
IoT Fuzzing using AGAPIA and the River Framework

Eduard Stăniloiu1, Rares, Cristea2 and Bogdan Ghimis, 2

1Department of Computer Science, University Politehnica of Bucharest, Bucharest, Romania
2Department of Computer Science, University of Bucharest, Bucharest, Romania

Keywords: Internet-of-Things, Fuzzing, Specification Graph, Testing, Software Engineering Tools.

Abstract: As the number of Internet of Things (IoT) systems continues to grow, so does the security risk imposed by
interconnecting heterogeneous devices from different vendors. Testing and validating the security of IoT
systems is difficult, especially due to the fact that most of the software is proprietary (closed-source) and the
system’s embedded nature makes it hard to collect data, such as memory corruptions. This paper proposes to
extend the novel AGAPIA language to enable IoT developers to write safer programs that can be tested and
validated with state of the art fuzzers, such as RiverIoT. We present how simple additions can enable AGAPIA
modules to be integrated with the RiverIoT architecture, thus facilitating better device testing. The proposed
approach also enables users, not just developers, to perform system wide, black-box, testing, increasing the
reliability of the system. We show how the abstractions provided by the AGAPIA language enable the fast
development of an Air Quality Monitoring application and how small additions to existing programming
languages can improve the testing and validation of IoT systems.

1 INTRODUCTION

The Internet of Things (IoT) is a system of intercon-
nected devices that can collect data from their sur-
rounding environment and act upon it. IoT has grown
significantly in recent years, helping people to work
smarter and improving their quality of life. We can
now find smart devices everywhere, from our homes
(smart light bulbs, IP cameras), to our cars (smart sen-
sors, cameras) and cities (weather sensors, pollution
sensors). With the continuous development of net-
work technologies, such as 5G, the number of IoT de-
vices will continue to grow (Li et al., 2018), bringing
even more technology into our lives in a bid to make
everything faster, smarter and more comfortable.

The growing number of IoT devices (and their
vendors) rises privacy and security concerns. In a fast
paced world, where the vendors compete with each-
other to achieve the best time to market for device
development (Wurm et al., 2016), there is a lot of
room for programming errors that can lead to vul-
nerabilities and exploits (English et al., 2019) (Her-
nandez et al., 2014). The typical architecture for an
IoT system is composed of multiple heterogeneous
devices, not necessarily from the same vendor, con-
nected through different protocols over the Internet.
Most of the devices run proprietary firmware, with
in-house implementations of protocol standards, de-

veloped in a memory unsafe language (such as the C
programming language), making them a lucrative tar-
get for attackers.

Given the closed-source nature of the IoT devices
code, it is difficult for a 3rd party (user, another ven-
dor, etc) to audit and validate the correctness of the
implementation. Because it can not access the code,
the 3rd party must rely on black-box testing, combin-
ing fuzzing techniques with functional testing. Rive-
rIoT (Paduraru et al., 2021) is an open-source frame-
work that enables the fuzzing of end-to-end IoT ap-
plications. In order to provide efficient fuzzing, Rive-
rIoT relies on a JSON specification of the Input/Out-
put (I/O) of the devices fuzzed. We’ll discuss this in
greater detail in Section 2.2.

As previously stated, the programming language
used to develop the devices’ firmware plays a signif-
icant role in the security and robustness of the sys-
tem. IoT systems and their applications are, in fact, a
highly dynamic and modular distributed system. Dis-
tributed programming and synchronization is gener-
ally regarded as a non-trivial task. There are multi-
ple frameworks and high-level languages that address
the issue of distributed programming. The AGAPIA
language (Paduraru, 2014) attempts to increase the
developer productivity and the language expressive-
ness by using a transparent communication model and
simple high level statements. AGAPIA expresses dis-

324
Stăniloiu, E., Cristea, R. and Ghimis, B.
IoT Fuzzing using AGAPIA and the River Framework.
DOI: 10.5220/0010604503240332
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 324-332
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tributed applications as modules that expose a clear,
simple and structured I/O interface.

