
Transfer Learning for Just-in-Time Design Smells Prediction using
Temporal Convolutional Networks

Pasquale Ardimento1 a, Lerina Aversano2 b, Mario Luca Bernardi2 c, Marta Cimitile3 d and
Martina Iammarino2 e

1Computer Science Department, University of Bari Aldo Moro, Via E. Orabona 4, Bari, Italy
2University of Sannio, Benevento, Italy

3Unitelma Sapienza, University of Rome, Italy

Keywords: Design Smells Prediction, Software Quality, Deep Learning, Transfer Learning.

Abstract: This paper investigates whether the adoption of a transfer learning approach can be effective for just-in-time
design smells prediction. The approach uses a variant of Temporal Convolutional Networks to predict design
smells and a carefully selected fine-grained process and product metrics. The validation is performed on a
dataset composed of three open-source systems and includes a comparison between transfer and direct learn-
ing. The hypothesis, which we want to verify, is that the proposed transfer learning approach is feasible to
transfer the knowledge gained on mature systems to the system of interest to make reliable predictions even
at the beginning of development when the available historical data is limited. The obtained results show that,
when the class imbalance is high, the transfer learning provides F1-scores very close to the ones obtained by
direct learning.

1 INTRODUCTION

In software engineering, design smells are defined as
aspects that violate the fundamental principles of soft-
ware design and negatively affect it (Suryanarayana
et al., 2015). Unmanaged design smells can often
lead to significant technical problems and increase
the effort required for maintenance and evolution
(Aversano. et al., 2020). Several approaches and
tools are recently proposed to identify design smells
(Alkharabsheh et al., 2018): some of these (Sharma
et al., 2019; Al-Shaaby, 2020) use machine learning
and deep learning techniques to perform both design
smell detection and prediction.

Deep neural network approaches have proven to
be effective in metric-based prediction tasks but are
thwarted by software systems specific properties.
First of all, software projects at the beginning of their
development cycle, have insufficient data (Kitchen-

a https://orcid.org/0000-0001-6134-2993
b https://orcid.org/0000-0003-2436-6835
c https://orcid.org/0000-0002-3223-7032
d https://orcid.org/0000-0003-2403-8313
e https://orcid.org/0000-0001-8025-733X

ham et al., 2007) to allow training of deep neural net-
works and even mature systems usually have imbal-
anced smelly revisions ratios making training steps
very difficult or even unfeasible. This paper inves-
tigates whether the adoption of a transfer learning ap-
proach can be effective in mitigating both problems.
Transfer learning (Lumini and Nanni, 2019) allows
training a prediction model using knowledge gathered
from other projects with known smells. This helps to
obtain satisfying predictions even in the early stage
of the development life cycle. However, to increase
the data availability, system evolution data is collected
at the commit level through the assessment of inter-
nal quality metrics and process development metrics.
The specific process metrics allow us to also capture
the software development process and the developers’
behavior. This study proposes an adequate neural net-
work architecture effective for the given prediction
task. The reference architecture is a Temporal Con-
volutional Network (TCN): this kind of neural net-
work is characterized by casualness in the convolu-
tion architecture design (Bai et al., 2018) making it
suitable to our prediction problem where the causal
relationships among the metrics evolution and design
smells presence should be learned. To validate the

310
Ardimento, P., Aversano, L., Bernardi, M., Cimitile, M. and Iammarino, M.
Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks.
DOI: 10.5220/0010602203100317
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 310-317
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



proposed approach, we conducted an experiment on
three well-known open-source software systems and
we compare transfer and direct learning results.

In Section 2 some backgrounds about transfer
learning and design smell are discussed. In Section
3 the related work is discussed. The proposed trans-
fer/direct learning approach, the adopted features, the
data extraction process and the TCN architecture are
described in Section 4. The experiment description
is provided in Section 5, while the experiment results
are discussed in Section 6. Finally, in Section 7 and
8 respectively, the threats to validity and the conclu-
sions are discussed.

