
pectations of systems autonomy. This is why, soft-
ware frameworks have been intensively developed.
The authors of (Sikder et al., 2019) have proposed a

framework for the detection of threats on smart de-
vices, but despite its importance this work do neither
consider the real-time reconfigurations nor the coor-
dination between distributed agents. In (Aid and Ras-
soul, 2017) a context-aware framework for the dis-
aster management is proposed. This work also does
not treat distribution, security and real-time reconfig-
urations. The work reported in (Tang et al., 2014)
presents a development environment that supports the
pervasive applications. Distribution needs are taken
into consideration by this work but requirements like
secure coordination and real-time reconfiguration are
not covered. The work reported in (Alhamid et al.,
2016) proposes a collaborative context-aware frame-
work for the development of applications in ambi-
ent intelligence environment. This framework also
does not consider distribution, security, and recon-
figuration. In (Bucchiarone et al., 2017) a context-
aware framework for the development of processes in
the internet of services is proposed. This latter does
not handle the coordination and real-time reconfig-
urations. In (Fkaier et al., 2016a) the authors have
proposed a context-awareness framework for the de-
velopment of reconfigurable systems having real-time
and functional constraints. The latter is an important
support of the development of future smart systems,
however it does not support the distribution, security,
and advanced intelligence features. As it can be seen,
most of the existing context-awareness frameworks
are dedicated to specific features, and the majority do
not tackle coordination and security.

2.2 Smart Grids and Intelligence,
Security, Distribution

Smart grids are new electricity grids promoting the
integration of ICTs into the traditional grid in order
to enable enhanced functionalities through the ex-
change of data between the grid components (users,
utility, and control infrastructure). These grids need
to use advanced software concepts to achieve the re-
quired functionalities. In (Fkaier. et al., 2020a) and
(Fkaier. et al., 2020b) context-awareness comput-
ing was used to enable the dynamic interaction with
the changing environment in real-time. Concerning
the intelligence, the authors of (Henri et al., 2020)
have proposed a simulator of artificial intelligence
concepts for microgrids. In (Khan et al., 2018) also
discusses the adoption of artificial intelligence tech-
niques in the microgrids development. The research
reported in (Hubana, 2020) uses the artificial intel-
ligence concepts for faults location and recovery in
microgrids. The security have been an inherent re-
quirement to all computerized systems. Ensuring se-
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curity is an important condition to maintain a good
reliability level. The work reported in (Elgamal et al.,
2020) studies the microgrids profit maximisation all
with sustaining its security. In (Hosseinimoghadam
et al., 2020) the authors study the security of micro-
grids based on neuro-fuzzy inference model. The au-
thors of (Dabbaghjamanesh et al., 2019) have used the
blockchain technology to enhance the privacy of net-
worked microgrids. The research in (Ferdowsi et al.,
2019) has also studied the reconfiguration under se-
curity constraints. With the increasing adoption
of distributed paradigm in the operational tasks of
microgrids, coordination becomes necessary for the
logic coherence. The authors of (Mbungu et al., 2019)
have surveyed the optimal smart energy coordination
for microgrids. In (El-Naily et al., 2020) a coordina-
tion approach is used to resolve the microgrids faults,
while in (Wu et al., 2019) a distributed hierarchical
coordination strategy for parallel inverters is proposed
to improve the system flexibility. As it can be seen,
most of the presented works about smart grids soft-
ware are restricted to one or two of the system re-
quirements. Software infrastructures that enables to
develop multiple requirements using one software so-
lutions are still needed.

3 ENHANCED FRAMEWORK

In this section, we introduce the enhanced framework,
where Section 3.1 shows the extension of RL and Sec-
tion 3.2 shows the extension of CCL.

The selected framework, was introduced in
(Fkaier et al., 2016a) and its concepts are based on a
meta-model reported in (Fkaier et al., 2017). A soft-
ware tool implementing the framework semantics is
reported in (Fkaier et al., 2016b).

The framework has a layered architecture com-
posed of four layers: (i) Reconfiguration Layer (RL):
responsible for the interaction of the framework logic
with the environment through two modules of inputs
and outputs, (ii) Context Control Layer (CCL): con-
tains a set of pools where each of which is responsible
for the checking of well-defined constraints, (iii) Ser-
vices Layer (SL): holds the functionalities of applica-
tions in the form of services, and (iv) Communication
Layer (CL): represents of the framework’s services.