AGAPIA is a Domain Specific Language (DSL)
built on top of the C programming language. Because
of this, (we believe that) it can easily be used with
existing firmware code to model the IoT system’s in-
teraction and expose the device’s I/O interface.

In this paper, we propose to express IoT devices
as AGAPIA modules, and represent the IoT system’s
interactions as relationships between AGAPIA mod-
ules. By doing so, we have a clear, structured, speci-
fication of the I/O of a device. We can easily extend
AGAPIA to convert the structured I/O spec to (and
from) JSON, so we can easily use RiverIoT to test
both the device and the IoT system.

The rest of the paper is structured as follows. Sec-
tion 2 details the AGAPIA language and RiverIoT.
Section 3 presents related work. Section 4 presents
the necessary AGAPIA extensions and how to lever-
age AGAPIA’s I/O models with RiverIoT. Section 5
presents an example of how AGAPIA can be used
with an IoT system. Section 6 concludes.

2 BACKGROUND

2.1 AGAPIA

There is a real need for developing a unifying pro-
gramming language that allows developers to quickly
prototype and test their software before deploying it to
an IoT device. The current trend is to write the code
in a low-level programming language, like C, that will
be compiled with specialized compilers (like the Ar-
duino IDE) for each IoT device since the code can be
run on different architectures (like PIC, AVR, ARM).

The problem with writing in a low-level program-
ming language is that it is a tedious and error prone
process, since one must carefully implement the basic
data structures and communication channels. While
this offers a lot of flexibility and control in terms of
instructions granularity, it hinders development. Even
when one has access to a powerful IoT device (like
the Raspberry PI) and can write code in a higher-level
programming language, like Python, a problem still
persists: it is difficult and time consuming to write
correct, distributed programs.

There are papers that investigate a way to pro-
gram using visual objects like (Leonardo, 2013) and
(Boshernitsan and Downes, 2004), but they fall short
on developing for the multiprocessor devices.

AGAPIA (Paduraru, 2015) is a Domain Specific
Language (DSL) that was designed to simplify the de-
velopment of parallel software using a simpler syntax

for spawning new processes via forks and integrat-
ing with Open-MPI (Gabriel et al., 2004) to deliver a
friendlier distributed and parallel programming expe-
rience.

The main component of an AGAPIA program is
the module that can be thought of a 2 dimensional
block (a square) that can receive information from
both the north and west sides and can pass informa-
tion through both east and south parts (Figure 1). The
inputs and the outputs are optional, so one can define
modules that generates data (no inputs, only outputs)
or that produce side effects when given certain inputs
(only inputs, no outputs).

Figure 1: An AGAPIA module.

The main job of a module is to transform the given
input(s) into the output(s). The basic way of defining
a module is to define its interface (the inputs and the
outputs) and based on them one can compose modules
together.

By defining a module in this way, one can com-
pose modules in three ways: vertically, horizontally,
and diagonally (Figures 2, 3, and 4). One can think of
an AGAPIA program as a two dimensional structure
(Banu-Demergian et al., 2013), composed of mod-
ules that talk to one another in order to solve a prob-
lem more efficiently. The composition model used by
AGAPIA is multiplexed both in space (Figure 2) and
time (Figure 3) (Paduraru and Stefanescu, 2020).

After defining the interface for each module, one
can write the code for that module in either C or C++
language. The user code for each module can contain
either pure C/C++ code (called here atomic) or can
contain AGAPIA instructions or compositions (Ste-
fanescu and Paduraru, 2016). The difference between
the two modes is that the atomic code must have ac-
cess to all the variables before it is scheduled, whereas
when using AGAPIA instructions one can run code in
parallel.

The AGAPIA team is currently working on pro-
ducing a graphical user interface where one can easily
define the topology of an AGAPIA program and de-
fine the interface between the modules and after that
can write the module’s code.

IoT Fuzzing using AGAPIA and the River Framework

325

Figure 2: Horizontal module composition. Figure 3: Vertical module compo-
sition.