2 BACKGROUND

2.1 Transfer Learning

In some real-world machine learning scenarios, train-
ing data and testing data are not taken from the same
domain because there are cases where training data is
expensive or difficult to collect. Therefore, there is a
need to create high-performance learners trained with
more easily obtained data from different domains.
This methodology is referred to as transfer learning.
With the transfer learning approach, a neural network
trained for a task is reused as a model on a second task
(Lumini and Nanni, 2019). Due to the wide applica-
tion prospects, transfer learning has become a popular
and promising area in machine learning. In (Zhuang
et al., 2020) there is a survey that systematizes the ex-
isting transfer learning researches, as well as summa-
rizes and interprets the mechanisms and the strategies
in a comprehensive way, which may help readers have
a better understanding of the current research status
and ideas. There are different categories of transfer
learning. The instance-based transfer learning utilizes
similar instances in the source domain to establish the
prediction model for the target domain. One of the
most representative instance-based transfer learning
methods is TradaBoost proposed by Dai et al. (Dai
et al., 2007), which is based on AdaBoost. Another
one is the kernel mean matching method after the in-
stances are redistributed in reproducing kernel Hilbert
space (Huang et al., 2006). The feature-based transfer
learning, the main idea of which is to use the source
domain instances to generate instances in the target
domain. For the transfer between two domains of
different characteristics, Nam and Kim (Nam et al.,
2017) migrated through two steps of feature selection
and connection and achieved relatively good perfor-
mance. An additional feature-based transfer learning
method is proposed by Pan et al. (Pan et al., 2011).

This method proposes a representation through a new
learning method, transfer component analysis (TCA),
for domain adaptation to map the source and target
domains from the original feature space to a poten-
tial one. In this paper, we used a special case of
transfer learning, called domain adaptation (Pan et al.,
2011). In this case, source (external projects) and
target (project to be predicted) domains are different
while sharing the same learning task. In particular,
we considered a model that has learned to classify
and predict smells in software projects and is used for
classifying smells in a different software project.

2.2 Design Smells

This study refers to the design smells reported in
(Girish Suryanarayana, 2014), and uses the known
Designite software design quality assessment tool
(Sharma et al., 2016) to detect these design smells
from the software systems. The design smells con-
sidered in this study are the following:

• Multifaced Abstraction (MA): It arises when
more responsibilities are designated to the same
abstraction.

• Unutilized Abstraction (UNA): It indicates that
there is an abstraction that is (i) unused, (ii) not
directly used or, (iii) not reachable. This smell
can be of two types, respectively named Unrefer-
enced Abstractions and Orphan Abstractions. The
former are unused concrete classes. The latter
are stand-alone interfaces/abstract classes without
any subtypes.

• Unnecessary Abstraction (UA): It arises when in
the software design unnecessary abstraction is in-
troduced. It causes the violation of the abstract
principle asserting that the abstract entities should
have only one responsibility and this responsibil-
ity should have high importance.

• Imperative Abstraction (IA): It indicates that an
operation is transformed into a class. However,
this smell looks like a class with a unique method.

• Deficient Encapsulation (DE): It occurs when the
abstraction encapsulation is not sufficient. There
are two possible types: lenient and vulnerable en-
capsulation. Lenient encapsulation occurs when a
member of abstraction can access in a more per-
missive way than required. The latter indicates the
vulnerability of an abstraction state for misuse or
corruption (implementation details are not more
adequately protected).

• Unexploited Encapsulation (UE): It arises when
the explicit type checks are used by client codes

Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks

311



while the variation in type already encapsulated
within a hierarchy should be exploited.

• Broken Modularization (BM): It indicates that
data or methods that should be into a single ab-
straction are distributed along with several ab-
stractions.

• Cyclically-dependent Modularization (CMD): It
arises when two or more class-level abstractions
are directly or indirectly dependent on each other.
In this case, tight coupling is created between
these abstractions.