The second layer, CCL, was composed of three
pools: controller (C), functional (FP), and real-time
(RTP) pools. The real-time pool provides the tech-
niques to analyze the timing behavior of applica-
tions through checking the timing constraints, e. g.,
the operational deadlines. The functional pool of-
fers the ability to check functional constraints related

to dependencies between the services (e.g. prece-
dence constraints) and especially the coherence rela-
tionships (i.e., the inclusion/exclusion relationships).
We come finally to the last pool, the controller, that
ensures the orchestration of the operation of the pools
and layers of the whole architecture, and holds the ap-
plication’s logic.

This framework is proved to be efficient in the de-
velopment of software applications of complex sys-
tems such as the airports baggage handling systems as
reported in (Fkaier et al., 2016a). However, despite its
undeniable assets, it still have some limitations espe-
cially for the development of distributed, intelligent,
and secure systems. To satisfy these needs, we extend
the definition of the framework concepts by updating
the definition of the first and second layers (RL and
CCL). We refine the mechanisms of the inputs pool by
integrating a data processing mechanism using more
sophisticated context-awareness reasoning technique
of RL. We define also three new pools in the CCL: (1)
intelligence pool, (2) coordination pool, and (3) se-
curity pool. The new schematic representation of the
framework structure is depicted in Figure 1. In ad-
dition, the extension includes updating the controller
capabilities in a way to support the interaction with
the new pools. The internal dynamics of each new
pool are defined in the following.

Figure 1: Framework architecture.

3.1 RL Extension

Input data are values coming from the sensors and
measurements infrastructure, then structured thanks
to a hardware control layer, and finally handed-over to
the software layer, specifically to the IP of the frame-
work. Figure 2 shows the abstraction of the informa-
tion flow from field level until the Inputs Pool.

The Inputs Pool receives input data (denoted by
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Figure 2: Schematic presentation of the inputs pool.

id), processes it, then creates a Context Entry CE and
sends it to the controller pool of the upper layer (i.e.,
CCL). Input data are classified into two types: criti-
cal and uncritical. In order to specify which data are
the critical and which are the uncritical, developers
have to create the context ontology as mentioned in
(Fkaier. et al., 2020a). The context ontology con-
sists in a basis to generate Context Rows CR where
CR = {i1, i2, ..., in} with i j is a context item. A con-
text item is defined as a tuple i =< t, l,v > where t is
the type of the item expressed through its root in the
ontology model (i.e., the ontology oa, entity eb, and
attributes ac), l is the label of the item, and v is the
value of the item. If the input data are classified as
critical, then the Context Entry Creator (see Figure 2)
creates the context entry as

CE =

{
(ts||id) if id is critical
(ts||id||r) if id is uncritical (1)

with ts is a time stamp and r is the set of recommenda-
tions resulted from the context reasoning. If the input
data are classified as uncritical then a context aware-
ness reasoning is performed according to reasoning
method defined in (Fkaier. et al., 2020a). The pseu-
docode of the input module is then defined as men-
tioned in Algorithm 1.

3.2 CCL Extension

3.2.1 Controller

After receiving CE from the inputs pool, the con-
troller parses it and decides whether a reconfiguration
should take place. This logic is use-case-dependent
and must be defined by the system owners. In case
a reconfiguration is required, the controller starts to
search for the appropriate configuration. For this, the

Algorithm 1: Inputs Pool Logic.
Inputs: id
Outputs: CE

CE = /0;
while (true)

idcritical=ListenForCriticalData();
id=idcritical ;
CE =CreateCE(ts, id);

end
foreach (period) do

id= ReadData();
r =ContextReasoning(id);
CE =CreateCE(ts, id,r);

end
if (input demand) then

id= ReadData();
CE =CreateCE(ts, id);

end
return CE;

controller need to analyze the convenience of a certain
configuration with regard to some constraints. Pre-
viously, only functional and timing constraints can
be analyzed, but now more advanced requirements
can be checked such as the intelligence, coordination
with other peers in the system, and security of criti-
cal transactions. By the addition of the new pools, the
controller code is also extended in order to support
the new components. New communication requests
and replies are defined and the structure of the con-
troller code becomes as depicted in the UML (Uni-
fied Modeling Language) class diagram of Figure 3.
The code is organized with respect to the separation of
concerns as well as the single responsibility principles
into three packages Handling Layers, Using Pools,
and Control Main Logic: 1) The package Handling
Layers contains the classes that enable the controller
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to supervise the work of the RL, SL, and CL. 2) The
package Using Pools contains the classes enabling the
use of one or many pools (developers are free to use
the pools they need according to the use case and not
necessarily all pools). 3) The package Control Main
Logic as its name indicates holds the main logic of the
application.