Figure 4: Diagonal module composition.

2.2 RiverIoT

RiverIoT is an integrated testing framework that en-
ables end-to-end fuzzing for IoT systems. The frame-
work employs guided fuzzing through state of the art
methods, like concolic execution (Ghimis et al., 2020)
and AI techniques (Paduraru et al., 2019), (Paduraru.
and Melemciuc., 2018), (Paduraru. and Melemciuc.,
2018), (Paduraru et al., 2020).

There are two major challenges when fuzzing
embedded devices: 1) the hardware dependence of
the firmware and 2) the closed-source nature of
the firmware. Inspired by (Feng et al., 2020) and
(Clements et al., 2020), RiverIoT addresses both of
those issues with emulation. Using an emulator al-
lows RiverIoT to run the firmware on a general pur-
pose system, without requiring 1) the physical hard-
ware of the IoT device. When a binary is emulated,
the emulator translates each binary instruction into
an intermediate representation before translating it
again into instructions for the host machine architec-
ture. Doing so, RiverIoT can dynamically instrument
the binary instructions without needing the 2) source
code.

Since an IoT system can be logically represented
as a graph of connected components, RiverIoT can
perform fuzz testing at three different levels:
• graph level - changing the nodes and edges inside

the deployed IoT system
• node level - fuzzing each device individually
• interconnection of input/output nodes between

different nodes and their communication (i.e.,
how a node can be influenced by others producing
its input connection, or the communication chan-
nel between them).
In order to use RiverIoT, one must provide a de-

scription of the graph (nodes and edges) and the I/O
structure that the applications expect, in JSON for-
mat. With this JSON specification, the framework can
understand the communication between the different

components and it can start mutating the graph and
generate inputs for the applications.

RiverIoT expects the graph to be able to han-
dle dynamic configurations at runtime, like changing
nodes and edges. The reason for this is that the frame-
work attempts to simulate issues like device failures,
restarts, repositioning thus testing the resilience of the
system under test.

As it can be seen in the graph specification pre-
sented in Listing 1, the model is quite simple and
safe-explanatory. One must define the IoT applica-
tions (”iot-nodes”) and their communication channels
(”io-edges”). Each application is assigned an ID and
a description of it’s input and output buffers, as exem-
plified in Listing 2. Each edge, also identified by an
ID, describes the input and output node (based on the
node’s ID) and the buffer specification used for that
node (based on the node’s buffer ID).

{
"configuration -name": "Generic

Network",
"iot-nodes": {

"1": { // Buffer description },
"2": { ... }

},
"io-edges": {

"1": {
"vout": 3, // Output node
"vin": 1, // Input node
"vout -buffer": 1, // Buffer id

sending the data
"vin-buffer": 2, // Buffer id

receiving the data
},
"2": { ... }

}
}

Listing 1: Compatibility graph specification example.

The example in Listing 2 probably contains some
more fields than one might be expecting, but most of
them are actually there to provide more context to the

ICSOFT 2021 - 16th International Conference on Software Technologies

326

reader. RiverIoT is mostly interested in the ”token-
type” and ”byte-size” fields. With those two, it can
start generating inputs for the application under test.

{
"device -name": "An IP Camera",
"optional": "false",
"class": "camera",
"buffers": {

"1": {
"token -delimitators": " ",
"protocol": "HTTP",
"protocol -setting": "http://192.1

68.0.112:8080/",
"buffer -tokens": [{

"name": "Camera command",
"description": "Input that

selects command",
"token -type": "string",
"byte -size": 256,
"regex -rule": "[a-zA-Z]+=[a-zA-

Z0-9]+", // Optional
parameter to guide fuzzer
generator

"optional": false
},
{

"name": "Camera ISO Value",
"description": "Sensitivity to

light",
"token -type": "int",
"byte -size": 4,
"optional": true

}]
},

}
}

Listing 2: Single device buffers’ specification.

