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Abstract: This work considers (deep) artificial feed-forward neural networks as parametric approximators in optimal
control of discrete-time switched linear systems with controlled switching. The proposed approach is based on
approximate dynamic programming and allows the fast computation of (sub-)optimal discrete and continuous
control inputs, either by approximating the optimal cost-to-go functions or by approximating the optimal
discrete and continuous input policies. An important property of the approach is the satisfaction of polytopic
state and input constraints, which is crucial for ensuring safety, as required in many control applications. A
numeric example is provided for illustration and evaluation of the approaches.

1 INTRODUCTION

In many applications, continuous and discrete con-
trols coexist as, e.g., in all production or processing
systems which are equipped with continuous feed-
back controllers and supervisory controllers. Typi-
cally, the two types of controllers are considered and
designed separately, not only to split the correspond-
ing functions, but also to simplify the design task. The
separate design, however, may lead to degraded per-
formance if the two parts lead to opposing effects on
the plant at the same time. This motivates to investi-
gate techniques that optimize continuous and discrete
controls simultaneously. This paper considers the de-
sign of optimizing feedback controllers for discrete-
time switched linear systems (SLS). Such systems,
which constitute a special class of hybrid systems
(Branicky et al., 1998), allow to switch between lin-
ear dynamics by use of the discrete controls. Note
that this externally triggered switching is different
from the class of discrete-time piecewise affine sys-
tems (Sontag, 1981), in which switching occurs au-
tonomously and is bound to the fact that the continu-
ous state enters a new (polytopic) state region.

If optimization-based computation of control
strategies for SLS is considered, typically mixed-
integer programming problems are encountered,
which are known to be NP hard problems, see e.g.

a https://orcid.org/0000-0003-4910-8218
b https://orcid.org/0000-0002-9600-457X

(Bussieck and Pruessner, 2003). Nevertheless, for the
optimal open-loop control of discrete-time SLS with
quadratic performance measure and without state and
input constraints relatively efficient techniques have
been proposed, see e.g. in (Görges et al., 2011). The
complexity there is reduced via pruning of the search
tree and accepting sub-optimal solutions. An on-line
open-loop control approach for the case with state
and input constraints is described in (Liu and Sturs-
berg, 2018), where a trade-off between performance
and applicability is obtained by tree search with cost
bounds and search heuristics.

In contrast, the present paper aims at determining
optimal closed-loop control laws to select the con-
tinuous and discrete inputs for any state of the SLS.
In principle, this task can be solved by dynamic pro-
gramming (Bellman, 2010), but the complexity pre-
vents the use for most systems. The concept of ap-
proximate dynamic programming (ADP) (Bertsekas,
2019) is more promising in this respect, but has not
yet been used for controller synthesis of SLS with
consideration of constraints – this is the very objec-
tive of this paper. The approach is to learn the control
law from a dataset, which may originate from off-line
solution of mixed-integer programming problems for
selected initial states, or from approximate dynamic
programming over short horizons. The use of (deep)
neural networks (NN) are proposed as parametric ar-
chitectures for either approximating cost-to-go func-
tions, or the continuous-discrete control laws. NN as
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parametric approximators are appealing due to their
property of universal approximation (Cybenko, 1989;
Hornik et al., 1989) and the recent success of deep
learning (Goodfellow et al., 2016). For the different
task of model predictive control of purely continuous-
valued systems, recent work has shown that the use
of NN (determined off-line) can lead to solutions of
problems in which full on-line computation takes pro-
hibitively long, see e.g. (Chen et al., 2018; Hertneck
et al., 2018; Karg and Lucia, 2020; Paulson and Mes-
bah, 2020; Markolf and Stursberg, 2021). This mo-
tivates for the present paper to train NN also for op-
timal control of SLS, despite the complexity arising
from the mixed inputs. While the analysis of neu-
ral networks is known to be challenging due to their
nonlinear and often large-scale structure, this paper
makes use of the methods developed in (Chen et al.,
2018) and (Markolf and Stursberg, 2021) to ensure
the satisfaction of state and input constraints in addi-
tion.

The considered problem is stated in Sec. 2, while
Sec. 3 shows how an ADP approach can be formu-
lated for SLS in principle. The specific choice of NN
as function approximators and solutions for consider-
ing the constraints, as well as the main algorithms are
detailed in Sec. 4. A numerical example is provided
in Sec. 5, before the paper is concluded in Sec. 6.