Figure 3: Controller class diagram.

3.2.2 Artificial Intelligence Pool (AIP)

The aim behind adding this pool in CCL is to make
applications more intelligent. Artificial intelligence
concepts can be used for many purposes such as the
optimization tasks of a system, prediction tasks, etc.
For this, we propose to create a generalized artificial
intelligence technique that can be adapted/adjusted
according to the use case. This pool analyzes an in-
telligence request created by the controller in order to
process it using an Expert System (ExpSys). Gen-
erally, existing expert systems consist of a knowl-
edge base and an inference engine, but for more ef-
ficiency in terms of computational power (used re-
sources such as the memory, CPU time, energy, etc.)
we add a system history that helps to avoid trigger-
ing known scenarios. Hence the ExpSys is defined
by, ExpSys = (I,K,H), where I denotes the inference
engine, K denotes the knowledge base and H denotes
the intelligence pool history (see Figure 4).

Figure 4: Intelligence Pool.

The knowledge base, K, accomplishes its task us-
ing two bases K = (F,R): (1) the facts base, given by
F = { f j, j = (1, ...,n)}, and it contains facts about the
system where a fact generally reflects an evidence. (2)
The rules base, given by R = {ri, i = (1, ...,m)}, stor-
ing rules which are logical forms enabling the deduc-
tion of new facts. The rules must be defined by human
experts of a specific domain that muster the consid-
ered case and know how the system should behave. A
rule has the form of ri=“if premise then conclusion”.
The system history, H, stores the history of the sys-
tem behavior defined by the set: {hq,q = (1, ..,k)},
where hq represents a previous demarche executed by
the pool. The inference engine, I, uses K and H in
order to deduct a new knowledge. The method of rea-
soning of I can be the forward or backward chaining.

3.2.3 Coordination Pool (CP)

In distributed approach, the operational tasks are per-
formed based on geographically distributed peers.
One important challenge that has often been faced is
how to make a real coherent distributed and collabo-
rative strategy.

The coordination between the distributed units is
not an easy task to perform especially that the need to
other peers can be manifested during the preparation
of reconfigurations. This is why, we propose a coor-
dination pool, denoted by CP, in the CCL that will be
able to satisfy this requirement.

CM[i][ j] =

system peers︷ ︸︸ ︷c11 c12 ... c1n
c21 c22 ... c2n
.. .. .. ..

cm1 cm2 .. cmn

}con f igurations

(2)
To accomplish its task, CP uses a matrix of configura-
tions called Coordination Matrix (CM) of size (n,m)
in which the columns represent all the existing peers
in the system, and the lines represent the different
configurations. Whenever a coordination with other
system peers is needed, a specific peer must consult
its CM and depending on the context decides which
(re)configuration to process.

3.2.4 Security Pool (SP)

Coordination between the distributed peers of a sys-
tem requires an exchange of data where some of them
can be critical. Hence, securing them is important
to guarantee successful applications deployment. In
particular, it is required to ensure data integrity and
confidentiality of some functionalities and/or recon-
figurations. For these reasons, we add a security pool
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to be a container of security mechanisms such as the
algorithms necessary for encryption/decryption (e.g.
RSA, ElGamal, ECIES), user access supervision, er-
ror detection software, blockchain-related algorithms
(e.g. mining, consensus, validation). This pool pro-
vides the base to use such techniques and developers
can extend it with any required technique. Hence, this
pool is defined as SP={sti, ...,stn}, where sti stands for
a security technique.

4 CASE STUDY

This section presents an example of microgrids soft-
ware application development using the framework.
Section 4.1 presents the case study and Section 4.2
depicts the software development.