With the JSON specification ready, the framework
can start the fuzzing process. For each node, the
framework will perform guided fuzzing in isolation,
testing each binary program that can be deployed on
a physical device. RiverIoT employs a combination of
symbolic execution (Ghimis et al., 2020) and genetic
algorithms (Paduraru et al., 2017) to fuzz the targets
in a bid to achieve good code coverage while keeping
the runtime performance and overhead acceptable.

3 RELATED WORK

The number of IoT devices has long passed the num-
ber of people on Earth, and with the continuous de-
velopment of network technologies, computing power
and applications, the number of devices is set to keep
growing. As IoT devices become omnipresent in our
lives and homes, it is only natural to become con-

cerned about the privacy and security risks that they
bring into our lives. To address those, we need to dis-
cover the tools that enable us to test and validate com-
plex IoT systems.

Fuzz testing has proven time and time again that it
can detect real-life vulnerabilities in existing systems.
With the growing popularity of IoT, researchers are
starting to focus on fuzz testing IoT devices.

FIRM-AFL (Zheng et al., 2019) is an IoT specific,
grey-box fuzzer that runs on the AFL1 fuzzer. Be-
cause most of the IoT applications firmware is pro-
prietary, the traditional approach of re-compiling the
source code with fuzzer specific instrumentation is
not feasible. Instead, FIRM-AFL uses both user-
mode and system-mode emulation to dynamically in-
strument the binary. Combining the two emulation
types enables FIRM-AFL to achieve better perfor-
mance than only using system-mode emulation such
as AFL and AFLplusplus (Fioraldi et al., 2020). How-
ever, the firmware must run a POSIX compatible op-
erating system for it to work.

Others, like AFLNet (Pham et al., 2020) and IoT-
Fuzzer (Chen et al., 2018) capture valid messages ex-
changed by the applications to build a meaningful ini-
tial seed corpus and then replay and mutate those mes-
sages. AFLNet also builds a graph of dependencies
between messages; doing so it is able to determine
that certain messages are valid only after others: i.e.
when using the FTP protocol, an application must first
authenticate before it is able to use any other com-
mand.

Skyfire (Wang et al., 2017) is a data-driven seed
generator for fuzzer’s inputs. It consumes an input
corpus and a grammar of highly-structured inputs and
generates a probabilistic context-sensitive grammar
(PCSG) that encapsulates syntax and semantic rules.
Providing AFL with the generated PCSG they have
increased the code line coverage and funcion cover-
age by 20% and 15% respectively. Doing so, their
experiment confirms that providing an input descrip-
tion can lead generic fuzzers to perform big-step mu-
tations based on the grammar. Grammar-based testing
is also the focus of Zeller and Gopinath’s “Building
Fast Fuzzers” (Gopinath and Zeller, 2019), which fo-
cus on improving the throughput of fuzzed inputs.

One of the main challenges of fuzzing IoT devices
is the hardware-dependence of the firmware. P2IM
(Feng et al., 2020) focuses on providing a framework
that eliminates this challenge and provides a common
interface for off-the-shelf fuzzers to continuously ex-
ecute a firmware binary. P2IM is generating a periph-
eral model based on the classification of the registers
accessed by the firmware, by watching the read / write

1https://github.com/google/AFL

IoT Fuzzing using AGAPIA and the River Framework

327

requests on registers. It accesses memory-mapped
registers through the interfaces exposed by the QEMU
2 processor emulator. The reliance on QEMU restricts
the number of possible fuzzers that can be used with
the framework to the ones that have QEMU integra-
tion.

HALucinator (Clements et al., 2020) challenges
P2IM’s tightly coupled model, and proposes a de-
coupling model between the hardware and firmware
of embedded systems. Based on the fact that
firmware developers regularly develop code using
abstractions, such as Hardware Abstraction Layers
(HALs), HALucinator proposes a framework that im-
plements High-Level Emulation (HLE), by imple-
menting hooks for the HALs’ exposed functions.

