effective  toolbox  to  advance  towards  the 
development of  bioinspired  synthetic ecologies and 
landscapes. They make it possible to imitate multiple 
forces  or  principles  that  Nature  uses  to  achieve  a 
functional  and  complete  World.  This  toolbox  of 
paradigms and formalisms is always intended to be 
improved,  for  example  by  facilitating  the 
dissemination and secure use of multiple inheritance. 
Research  on  bioinspiration  can  then  be  a  guide  to 
direct new research in this direction.
 
ACKNOWLEDGEMENTS 
The authors would like to thank the members of the 
“rodent  group”  of  the  Centre  for  Biology  for 
Population  Management  (CBGP)  as  well  as  the 
members  of  the  BioPASS  laboratory  for  their 
essential support in the development of this study. 
REFERENCES 
Buck-Sorlin  G.  (2013)  Functional-Structural  Plant 
Modeling. In: Dubitzky W., Wolkenhauer O., Cho KH., 
Yokota H. (eds) Encyclopedia of Systems Biology. 
Springer, New York, NY. https://doi.org/10.1007/978-
1-4419-9863-7_1479 
Cantrell, B., & Holzman, J. (2014).  Synthetic  Ecologies: 
protocols,  simulation,  and  manipulation  for 
indeterminate landscapes. 
Chen, Y. C., Lu, P. E., Chang, C. S., & Liu, T. H. (2020). 
A  time-dependent  SIR  model  for  COVID-19  with 
undetectable  infected  persons.  IEEE Transactions on 
Network Science and Engineering, 7(4), 3279-3294. 
Colomer, M. À., Margalida, A., Sanuy, D., Pérez-Jiménez, 
M. J. (2011). A bio-inspired computing model as a new 
tool for modeling ecosystems: the avian scavengers as 
a case study. Ecological modelling, 222(1), 33-47. 
Comte  A.  (2012)  Caractérisation  des  barrières  à 
l'hybridation  de  deux  espèces  jumelles  de  rongeurs 
africains  du  genre  Mastomys.  Etude  par  simulation 
multi-agents à partir de deux expériences in situ. Rapp. 
M2 Ecologie-Biodiversité Spécialité Biodiversité 
Evolution Parcours Génétique et Biodiversité,  june 
2012, 44p. 
Darwin  C  (1859)  On  the  origin  of  species  by  means  of 
natural selection, or the preservation of favoured races 
in the struggle for life. John Murray, London. 
DeAngelis,  D.L.,  Mooij,  W.M.,  2003.  In  praise  of 
mechanistically rich models. In: Canham, C.D., Cole, 
J.J., Lauenroth, W.K. (Eds.), Models in Ecosystem 
Science. Princeton University Press, Princeton, New 
Jersey, pp. 63–82. 
Dejong, T., Da Silva, D., Vos, J., and Escobar-Gutiérrez, A. 
(2011).  Using  functional–structural  plant  models  to 
study, understand and integrate plant development and 
ecophysiology. Annals of Botany 108, 987-989. 
Diakhate,  E.H.M.,  Diouf,  N.,  Granjon,  L.,  Konate,  K., 
Mboup,  P.A.  et  J.  Le  Fur  (2014)  Modélisation  et 
simulation  multi-agents  d'un  protocole  de  capture-
marquage-recapture  d'une  population  de  rongeurs 
sauvages  dans  la  réserve  de  Bandia  (Sénégal). 12th 
African Conference on Research in Computer Science 
and Applied Mathematics (CARI), Saint-Louis Sénégal, 
20 au 23 octobre 2014: 43-54. 
Dunham, M. J. (2007). Synthetic ecology: a model system 
for cooperation. Proceedings of the National Academy 
of Sciences, 104(6), 1741-1742. 
Evans,  M.  R.,  Grimm,  V.,  Johst,  K.,  Knuuttila,  T.,  De 
Langhe, R., Lessells, C. M., ... Benton, T. G. (2013). Do 
simple models lead to generality in ecology?. Trends in 
ecology & evolution, 28(10), 578-583. 
Granjon,  L.,  Duplantier,  J.  M.  (2009)  Les  rongeurs  de 
l'Afrique  sahélo-soudanienne.  IRD Editions, 
Publications Scientifiques du Muséum - Collection 
Faune et Flore tropicales 43. ISBN IRD: 978-2-7099-
1675-2 
Holling,  C.S.  (1966)  The  strategy  of  building  models  of 
complex  ecological  systems.  In Systems Analysis in 
Ecology (Watt, K.E.F., ed.),  pp.  195–214,  Academic 
Press. 
Kari, L., Rozenberg, G. (2008). The many facets of natural 
computing. Communications of the ACM
, 51(10), 72-
83. 
Le  Fur,  J.  (2014)  Du  foisonnement  des  disciplines  à  la 
recomposition  d'une  réalité  partagée  Elaboration  
d'une  structure  de  modélisation  dédiée  à  l'intégration  
de  connaissances  disciplinaires.  XXIeme journées  
de Rochebrune "Multi-trans-interdisciplinarité". 
Rencontres interdisciplinaires sur les systèmes 
complexes naturels et artificiels.  19-25  janvier  2014, 
(https://hal.ird.fr/ird-03182988).  
Le Fur, J., Mboup, P.A. and M. Sall (2017) A Simulation 
Model for Integrating Multidisciplinary Knowledge in 
Natural  Sciences.  Heuristic  and  Application  to  Wild 
Rodent Studies. 7th Internat. Conf. Simul. and Model. 
Method., Technol. and Applic. (Simultech),  Madrid, 
july 2017 
Malayeri, D., Aldrich, J. (2009). CZ: multiple inheritance 
without diamonds. ACM SIGPLAN Notices, 44(10), 21-
40. 
Marcos, E. and Cavero, J.M.  (2002) Hierarchies in Object 
Oriented  Conceptual  Modeling.  In Bruel, J. and 
Bellahsène Z. (Eds.): OOIS 2002 Workshops, LNCS 
2426, pp. 24-33, 2002. 
Mboup,  P.A.,  Konaté,  K.,  et  Le  Fur,  J.  (2017)  A  multi-
world agent-based model working at several spatial and 
temporal  scales  for  simulating  complex  geographic 
systems. Internat. Conf. Comput. Sci. (ICCS), Zurich, 
12-14 juin 2017.  Procedia Computer Science 108C: 
968–977 doi:10.1016/j.procs.2017.05.090 
Mboup, P.A., Konaté, K., Handschumacher, P. et J. Le Fur 
(2015).  Des  Connaissances  au  Modèle  Multi-agents   
par   l’approche   orientée événement : construction d’un 
simulateur de la colonisation du rat noir au Sénégal par