4.1 Case Study Presentation

Microgrids are electricity grids promoted with infor-
mation systems to make smarter electricity genera-
tion, distribution, and consumption. Microgrids are
also characterised by the integration of the renewable
energy resources and the electricity storage systems
as detailed in (Fkaier. et al., 2020a). Hence, complex
and diversified functionalities need to be included in
the software applications in order to provide efficient
operation. In this paper, we demonstrate how the pro-
posed framework facilitates the development of such
functionalities. We consider the microgrids system
depicted in Figure 5 where the proposed framework
is used to the development of software applications
of the software level. The considered grid consists of
three microgrids mg1, mg2, mg3, where each has its
loads, renewable sources, and storage system. In this
paper, the configurable components set of a microgrid
mgi is defined as Cmg = {B,U,RES,ROS}, where B is
the set of batteries, U is the connection to utility, RES
is the set of renewable energy sources, and ROS is the
set of remotely operating switches that connects to the
other microgrids.

Every microgrid mgi has a set of configurations,
denoted by CFG = {c f g1,c f g2, ...,c f gn}, with n is
the number of all configurations. A configuration
c f g j determines the combination of components ar-
rangements (i.e., the mode of use). A c f g j is com-
posed of two main sections: (i) internal configuration,
c f g jint : determining the way of use of the microgrid
components such as the batteries, the switch of the
utility, and the RES for internal functionalities, (ii)
external configuration, c f g jext : determining the way
of use of the microgrid components for external func-
tionalities. These external functionalities are used, in

Figure 5: Considered microgrids system.

this paper, in the trading or emergency cases.

4.2 Software Applications Development

The software applications of the three microgrids
mentioned in Figure 5 are implemented with the
proposed framework. For simplicity reasons, let
us consider only three services that are performed
by the application as follows: trading electric-
ity with other microgrids, storage management,
and the renewable energy integration. Hence,
the definition of the services layer is given by
SL = {sTrading,sBatteryScheduling,sRESControl}. Figure 6
shows the structure of the microgrid application ac-
cording to the proposed framework.

Figure 6: Microgrids application strcuture.

Before showing the details of the proposed scenarios,
let us first define the settings of the framework that
are parts of the defined pools, such as possible con-
figurations CFG, context model with Ontology Web
Language (OWL), context rules store CRS, rules base
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RB of the AIP, the coordination matrix CM of the CP.
Let us consider the possible configurations of mg2 as
shown in Table 1. This table is used by the controller
module of CCL to determine reconfigurations and it
is saved in an XML format.

Table 1: Configurations of mg2.

Internal External
ID B U RES ROS2

Cfg 1 MC On TA PS

Cfg 2 HC On PA TS

Cfg 3 MD On TA PS

Cfg 4 HD On PA TS

In this table MC: Medium Charging, HC: High Charging, MD: Medium Dis-

charging, HD: High Discharging, TA: Total Activation, PA: Partial Activa-

tion, TS: Total Supply, PS: Partial Supply.

In this paper, we define the microgrid context model
with OWL language as shown in Figure 7. The con-
text modeling is created with the aim of analyzing real
measurements that help to decide whether to charge or
discharge batteries and also whether to turn on or off
the connection to the main utility.

Figure 7: Microgrids context model with OWL language.

Using the context model of Figure 7, the context rules
store is defined as depicted in Table 2. The role of
the AIP is to decide whether it is required to initiate a
trading session to buy electricity, to analyze more the
recommendations of the RL especially in case of rec-
ommendation to switch off from the main grid. It is
needed to avoid blackouts and to decide how to effi-
ciently use the battery (when to charge/discharge, and
with which intensity medium or high). The rules used
by the AIP are given in Table 3.

Let us consider a time driven scenario to manifest
the need to context-awareness, reconfiguration, AIP,
CP, and SP. The inputs pool, as mentioned in the pre-
vious section, sends a CE in a periodic way in case of
uncritical data and in sporadic way (i.e., event driven)
in case of critical data. Initially, the application uses
the configuration C f g2 mentioned in Table 1 which
means that the microgrid is highly charging the bat-
teries while it is not activating all RES. Also, it has
the context row CR0 mentioned in Table 4.

Scenario 1: At t1 = 12 : 00, 15th,July. The inputs
pool collect data in order to create a new context row
CR1. Let us assume the newly values are as men-
tioned in Table 5.