Industry efforts have led to the development of
IoT I/O standards, like the MIPI general-purpose set
of standards, (MIPIAlliance, 2020), or the ONVIF
protocol for IP Camera communications (Organiza-
tion, 2020). Having accepted I/O standards and proto-
cols in place enables the interconnectivity of different
IoT devices from different vendors. Standard proto-
cols also enable the use of protocol-based fuzzers like
AFLNet.

RiverIoT proposes a framework that enables grey-
box fuzzing of IoT binaries. Like others, it uses emu-
lation to overcome the lack of source-code and per-
forms dynamic binary instrumentation to guide the
fuzzing process. It requires a description of the IoT
system, modeled using JSON, that describes the sys-
tem as a graph of nodes and edges. The JSON spec-
ification also describes the expected structure of the
Input and Output of the applications running on the
nodes. With this specification, RiverIoT is capable to
fuzz not only individual nodes, but also fuzz the entire
system by performing graph mutations.

AGAPIA (Paduraru, 2014) was designed to sim-
plify the development of parallel software and to in-
crease the developer productivity by using a trans-
parent communication model and simple high level
statements. The language aims to deliver a friendly
distributed and parallel programming experience.
AGAPIA expresses distributed applications as mod-
ules that expose a clear, simple and structured I/O
interface. AGAPIA is a Domain Specific Language
(DSL) built on top of the C programming language.
Because of this, we believe that existing firmware
code can easily be integrated in AGAPIA models, ex-
posing in a structured way the IoT system’s interac-
tion and the devices’ I/O interfaces.

2https://www.qemu.org/

4 IMPLEMENTATION

AGAPIA represents distributed applications as a
graph of connected modules with structured I/O in-
terfaces. The structured I/O interfaces and the graph
representation used by AGAPIA fits perfectly with
RiverIoT’s architecture. We propose that we leverage
this structure and build upon it to provide a simple
interface that can interact with RiverIoT’s JSON I/O
description model. We plan on doing so by adding
AGAPIA extensions that convert AGAPIA I/O Sim-
ple Interfaces to and from JSON objects.

4.1 AGAPIA Extentions

4.1.1 Generating Interface Descriptions

The AGAPIA language uses module abstractions to
represent running processes. A module performs I/O
operations by defining at most four interfaces: Input is
received on the North and West interfaces, and Output
is sent on the South and East interfaces. A module’s
interface could be represented as a tuple of interfaces:
(west; north; east; south).

Listing 5 depicts the composition scheme for Sim-
ple Interfaces (SI) and the Module’s Interface (MI), as
defined in the language grammar.

I n t e r f a c e s
SI : : = n i l | i n t | boo l | f l o a t |

s t r i n g | b u f f e r |
(SI , SI) | (SI [])

MI : : = (SI) | (SI ; SI) | (SI ;) ∗
Listing 3: AGAPIA Simple Interface and Module Interface
Grammar.

As it can be observed in Listing 5, a SI can be:
• a basic type, such as nil, int, bool, float

• a stream of characters, string, or of bytes
buffer

• a structure, by combining simple data types, (SI,
SI)

• an array of the above, SI[]
On closer inspection, the structure of a SI is very sim-
ilar to that of a JSON object.

Based on this observation, we add a new AGAPIA
macro: @JSONIFY. The novel deployment macro
will generate a JSON description, compatible with
RiverIoT, from the SI, for each module in the sys-
tem. Given a module with the following MI: (int;
(bool, float); buffer; nil), a JSON similar to
the one in Listing 4 will be generated.

ICSOFT 2021 - 16th International Conference on Software Technologies

328

{
"buffers": {

"1": {
"buffer -tokens": [{

"token -type": "int",
"byte -size": 4,

}]
},
"2": {

"buffer -tokens": [{
"token -type": "bool",
"byte -size": 4,

},
{

"token -type": "float",
"byte -size": 4,

}]
},
"3": {

"buffer -tokens": [{
"token -type": "string",
"byte -size": 1024,

}]
},
"4": {

"buffer -tokens": [{}]
}

}
}

Listing 4: @JSONIFY - Macro Generated JSON Example.