3 RELATED WORK

Several detection approaches and tools (Imran, 2019;
Alkharabsheh et al., 2018) for design smells are re-
cently proposed. Mainly, these approaches allow
detecting design smells (and the consequent design
problems) once they already exist in the code. Other
studies explore the adoption of machine learning
smell techniques (Sharma et al., 2019; Al-Shaaby,
2020) as an alternative to traditional design smells de-
tection approaches. In particular, in (Sharma et al.,
2019) existing metric-based methods and different
deep learning architectures (i.e., Convolution Neu-
ral Networks (CNNs), Recurrent Neural Networks
(RNNs)) are used to detect one design smell in C
code. However, authors in (Al-Shaaby, 2020) high-
light that the research in the field of application of
machine learning algorithms to detect code smells is
quite immature. In this context, authors in (Sharma
et al., 2019; Di Nucci et al., 2018) highlight that a lim-
itation of the existing studies is that they never con-
sider the possibility to exploit the availability of tools
and data about code smells in a programming lan-
guage as the training set for machine learning mod-
els that address similar problems on other languages.
Starting from this idea, in this study, we aim to use
the data extracted from software projects with a high
amount of design smells for training deep learning
models useful to predict design smells in projects with
a more limited number of data. To the best of our
knowledge, this is the first time that transfer learn-
ing is applied to design smell prediction using metric-
based supervised learning. Differently from (Sharma
et al., 2019) that exploits transfer learning for de-
sign smell detection from source code, in this study
we propose a metric-based approach introducing both
product and process metrics to perform design smell
prediction at class and commit level across a corpus
of open-source software projects, comparing direct
and transfer learning performances. Moreover, this

study adopted a Temporal Convolutional Networks
(TCN) approach characterized by casualness in the
convolution architecture design (Bai et al., 2018) that
make it particularly suitable for our prediction prob-
lem where the causal relationships among the metrics
evolution over time and design smell presence need to
be learned.

4 THE TRANSFER LEARNING
APPROACH

In this study, classifiers are trained using historical
data from different adult systems that have similar
properties. The built classifiers are then used to pre-
dict design smells on the system under study. Figure 2
depicts the performed transfer learning schema. The
upper side of the figure shows the learning transfer
activities allowing to improve the transfer of train-
ing. Starting from software project historical data,
we cleaned the raw dataset by removing incomplete
and wrong sampled data sessions and normalizing
the attributes (min-max normalization). Then the set
of considered features are extracted according to the
proposed data extraction process (the proposed fea-
ture model and the data extraction process will be de-
scribed in the following section). The data extraction
step generates an integrated dataset collecting design
smells data and metrics data. This allows to start of
the training of the classifiers (one for each considered
design smell) and generates the transfer model. We
defined a set of labeled traces T = (M, l), where M is
an instance associated with a label l ∈ {U1, . . . ,Un},
which represents a design smell introduction. For
each M, the process computes a feature vector Vf sub-
mitted to the model in the training phase. To perform
validation during the training step, a 10-fold cross-
validation is used (Stone, 1974). When a target soft-
ware project is evaluated a new data extraction pro-
cess is executed (lower side of the figure). In this
step, the process and product metrics are extracted
and sent to the classifier. The classifier takes as in-
put the transfer model and the metrics data to perform
the design smell prediction. More details about the
proposed TCN classifier will be reported in Section
4.2.

4.1 Data Extraction

Figure 1 depicts the data extraction steps required for
the training process. First of all, for each considered
system, the change (revision) history is gathered com-
mit per commit from the GitHub repository. All the
commits log messages so obtained are, then, analyzed

ICSOFT 2021 - 16th International Conference on Software Technologies

312



and parsed to report all the changes of the files con-
tained in the code repository. In particular, as reported
in the Commits Log Analyzer box, the extracted com-
mits logs are analyzed to obtain the process metrics
dataset while the commits’ source code is used to per-
form smell detection and product metrics evaluation
(Designite box and CK+JaSoMe box). In this step,
the analysis of the source code at each commit has
been performed to understand and measure its evo-
lution over time, commit per commit. The product
metrics are computed by using JaSoMe1 (Java Source
Metrics) and CK2 object-oriented metrics extractors.
They are both open-source code analyzers that mine
internal quality metrics from projects based on source
code alone.

To detect the design smells, the Designite3 tool
has been used. It is a software design and quality as-
sessment tool allowing to perform a comprehensive
design smells detection and a detailed metrics analy-
sis.

The obtained smell dataset and the product met-
rics dataset are related through a smell-metrics match-
ing activity. Finally, the process metrics and the prod-
uct metrics (within their related smells) are integrated
and stored in a single data set.

