Khaled, S., El-Tazi, N., Mokhtar, H. (2018). Detecting Fake 
Accounts  on  Social  Media.  2018  IEEE  International 
Conference  on  Big  Data  (Big  Data). 
doi:10.1109/bigdata.2018.862191 
Rao,  K.,  Gutha,  S.,  Raju,  B.  (2020).  Detecting  Fake 
Account  On  Social  Media  Using  Machine  Learning 
Algorithms.  International  Journal  of  Control  and 
Automation. 13. 95-100 
Isaac,  D.,  Siordia,  O.,  Moctezuma,  D.,  (2016).  Features 
combination  for  the  detection  of  malicious  Twitter 
accounts. 1-6. 10.1109/ROPEC.2016.7830626 
Bouckaert, R., Eibe, F., Hall, M., &   Holmes, G., 
Pfahringer,  B.,  Reutemann,  P.,  Witten,  I.  (2010). 
WEKA—experiences with a Java Open-Source Project. 
Journal of Machine Learning Research. 
Cresci, S., Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, 
M.  (2015).  Fame  for  sale:  efficient  detection  of  fake 
Twitter followers. arXiv:1509.04098 09/2015. Elsevier 
Decision Support Systems, Volume 80, Pages 56–71. 
Babatunde,  O.,  Armstrong,  L.,  Leng,  J.,  Diepeveen,  D. 
(2014). A Genetic Algorithm-Based Feature Selection. 
International  Journal  of  Electronics  Communication 
and Computer Engineering, 5(4), 899-905  
Ramos-Pollán,  R.,  Guevara-López,  M.A.,  Suárez-Ortega, 
C.  et  al.  (2012)  Discovering  Mammography-based 
Machine  Learning  Classifiers  for  Breast  Cancer 
Diagnosis.  J  Med  Syst  36,  2259–2269  (2012). 
DOI:10.1007/s10916-011-9693-2  
Ringnér M. (2008) What is principal component analysis? 
Nat Biotechnol. Mar;26(3):303-4. doi: 10.1038/nbt030 
8-303. PMID: 18327243. 
Zar,  J.  (2014).  Spearman  Rank  Correlation:  Overview. 
Wiley StatsRef: Statistics Reference Online 
Alsaleh,  M.,  Alarif,  A.,  Al-Salman,  A.,  AlFayez,  M., 
& Almuhaysin,  A.  (2014). TSD: Detecting Sybil 
Accounts  in  Twitter.  2014  13th  International 
Conference  on  Machine  Learning  and  Applications, 
462-469. doi:10.1109/ICMLA.2014.8 
Kotsiantis,  S.  (2007).  Supervised  Machine  Learning:  A 
Review  of  Classification  Techniques.  Informatica 
(Ljubljana). 31. 
Xindong, W., Vipin, K., Quinlan, R., Ghosh, J., Yang, Q., 
Motoda, H., Mclachlan, G., Liu, B., Yu, P., Zhou, Z., 
Steinbach, M., Hand, D., Steinberg, D., (2007). Top 10 
algorithms in data mining. Knowledge and Information 
Systems. 14. 10.1007/s10115-007-0114-2. 
Bhargava,  N.,  Sharma,  G.,  Bhargava,  R.,  Mathuria,  M. 
(2013).  Decision  Tree  Analysis on  J48  Algorithm for 
Data  Mining.  International  Journal  of  Advanced 
Research  in  Computer  Science  and  Software 
Engineering  Volume  3,  Issue  6,  (2013  June).  ISSN: 
2277 128X  
Jehad, A., Rehanullah, K., Nasir, A., Imran, M. (2012 SEP). 
Random  Forests  and  Decision  Trees.  International 
Journal  of  Computer  Science Issues (IJCSI). vol 9, 
Issue 5, No. 3. 1694-0814 
Pretorius, A., Bierman, S., Steel, S. (2016). A meta-analysis 
of  research  in  random forests  for  classification. IEEE 
Conference  2016.  1-610.1109/RoboMech.2016.78131 
71 
Mennitt, D., Sherrill, K., Fristrup, K. (2014). A geospatial 
model  of  ambient  sound  pressure  levels  in  the 
contiguous United States. The Journal of the Acoustical 
Society  of  America  (2014  MAY).  DOI: 
10.1121/1.4870481 
Kolahdouzan, M.,  Shahabi, C. (2004). Voronoi- Based  K 
Nearest  Neighbor  Search  for  Spatial  Network 
Databases. Proceeding of the 30th VLDB Conference. 
30. 840-851. 10.1016/B978-012088469-8.50074-7. 
Mustaqim, T., Umam, K., Muslim, M. (2020). Twitter text 
mining  for  sentiment  analysis  on  government’s 
response  to  forest  fires  with  vader  lexicon  polarity 
detection and k-nearest neighbor algorithm. Journal of 
Physics:  Conference  Series  1567.  032024.  DOI: 
10.1088/1742-6596/1567/3/03202 
Moosavian, A., Ahmadi, H., Tabatabaeefar, A.,  Khazaee, 
M.  (2012).  Shock  and  Vibration  20  (2013)  263–272 
263.  DOI  10.3233/SAV-2012-00742blog/2016/6/4/ 
time-series-analysis-fitbit-using-dtw-and-knn 
Aridas, C., Karlos, S. Kanas, V. Fazakis, N.  Kotsiantis, S. 
(2019).  Uncertainty  Based  Under-Sampling  for 
Learning  Naive  Bayes  Classifiers  Under  Imbalanced 
Data  Sets.  IEEE  Access.  PP(99).  1-1.  DOI:10.1109/ 
ACCESS.2019.2961784 
Suppala,  K.,  Rao,  N.  (2019).  Sentiment  Analysis  Using 
Naive  Bayes  Classifier.  International  Journal  of 
Innovative  Technology  and  Exploring  Engineering 
(IJITEE)  ISSN:  2278-3075,  Volume-8  Issue-8  June, 
2019. 
Raschka, S.  (2014). Naive Bayes and Text  Classification. 
arXiv:1410.5329v4 (Feb 2017).