With the generated JSON description of the sys-
tem in place, we can feed it to RiverIoT to start the
fuzzing process.

4.1.2 Device Hardware Requirements

As device firmware is dependant on the hardware
specifications where it should be run, we need pro-
vide a way of reporting these requirements to Rive-
rIoT. This is required so RiverIoT will know how to
emulate the correct architecture for the firmware.

To do so, we propose adding another macro,
@RESOURCES, that uses JSON notation to define the
target architecture and required resources. An exam-
ple is presented in Listing 5.

@RESOURCES{
[{

”name ” : ”ARCH” ,
” t y p e ” : ” t e x t ” ,
” t e x t ” : ”ARM”

}]
}
@JSONIFY
module main
{ l i s t e n a : i n t } / / Nor th
{ r e a d b : bool , f : f l o a t } / / West

{
/ / . . s o u r c e code f o r program . .

}
{ speak buf : b u f f e r } / / Sou th
{ w r i t e n i l } / / Ea s t
Listing 5: @RESOURCES - Defining HW Requirements
Example.

4.2 RiverIoT to AGAPIA

As previously states, RiverIoT makes use of an I/O
specification that states how a node, from an IoT sys-
tem, conveys it’s communication protocol and how it
relates to other IoT nodes.

By extending the AGAPIA language with the
@JSONIFY and @RESOURCES deployment macros,
we’ll have a readily available JSON description of the
IoT system under test.

As depicted in Figure 2, a horizontal composition
of the modules A and B is noted as A # B.

A system modeled as A # B # C, based on the
added extensions, will generate a graph representation
similar to the one in Listing 6

{
"iot-nodes": {

"A": {
"buffers": { // Buffer

description },
"resources": { // @Resources }

},
"B": { ... },
"C": { ... }

},
"io-edges": {

"1": {
"vout": B, // Output node
"vin": A, // Input node

},
"2": {

"vout": C, // Output node
"vin": B, // Input node

},
}

}

Listing 6: Example of Generated System Graph
Description.

RiverIoT can now create a high level view of the
communication that takes place inside the IoT system
so it can provide guided, meaningful inputs to the de-
vices. Having an overview of the connected nodes
and edges, the framework can also mutate the graph
to test the system’s fault tolerance and dynamism.

IoT Fuzzing using AGAPIA and the River Framework

329

Figure 5: The AGAPIA IoT application architecture. In this
figure we have the architecture of a distributed IoT applica-
tion using the AGAPIA programming language. The input
for this application consists of a filename that contains air
pollution related information as well as the number of de-
vices. After the Reader modules convert the data into a use-
ful structure, it passes it to the Dispatcher module. Here the
tasks are distributed to the IoT devices and after the sums
(Σ), the variation (σ2) and the standard deviation (σ) is cal-
culated it will be printed on the screen.

5 EVALUATION: AGAPIA IoT
EXAMPLE

As a real-life IoT experiment we have an example
shared on our Github page. The architecture can be
seen in Figure 6. In this experiment, the Air Quality
Index (AQI) in Seoul was considered. We used the
public Kaggle dataset3. This dataset contains values
of 6 pollutants that were measured and averaged ev-
ery hour between 2017 and 2019.

We can consider that in an IoT scenario these data
are collected by IoT devices scattered around a town
and they periodically communicate with a server, re-
laying their average measurements. We would also
like to have a real-time visualization of this data so
that we can announce the people or institutions in case
of a hazardous event.

Even if this data set contains information spanning
two years, we can consider that the IoT devices pass
the information on much faster (like every minute or
second). In this case, one must have an efficient way
to process this information.

Using the formulas detailed in (Kanchan et al.,
2015) a comparison was made between using pure
MPI code and using the AGAPIA programming lan-
guage. Since AGAPIA is a high-level programming
language we considered that it will run slower than
using a pure C/MPI approach. While we consider
that the performance hit is negligible, we think that
the prototyping ability of AGAPIA programming lan-
guage outweighs the cons.