As product metrics, we considered the well-
known Chidamber and Kemerer metrics (Chidamber
and Kemerer, 1994) and the MOOD Metrics (e Abreu
and Carapuça, 1994). While, as process metrics, use-
ful to capture both the kind of changes that are per-
formed to source code elements and the properties of
authors and committers performing such change, we
considered the following ones defined as follows:

• Developer Seniority (SEN): It measures the
time, expressed in days, between the first commit
and the last commit authored by developer di. Its
formula is:

SEN(c j,di) = Cd(cj)−Fc(di)

where:
c j: the commit for which we want to evaluate the
author’s seniority.
di: the developer who authored the commit cj.
Cd(cj): the date of the commit cj.
Fc(di): the date of the first commit authored in
the source code repository by developer di.

• Owned Commit (OC): It considers the set of file
owners as the committers that performed together,
on the file, a given percentage (specifically, 50%)

1https://github.com/rodhilton/jasome
2https://github.com/mauricioaniche/ck
3https://www.designite-tools.com

of the total number of commits that occurred on
that file. In our context, we tag as owners the set of
the developers that collectively performed at least
half of the total changes on that file.

• Number of File Owners (NFOWN): Given the
definitions above, this can be defined, for a file f j
and a commit ck, as the cardinality of the owners
of the file f j at commit ck.

• Owned File Ratio (OFR): For a developer di, a
file f j and a commit ck, this is the ratio R(di, f j,ck)
of changes performed by di with respect to the to-
tal changes performed by all developers on file f j
from the start of the observation period (i.e., in the
commits interval [cs,. . . ,ck]).

Additional process metrics describe file or devel-
oper properties and can be easily computed using
VCS logs. The Time since the last commit (TSLC),
for a given file f j and a commit ck, is the number of
days passed since the last commit on f j. For a given
developer di, the Commit Frequency (CF) is the
number of commits by month authored by di whereas
the Mean time between commits (MTBC) is the av-
erage time (in days) between all subsequent commits
authored by di.

4.2 TCN Classifier

This study is based on a TCN architecture. In par-
ticular, in the TCN network, we use a hierarchical
attention mechanism through the network levels in-
troduced by (Yang et al., 2016) and applied in (Ardi-
mento. et al., 2020), because it helps the standard
TCN architecture to learn more efficiently the com-
plex temporal relationships present in multivariate
time series of internal quality metrics evolution. Ac-
cording to this architecture, if the network has n hid-
den levels, a matrix Li is defined, it includes the con-
volutional activations on each layer i (with i = 0,1, ...,
n ) defined as:

Li = [li
0, l

i
1, ..., l

i
T ],Li ∈ RK×T ,

where K represents the number of filters present in
each level.

During the training phase, validation is done
through 10-fold cross-validation (Stone, 1974). Fur-
thermore, the evaluation of the trained prediction
model is carried out using real data that the network
has never seen before, data contained in the test set
made of classes, and therefore of smells. In particu-
lar, the architecture in question was trained using the
cross-entropy loss function (Mannor et al., 2005).

The network was developed using the Python pro-
gramming language and, in particular, the libraries

Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks

313



Github

MOOD+Aniche/CK+JaSoMe
Product
Metrics

Evaluation

Smell-Metrics
Matching

Commits

Log


analyzer

Commits
Source
code

Smell Dataset

Product Metrics Dataset

Process Metrics Dataset
Commits Log

Integrated
Dataset

Dataset
Integration

Revision
Extraction

Designite

Design
Smell
Detection

Figure 1: Toolchain used in the data extraction process.

Integrated Dataset

Transfer Model
Software Projects Data

Target Software Project

Data
Extraction

Metrics 
Data

Model
Training

Design Smells Data

Data
Extraction

Metrics 
Data

Design
Smell
Predic�on

Figure 2: Transfer Learning for Cross-Project Design Smells Prediction.

Tensorflow4 and Keras5 were used to implement the
designed deep neural network architecture.