According to the context reasoning process
shown in Figure 2, the difference between the
current and new rows is calculate as follows:
Di f f erence = ∑

n
j=1(|x j−v j|/[(x j +v j)/2]×100)/n,

which gives 24,76%. Assuming that the fixed
difference threshold is 10%, we need to proceed
to the next step and trigger rules of CRS. This
means that the context is changed, mainly timing
ontology, and new recommendations need to be
found to achieve better efficiency. From the CRS of
Table 2, the conditions of R2 are met, then R2 is fired
and recommendations to “Discharge batteries” is
obtained. Therefore, the IP creates the following con-
text entry CE1 = (12 : 00,15/07||PeriodO f Day =
Midday,LevelO fCharge = 90% ||(Discharge
batteries). The controller of CCL receives CE1 and
must now find whether this recommendation is effi-
cient. Since such a decision is hard to take and human
expertise is required to determine which can preserve
batteries efficiency, the controller send a request to
the AIP for analysis. The controller module, with
the help of the IP, provides the information of actual
value of loads (L) which is high since it is midday,
the actual level of solar panels generation (RESG)
which is also high, the actual market electricity price
(MEP) which is medium, and the predicted solar
generation of tomorrow (TSG) this is assumed to be
fed by the weather forecast agency, and it is predicted
to be low. Having these facts, the AIP parses the RB
and collects triggerable rules. In this case, Rule 4
can be triggered, which results in “medium battery
discharge”. Figure 8 depicts some of the methods
developed as part of the AIP.

Figure 8: Some of the methods of AIP.

The result is given back to the controller and this latter
searches in the possible configurations (see Table 1)
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Table 2: Context Rules Store (CRS).

R1 if (Weather is Sunny) and (PeriodOfDay is Morning) and (Season is Summer)→ charge batteries

R2 if (Weather is Sunny) and (PeriodOfDay is Midday) and (Season is Summer)→ (discharge batteries)

R3 if (Weather is Cloudy) and (PeriodOfDay is Morning) and (Season is Summer)→ switch on grid

R4 if (Weather is Cloudy) and (PeriodOfDay is Midday) and (Season is Summer)→ discharge batteries

Table 3: Rules Base (RB) for mg2.

Rule1 if (BC is high) and (L is low) and (RESG is high) and (MEP is high) and (TSG is high)→ high battery charge

Rule2 if (BC is medium) and (L is low) and (RESG is low) and (MEP is high) and (TSG is low)→ medium battery charge

Rule3 if (BC is high) and (L is medium) and (RESG is high) and (MEP is high) and (TSG is low)→ high battery discharge

Rule4 if (BC is high) and (L is high) and (RESG is high) and (MEP is medium) and (TSG is low)→ medium battery discharge

In this table BC: battery level of charge, L: loads, RESG: level of solar panels generation, MEP: market electricity price, TSG: tomorrow solar generation.

Table 4: Initial context row CR0.

i1 < outility.aConnectionMode,OnMode,1 >
i2 < oBattery.aLevelO fCharge,medium,50% >
i3 < oWeather.atype,Sunny,2 >
i4 < oTime.eSeason.aname,Summer,1 >
i5 < oTime.ePeriodO f Day.aname,Morning,1 >

Table 5: Measured context row CR1.

i1 < outility.aConnectionMode,OnMode,1 >
i2 < oBattery.aLevelO fCharge,high,90% >
i3 < oWeather.atype,Sunny,2 >
i4 < oTime.eSeason.aname,Summer,1 >
i5 < oTime.ePeriodO f Day.aname,Midday,2 >

which configuration matches the need. C f g3 is the
configuration that suits the requirements of the con-
text. Hence, the controller starts to change from c f g2
to c f g3 by loading the proper methods developed as
part of the service sBatteryScheduling which contains the
right methods enabling the new battery and RES op-
eration style. The execution of the changes must re-
spect functional and timing constraints as detailed in
(Fkaier et al., 2016a).

As it can be seen from Scenario 1, the enhanced
inputs pools served to provide awareness about the
system environment where a reconfiguration possibil-
ity is then analyzed by the controller module. Also,
thanks to the AIP the battery scheduling measures are
consolidated using the experts knowledge.