3https://www.kaggle.com/bappekim/air-pollution-in-seoul

File size(MB) Processes Serial(s) MPI(s) AGAPIA(s)

700 2 1.43 0.92 1.00
5 0.62 1.00

1024 2 2.1 1.35 1.50
5 0.9 1.50

Figure 6: Performance comparison between MPI and
AGAPIA based on the (Kanchan et al., 2015) metrics.

For the MPI approach, a basic Scatter/Gather al-
gorithm was used where the master (the server that
has received the readings from the IoT devices) sent
the averaged values of the pollutants back to the IoT
devices in order to calculate the variance and standard
deviation faster. In this case, each device had two re-
sponsibilities. Firstly they must gather the data and
send it every minute, and secondly, when master re-
quests, they must receive data, calculate the mean and
AQI and report back to master.

When using the AGAPIA programming language,
these two responsibilities were merged. Each IoT de-
vice in our cluster is represented by a module, that
can read and process the data as it comes into the IoT
device. In this way, it is easier to think of each IoT
device as a composable module and when needed, the
master can change the module that runs on a range of
devices such that they can help with other computa-
tions.

6 CONCLUSIONS AND FUTURE
WORK

This paper proposes an extension of the AGAPIA
programming language with IoT-aware deployment
macros that enables a fast and simple integration with
a testing framework, such as RiverIoT. The added ex-
tensions generate a JSON specification of the entire
system under test (SUT), describing both the graph of
connected IoT devices, as well as their I/O communi-
cation interfaces. By doing so, it provides the testing
framework with a high level view of the entire system,
as well as the expected input and output of each node.
The generated specification is read by the orchestrat-
ing component of RiverIoT which decides if it’s going
to perform input generation or graph mutations for the
SUT. Overall, the paper explores how small additions
to existing programming languages can improve the
testing and validation of IoT systems.

ACKNOWLEDGMENT

This work was supported by a grant of Romanian
Ministry of Research, Innovation and Digitization

ICSOFT 2021 - 16th International Conference on Software Technologies

330

UEFISCDI no. 401PED/2020.

REFERENCES

Banu-Demergian, I. T., Paduraru, C., and Stefanescu, G.
(2013). A new representation of two-dimensional pat-
terns and applications to interactive programming. In
International Conference on Fundamentals of Soft-
ware Engineering, pages 183–198. Springer.

Boshernitsan, M. and Downes, M. S. (2004). Visual pro-
gramming languages: A survey. Citeseer.

Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang,
X., Lau, W. C., Sun, M., Yang, R., and Zhang, K.
(2018). Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing. In NDSS.

Clements, A. A., Gustafson, E., Scharnowski, T., Grosen,
P., Fritz, D., Kruegel, C., Vigna, G., Bagchi, S.,
and Payer, M. (2020). Halucinator: Firmware re-
hosting through abstraction layer emulation. In 29th
{USENIX} Security Symposium ({USENIX} Security
20), pages 1201–1218.

English, K. V., Obaidat, I., and Sridhar, M. (2019). Exploit-
ing memory corruption vulnerabilities in connman for
iot devices. In 2019 49th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN), pages 247–255. IEEE.

Feng, B., Mera, A., and Lu, L. (2020). P2im: Scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages
1237–1254.

Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. (2020).
AFL++: Combining incremental steps of fuzzing re-
search. In 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20). USENIX Association.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Don-
garra, J. J., Squyres, J. M., Sahay, V., Kambadur, P.,
Barrett, B., Lumsdaine, A., Castain, R. H., Daniel,
D. J., Graham, R. L., and Woodall, T. S. (2004). Open
MPI: Goals, concept, and design of a next generation
MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, Bu-
dapest, Hungary.

Ghimis, B., Paduraru, M., and Stefanescu, A. (2020). River
2.0: an open-source testing framework using ai tech-
niques. In Proceedings of the 1st ACM SIGSOFT
International Workshop on Languages and Tools for
Next-Generation Testing, pages 13–18.