5 EXPERIMENT DESCRIPTION

The research goal discussed in the introduction can be
formulated as the following research question:

RQ: What is the performance of the TCN model to
predict design smells occurrences when trained on the
proposed features set on data collected across differ-
ent systems?
This research question investigates if the performance
of the TCN model is effective when trained using
Transfer Learning (TL), i.e. trained on a set of soft-
ware systems different than those on which it is val-
idated. The results are compared to those obtained
with Direct Learning considered as the baseline in our

4https://www.tensorflow.org
5https://keras.io

work. This baseline is built on a learning approach
based on the TCN model using data extracted from
the same system under study. For all these models,
hyper-parameters optimization is performed and the
comparison is conducted comparing models with the
best configurations of each considered model (due to
space constraints, we only report information about
best parameter configurations for the TCN model).

To evaluate the performance of the prediction, the
F1 score is computed. It is evaluated as the harmonic
average of the precision and the recall metrics. Pre-
cision is the number of corrected positive results di-
vided by the number of all positive results returned
by the models. The recall is the number of corrected
positive results divided by the number of all relevant
samples.

Also notice that we train a single classifier for
each design smell since the relationships among the
features and the smells can be quite different and a
single neural multinomial classifier would be unable
to perform adequately.

ICSOFT 2021 - 16th International Conference on Software Technologies

314



Table 1: An overview of the analyzed systems (commits and revisions by system and smell).

Systems→ ZooKeeper JFreeChart Jackson DF
From—To dates→ Nov 2007—Mar 2020 Jun 2007—Feb 2020 Jan 2011—Mar 2020

Total commits→ 2101 3786 1901
Total revisions→ 1264735 403467 253176

Imperative Abstraction (IA) 14088 2097 0
Multifaceted Abstraction (MA) 1021 1781 0
Unnecessary Abstraction (UA) 25259 3823 85166
Unutilized Abstraction (UNA) 796138 285607 134819
Deficient Encapsulation (DE) 163204 57478 185501

Unexploited Encapsulation (UE) 5028 0 0
Broken Modularization (BM) 15418 1774 1040

D
es

ig
n

Sm
el

ls

�

Cyclic D. Modularization (CDM) 146644 36591 5244

Table 2: Class imbalance for the analyzed systems.

Class imbalance ZooKeeper JFreeChart Jackson DF
IA 97.77 98.96 -

MA 99.83 88.11 -
UA 96.00 98.10 32.72

UNA 25.89 41.57 6.50
DE 74.19 71.51 46.54
UE 99.20 - -
BM 97.56 99.12 99.17

CDM 76.81 81.86 95.86

5.1 Dataset Construction

In the experiments, a dataset composed of data
gathered from three Java open-source projects
(ZooKeeper 6, JFreeChart 7, Jackson DataFormats
8) is considered. The selected software projects9

have these characteristics: i) their programming lan-
guage is Java; ii) the corresponding repository is not
archived and more than 20 releases are available; iii)
they differ for application domains, sizes, number of
revisions; iv) they are adopted in other studies. The
project names are reported in the first row of Ta-
ble 1. The table also reports for each considered de-
sign smell the number of occurrences in the analyzed
system.

6 DISCUSSION OF RESULTS

In this section, results obtained from direct learning
and transfer learning are shown and compared.

Table 3 reports the F1-score obtained, for the best
hyper-parameters combination, by the TCN model

6https://github.com/apache/zookeeper
7https://github.com/jfree/jfreechart
8https://github.com/FasterXML/jackson-dataformat-xml
9A replication package containing the dataset used for train-
ing is provided at https://bit.ly/3lpEoMq

Table 3: Best F1-score for each smell and each system ob-
tained by TCN model using direct learning approach.

Software Systems
Design Smells ZooKeeper JFreeChart Jackson DF DL F1

IA 0,12 0,45 - 0,45
MA 0,24 0,33 - 0,33
UA 0,45 0,55 0,97 0,97

UNA 0,94 0,96 0,96 0,96
DE 0,89 0,96 0,95 0,96
UE 0,68 - - 0,68
BM 0,38 0,56 0,28 0,65

CDM 0,91 0,94 0,72 0,94

Table 4: Best F1-score for each smell and each system ob-
tained by TCN model using transfer learning approach.