Scenario 2: Later on, at t2 = 16 : 00, 15th,July.
mg2 receives an emergency call published by mg3 af-
ter blackouts are occurring due to rocks and trees fall
on electric lines, which requires some time to be re-
paired. The emergency call includes the information
of the needed electricity quantity Qmg3 and the re-
quired time of supply Tmg3 . In this case, a coordina-
tion session starts between the three microgrids based
on the coordination matrix (see Table 6) as follows:

• mg3 publishes an emergency request Rmg3 =
(Qmg3 ,Tmg3) to the rest of the grid.

• mg1 (resp. mg2) checks the current and planned
resources, and decide if it is possible to help mg3.

• mg1 (resp. mg2) parses the coordination matrix
CM and selects the possible configurations.

• mg1 (resp. mg2) sends the found possible config-
uration to mg3.

• mg3 selects a configuration based on this logic:

– if received configurations contain a configura-
tion where only one microgrid can provide the
electricity, then select this configuration. In
case more than one configuration is found, then
select the one related to the nearest microgrid
geographically.

– else select the shared configuration between
mg2 and mg1. If more than one configuration
are shared, than select the one with nearest mi-
crogrids geographically.

con f ig7, con f ig8, and con f ig9 are the subject of dis-
cussion between mg2 and mg1, where any decision
is made based on the current configuration of a mi-
crogrid (i.e., c f g4 for mg2). Assuming that mg1 can
only provide a partial supply since it does not have
big benefit from the water dams as RES in the sum-
mer, con f ig8 is the matching configuration. In case
a partial supply is required by mg1 and mg3, internal
reconfigurations (see Table 1) need to be conducted
as mentioned in Scenario 1. In order to transfer elec-
tricity to mg3, mg1 needs to activate the remotely op-
erating switches binding the two microgrids.

We can see from this scenario, that the use of the
coordination pools has helped microgrids to resolve
the fault through a collaboration based on known con-
figurations.

Scenario 3: at t3 = 09 : 00, 18th,July. mg1 pub-
lishes a request Rmg1 to buy the quantity of electricity

ICSOFT 2021 - 16th International Conference on Software Technologies

118



Table 6: Coordination Matrix (CM).

mg1 mg2 mg3
con f ig1 F TS I
con f ig2 F I TS
con f ig3 F PS PS
con f ig4 PS F PS
con f ig5 TS F I
con f ig6 I F TS
con f ig7 PS PS F
con f ig8 I TS F
con f ig9 TS I F

In this table I: idle, F: Faulty, PS: Partial Supply, TS: Total Supply.

Qmg1 during the period Tmg1 . Here in order to par-
ticipate in the trading process, each microgrid should
check its resources and find the proper configuration
to deploy in case of its selection as a seller. Details
of context analysis and intelligent storage handling
should be conducted as demonstrated in the first sce-
nario. In this scenario, we focus on another important
side of microgrids communication, which is the secu-
rity of exchanged data.

In order to properly conduct a trading process
that preserves the data immutability and integrity,
blockchain technology is used as a secure storage
medium. Hence, each microgrid must exchange data
through the blockchain (i.e., requests, bids, decisions
are added to the chain). In order to be able to pub-
lish any transaction into the blockchain, a microgrid
must create a block and add it to the blockchain. The
techniques used to create and add blocks are defined
in the security pool.

mg2 creates the following bid Bid1mg2
=

(idbid1 ||pricebid1). Then, it creates a block hav-
ing this bid as follows, first it must get the last block
added to the blockchain, calculate the hash code of
the new block based on the previous one, add the bid
(the argument tx in Figure 9) and mine the block.

Hence, the security pool serves as a container of
security methods necessary to maintain reliable and
secure trading process between the distributed micro-
grids.

5 PERFORMANCE EVALUATION

Since the contribution of this paper is to add artifi-
cial intelligence, coordination and security pools to
the control aspects of the logic of software applica-
tions, we focus on evaluating these aspects (Section
5.1). In Section 5.2, a comparison with related works
is conducted.

Figure 9: Some of the blockchain methods required in the
trading.

5.1 Discussions

Coordination Pool: In order to show the efficiency
of the coordination pool, let us consider an increasing
number of peers (i.e., microgrids) in the system and
see how the pool behaves.