Gopinath, R. and Zeller, A. (2019). Building fast fuzzers.
arXiv preprint arXiv:1911.07707.

Hernandez, G., Arias, O., Buentello, D., and Jin, Y. (2014).
Smart nest thermostat: A smart spy in your home.
Black Hat USA, (2015).

Kanchan, K., Gorai, A., and Goyal, P. (2015). A review on
air quality indexing system. Asian Journal of Atmo-
spheric Environment, 9:101–113.

Leonardo, P. (2013). Child programming: an adequate

domain specific language for programming specific
robots.

Li, S., Da Xu, L., and Zhao, S. (2018). 5g internet of things:
A survey. Journal of Industrial Information Integra-
tion, 10:1–9.

MIPIAlliance (2020). Mipi white paper: Enabling the iot
opportunity. Technical report, MIPIAlliance.

Organization, O. (2020). Profile m – release candidate.
Technical report, ONVIF Organization.

Paduraru, C. (2015). Research on agapia language, com-
piler and applications. Ph. D. dissertation.

Paduraru., C. and Melemciuc., M. (2018). An automatic
test data generation tool using machine learning. In
Proceedings of the 13th International Conference on
Software Technologies - Volume 1: ICSOFT,, pages
472–481. INSTICC, SciTePress.

Paduraru, C., Melemciuc, M.-C., and Paduraru, M. (2019).
Automatic test data generation for a given set of ap-
plications using recurrent neural networks. In van
Sinderen, M. and Maciaszek, L. A., editors, Software
Technologies, pages 307–326, Cham. Springer Inter-
national Publishing.

Paduraru, C., Melemciuc, M.-C., and Stefanescu, A. (2017).
A distributed implementation using apache spark of a
genetic algorithm applied to test data generation. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, pages 1857–1863.

Paduraru, C., Paduraru, M., and Stefanescu, A. (2020). Op-
timizing decision making in concolic execution using
reinforcement learning. In 2020 IEEE International
Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW), pages 52–61.

Paduraru, C. I. (2014). Dataflow programming using
agapia. In 2014 IEEE 13th International Symposium
on Parallel and Distributed Computing, pages 87–94.
IEEE.

Paduraru, C. I., Cristea, R., and Staniloiu, E. (2021). Rive-
riot - a framework proposal for fuzzing iot applica-
tions. International Conference on Software Engi-
neering ICSE 2021, Workshop on Software Engineer-
ing Research and Practices for the IoT (SERP4IoT),
page to appear.

Paduraru, C. I. and Stefanescu, G. (2020). Adaptive vir-
tual organisms: A compositional model for complex
hardware-software binding. Fundamenta Informati-
cae, 173(2-3):139–176.

Pham, V.-T., Böhme, M., and Roychoudhury, A. (2020).
Aflnet: a greybox fuzzer for network protocols. In
2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages
460–465. IEEE.

Stefanescu, G. and Paduraru, C. I. (2016). Self-assembling
heterogeneous interactive systems. In Proceedings
of the International Colloquium on Software-intensive
Systems-of-Systems at 10th European Conference on
Software Architecture, pages 1–7.

Wang, J., Chen, B., Wei, L., and Liu, Y. (2017). Sky-
fire: Data-driven seed generation for fuzzing. In 2017
IEEE Symposium on Security and Privacy (SP), pages
579–594. IEEE.

IoT Fuzzing using AGAPIA and the River Framework

331

Wurm, J., Hoang, K., Arias, O., Sadeghi, A.-R., and Jin, Y.
(2016). Security analysis on consumer and industrial
iot devices. In 2016 21st Asia and South Pacific De-
sign Automation Conference (ASP-DAC), pages 519–
524. IEEE.

Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H.,
and Sun, L. (2019). Firm-afl: high-throughput grey-
box fuzzing of iot firmware via augmented process
emulation. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 1099–1114.

ICSOFT 2021 - 16th International Conference on Software Technologies

332