Software Systems
Design Smells ZooKeeper JFreeChart Jackson DF TL F1

IA 0,13 0,42 - 0,42
MA 0,22 0,31 - 0,31
UA 0,43 0,53 0,94 0,94

UNA 0,92 0,91 0,93 0,93
DE 0,89 0,91 0,90 0,91
UE 0,76 - - 0,76
BM 0,33 0,54 0,26 0,54

CDM 0,92 0,94 0,76 0,94

for each considered design smell when direct learn-
ing (DR) is used. The table shows that TCN perfor-
mance strongly depends on the smell. Best perfor-
mance is obtained by the UNA and DE smells. For
some smells, the F1 score can not be evaluated since
they are not present in the analyzed systems. To better
understand the obtained results, in Table 2, the class
imbalance evaluated for each analyzed system is re-
ported. It represents the level of balancing between
smelly-not smelly classes in the system and its val-
ues range between 0 and 100. A value equal to 0
means absence of unbalance while a value equal to
100 means that there is a total unbalance of smelly
and not-smelly classes. Notice that for systems with
higher class imbalance, e.g. IA and MA, the ob-
tained performance is low. Table 4 shows the best
F1-score for the best hyper-parameters combination,
by the TCN model for each considered design smell

Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks

315



Figure 3: F1-score for TCN with direct learning (DL-Best
F1) vs TCN with transfer learning (TL-Best F1).

when transfer learning (TL) is used. The table shows
that, also in this case, good performance is obtained
for all the systems with a lower class imbalance. It
is also worth noting that for class imbalance smaller
than 95% TCN F1-score is always over 0.9. This sug-
gests that there is a critical threshold behind which the
training performance starts to deteriorate.

A comparison between the F1-score of DL and
TL is depicted in Figure 3. It can be observed that
for some kind of design smells the obtained val-
ues are very satisfying, i.e. for Unutilized Abstrac-
tion, Unnecessary Abstraction, Deficient Encapsula-
tion, Cyclically Dependent Modularization. For some
other kind of design smells the F1-score results are
not positive, i.e. the Imperative Abstraction and Mul-
tifaced Abstraction design smells. However, the more
interesting aspect of these results is that the transfer
learning results obtained in any kind of design smell
are comparable to the ones obtained by direct learn-
ing. This means that the obtained model, especially in
the case of design smell with a high F1-score, can be
effectively used to predict changes introducing smells
even in software projects without a sufficient number
of available data. This means that transfer learning
can effectively be used when to predict the design
smell of new projects with limited history.

7 THREATS TO VALIDITY

We analyzed and mitigated the following threats to
the validity of our study:

• accuracy of the tools: three widespread tools
respectively called Designite, CK, and JaSoMe
were used;

• wrong evaluation of the design smells: several ex-
perts performed sample checks that include man-
ual inspection and majority voting of evaluated
data ensuring consistency;

• meaningfulness of metrics: an accurate process of
data gathering was performed.

• generalization of results: well-known software
projects with different sizes, dimensions, do-
mains, timeframe, and number of commits were
selected.

Finally, our work only considers systems written in
Java because the tools used to perform design smells
detection and metrics assessment exclusively work
only on Java programs. For this reason, we cannot
generalize the obtained results to systems written in
different languages. Similarly, we did not consider
projects belonging to the industrial context.

8 CONCLUSIONS

In this study, we proposed and evaluated the adoption
of a transfer learning approach to address the just-in-
time design smells prediction problem. The empiri-
cal results show that when the class is well balanced
the prediction model is effective for direct learning
and is usable as an alternative with comparable re-
sults. Moreover, the results show that transfer learn-
ing provides F1 scores very close to the ones obtained
by direct learning. To generalize our findings, future
work will be devoted to replicating this study on more
and larger open-source systems. Another research di-
rection is related to experimenting with novel neural
network architectures suitable for multi-variate time
series prediction problems.

REFERENCES

Al-Shaaby, A. and, A. H. A. M. B. (2020). Smell detec-
tion using machine learning techniques: A systematic
literature review. Arab J Sci Eng 45, 2341-2369.

Alkharabsheh, K., Crespo, Y., Manso, E., and Taboada,
J. A. (2018). Software design smell detection: a sys-
tematic mapping study. Software Quality Journal,
pages 1–80.