Thanks to creating a predefined coordination ma-
trix that specifies the possible configurations, it is not
needed that peers exchange data with each other in
order to find a valid system state. If each peer needs
to negotiate with each other peer in the system at run-
time, then there will be a continuously increasing co-
ordination time and data with the increasing number
of peers and number of configurations (see Figure 10).

Figure 10: Number of transactions with CM versus without
CM.

In case a coordination matrix is predefined, for n
peers it is required to exchange 2 ∗ (n− 1) transac-
tion. However, in case peers need to find a configura-
tion at run-time, the number of transaction can reach
(n− 1)+ (n− 1) ∗ (n− 2). Let us assume that in av-
erage, a transaction takes 2 minutes. Figure 11 shows
the time taken to find the proper configuration in min-
utes.
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Table 7: Comparison of our framework with other context-aware frameworks.

Coordination AI Security Reconfiguration
(Sikder et al., 2019) - - X -

(Aid and Rassoul, 2017) - - X -
(Bucchiarone et al., 2017) - X - -

Our framework X X X X
In this table: Xmeans addressed, - means not addressed.

Figure 11: Time to find proper configuration when scaling
the system.

Figure 11 depicts that in our approach, the coordina-
tion time is very slightly increasing by the increasing
number of peers since they need only to parse the co-
ordination matrix, select possible configurations and
send it to the concerned peer.

Artificial Intelligence Pool: The artificial intelli-
gence pool (AIP) builds upon an enhanced expert sys-
tem. Adopting expert systems to take decision is very
efficient thanks to its: (1) speed: automated rules re-
duce the complexity of work and find decisions for
repetitive problems, (2) culmination: sum of diverse
human expertise, (3) clearness: it provides reasonable
explanations of the made decisions. However, despite
these assets, intelligence techniques that builds upon
a rule base have some drawbacks, mainly a mainte-
nance one. In fact, rules need to be updated from time
to time in order to upgrade the logic or to include new
knowledge. Further, it is sometimes complex to ex-
tend existing rules, a lot of effort might be required.

5.2 Comparison to Related Frameworks

We finish this section with a comparative study in
which we highlight the advantages of the proposed
framework with respect to other works. We summa-
rize the study in Table 7.

Compared with the existing context-awareness
frameworks, the proposed one provides the opportu-
nity to tackle numerous requirements of today’s smart
systems. Particularly, the framework allows to de-
velop security, coordination and intelligence logic.
Most of the works address one specific feature not a

combination of them. More importantly, reconfigura-
tion which a key enabler of system’s behavior adap-
tation is often not addressed. The frameworks pre-
sented in (Sikder et al., 2019) and (Aid and Rassoul,
2017) consider security but important requirements
such as reconfiguration and coordination are not sat-
isfied. The framework reported in (Bucchiarone et al.,
2017) uses the artificial intelligence techniques to pro-
vide knowledge management, however it does not ad-
dress security, coordination, nor reconfiguration.

6 CONCLUSIONS

This paper has introduced a new software framework
that overcomes the limitations of the existing frame-
works. The proposed framework enables the develop-
ment of context-aware, distributed, intelligent, and se-
cure software applications of reconfigurable systems.

The proposed framework introduces a solution
to the coordination of peers in a distributed system.
Hence, collaborative behavior can be achieved effi-
ciently and seamlessly. It also introduces an enhanced
expert system to be the promoter of intelligence oper-
ations. In order to keep a trustful data exchange for
specific transactions, the framework includes a secu-
rity pool having the role of holding the security tech-
niques.

Thanks to the abstract and clear framework archi-
tecture, precisely the definition of the pools and lay-
ers, it becomes easy to arrange the requirements of
applications in a loosely coupled way. The separation
of the miscellaneous logic aspects into pools facili-
tates the applications development. More importantly,
the concepts of the framework are implemented with
Java programming language. The availability of the
software tool of the framework helps to increase the
developers productivity.

We have used the proposed framework to develop
the application of microgrid’s system. The case study
helped to show the suitability of the intelligent and
collaborative requirements development as well as the
secure data exchange in distributed systems.

In future works, we aim to apply the concepts of
the framework to more case studies also we plan to
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improve the quality of code of the software tool. An-
other concern is to integrate more advanced analytic
techniques to cover more logic aspects.
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