Ardimento., P., Aversano., L., Bernardi., M., and Cimi-
tile., M. (2020). Temporal convolutional networks for
just-in-time software defect prediction. In Proceed-
ings of the 15th International Conference on Software
Technologies - ICSOFT,, pages 384–393. INSTICC,
SciTePress.

Aversano., L., Bernardi., M., Cimitile., M., Iammarino., M.,
and Romanyuk., K. (2020). Investigating on the rela-

ICSOFT 2021 - 16th International Conference on Software Technologies

316



tionships between design smells removals and refac-
torings. In Proceedings of the 15th International Con-
ference on Software Technologies - ICSOFT,, pages
212–219. INSTICC, SciTePress.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and re-
current networks for sequence modeling. CoRR,
abs/1803.01271.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

Dai, W., Yang, Q., Xue, G., and Yu, Y. (2007). Boosting for
transfer learning. In Ghahramani, Z., editor, Machine
Learning, Proceedings of the Twenty-Fourth Interna-
tional Conference (ICML 2007), Corvallis, Oregon,
USA, June 20-24, 2007, volume 227, pages 193–200.
ACM.

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik,
A., and De Lucia, A. (2018). Detecting code smells
using machine learning techniques: Are we there
yet? In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 612–621.

e Abreu, F. B. and Carapuça, R. (1994). Candidate metrics
for object-oriented software within a taxonomy frame-
work. Journal of Systems and Software, 26(1):87–96.

Girish Suryanarayana, Ganesh Samarthyam, T. S. (2014).
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann.

Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M.,
and Schölkopf, B. (2006). Correcting sample selec-
tion bias by unlabeled data. In Schölkopf, B., Platt,
J. C., and Hofmann, T., editors, Advances in Neural
Information Processing Systems 19: Proceedings of
the 2006 Conference, Vancouver, British Columbia,
Canada, December 4-7, 2006, pages 601–608. MIT
Press.

Imran, A. (2019). Design smell detection and analysis for
open source java software. In 2019 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution (ICSME), pages 644–648.

Kitchenham, B. A., Mendes, E., and Travassos, G. H.
(2007). Cross versus within-company cost estimation
studies: A systematic review. IEEE Transactions on
Software Engineering, 33(5):316–329.

Lumini, A. and Nanni, L. (2019). Deep learning and trans-
fer learning features for plankton classification. Eco-
logical informatics, 51:33–43.

Mannor, S., Peleg, D., and Rubinstein, R. (2005). The cross
entropy method for classification. In Proceedings
of the 22Nd International Conference on Machine
Learning, ICML ’05, pages 561–568, New York, NY,
USA. ACM.

Nam, J., Fu, W., Kim, S., Menzies, T., and Tan, L. (2017).
Heterogeneous defect prediction. IEEE Transactions
on Software Engineering, 44(9):874–896.

Pan, S., Tsang, I., Kwok, J., and Yang, Q. (2011). Domain
adaptation via transfer component analysis. IEEE
transactions on neural networks / a publication of the
IEEE Neural Networks Council, 22:199–210.

Sharma, T., Efstathiou, V., Louridas, P., and Spinellis, D.
(2019). On the feasibility of transfer-learning code
smells using deep learning. CoRR, abs/1904.03031.

Sharma, T., Mishra, P., and Tiwari, R. (2016). Designite -
a software design quality assessment tool. In 2016
IEEE/ACM 1st International Workshop on Bringing
Architectural Design Thinking Into Developers’ Daily
Activities (BRIDGE), pages 1–4.

Stone, M. (1974). Cross-validatory choice and assessment
of statistical predictions. Roy. Stat. Soc., 36:111–147.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2015). Chapter 2 - design smells. In Suryanarayana,
G., Samarthyam, G., and Sharma, T., editors, Refac-
toring for Software Design Smells, pages 9 – 19. Mor-
gan Kaufmann, Boston.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy,
E. (2016). Hierarchical attention networks for docu-
ment classification. In Proceedings of NAACL-HLT
2016, pages 1480–1489, San Diego, California. Asso-
ciation for Computational Linguistics.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2020). A comprehensive sur-
vey on transfer learning. Proceedings of the IEEE,
109(1):43–76.

Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks

317