2 PROBLEM STATEMENT

This paper considers discrete-time and constrained
switched systems of the form:

xk+1 = fvk (xk,uk) , k ∈ {0, . . . ,N−1}, (1)

where k is the time index, N a finite time horizon,
xk ∈ Rnx the continuous state vector, uk ∈ Rnu the
vector of continuous control inputs, and vk ∈ V =
{v[1], . . . ,v[nv]} the discrete control input determining
the subsystem fvk : Rnx ×Rnu → Rnx selected at time
k. The focus in this paper is on switched linear sys-
tems with matrices Avk and Bvk of appropriate dimen-
sions:

fvk (xk,uk) = Avk xk +Bvk uk, k ∈ {0, . . . ,N−1}.
(2)

The states and inputs are constrained to polytopes X
and U :

xk ∈ X =
{

x ∈ Rnx |HX x≤ hX} , (3)

uk ∈U =
{

u ∈ Rnu |HU u≤ hU} , (4)

with matrices HX ,HU , and vectors hX ,hU . For a
given state xk, k ∈ {0, . . . ,N−1} and input sequences

over a time span {k, . . . ,N−1}:
φ

u
k := {uk, . . . ,uN−1}, (5)

φ
v
k := {vk, . . . ,vN−1}, (6)

the corresponding unique state sequence is denoted
by:

φ
x
k := {xk, . . . ,xN} (7)

and obtained from (1).
Let XN ⊆ X be a target set specified as polytope:

XN =
{

x ∈ Rnx |HXN x≤ hXN
}
⊆ X . (8)

Furthermore, let a sequence of state sets
{X0, . . . ,XN−1} be defined, satisfying:

Xk = {x ∈ X | for each v ∈V : ∃u ∈U such that
fv(x,u) ∈ Xk+1}, k ∈ {0, . . . ,N−1},

(9)

i.e., for any state xk ∈ Xk, k ∈ {0, . . . ,N− 1} and
an arbitrary choice of the discrete input vk ∈ V , at
least one admissible continuous input uk ∈ U exists
such that fvk(xk,uk) ∈ Xk+1. The actual computation
of these sets will be addressed later in Sec. 4.

The following fact then obviously holds:
Proposition 1. If X0 is nonempty, then for each ini-
tialization x0 ∈ X0 and each discrete input sequence
φv

0 at least one admissible continuous input sequence
φu

0 exists that transfers x0 into the target set XN ,
while satisfying xi ∈ Xi, i ∈ {0, . . . ,N} and ui ∈ U,
i ∈ {0, . . . ,N−1}.

For introducing costs, assume that φx
k has been de-

termined for a given state xk at time k ∈ {0, . . . ,N−
1}, and for given input sequences φu

k and φv
k. Then let

Jk(φ
x
k,φ

u
k ,φ

v
k) denote the total cost associated with this

evolution:

Jk (φ
x
k,φ

u
k ,φ

v
k) = gN(xN)+

N−1

∑
i=k

gi,vi(xi,ui), (10)

where gN : X → R≥0 denotes a terminal cost, and
gk,vk : X ×U → R≥0, k ∈ {0, . . . ,N− 1} a stage cost
for vk ∈ V at stage k. Furthermore, let J∗k (x) be
the optimal cost-to-go for steering a state x at time
k ∈ {0, . . . ,N−1} into the target set XN within N− k
steps, while satisfying xi ∈ Xi, i ∈ {k, . . . ,N} and
ui ∈U , i ∈ {k, . . . ,N−1}, i.e.:

J∗k (x) = min
φu

k ,φ
v
k

Jk (φ
x
k,φ

u
k ,φ

v
k) (11a)

subject to:

xk = x, (11b)
xi+1 = Avixi +Bviui, i ∈ {k, . . . ,N−1}, (11c)
ui ∈U, i ∈ {k, . . . ,N−1}, (11d)
xi ∈ Xi, i ∈ {k, . . . ,N}. (11e)
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By convention, J∗k is set to infinity for the case that
(11) is infeasible for a specific state x ∈ Rnx . Subse-
quently, the constraints (11d) and (11e) are replaced
by ui ∈Ui(xi,vi), i ∈ {k, . . . ,N−1}. Here, Uk(xk,vk),
k ∈ {0, . . . ,N − 1} denotes a set that depends on
the state xk ∈ X and the discrete input vk ∈ V , and
contains all the continuous inputs uk ∈ U for which
fvk(xk,uk) ∈ Xk+1:

Uk(x,v) = {u ∈U | fv(x,u) ∈ Xk+1}. (12)

Again, the actual computation of these sets will be
addressed later in Sec. 4

The following problem is considered in this work:

Problem 1 (Finite-Horizon Control Problem). Find
an optimal control law which assigns to each state
xk ∈ Xk at time instant k ∈ {0, . . . ,N − 1} a pair of
optimal admissible inputs v∗k ∈V and u∗k ∈Uk(xk,v∗k),
such that for any x0 ∈ X0, the cost J0

(
φx∗

0 ,φu∗
0 ,φv∗

0

)
obtained for the resulting sequences φx∗

0 , φu∗
0 , φv∗

0 is
optimal, i.e.: J0

(
φx∗

0 ,φu∗
0 ,φv∗

0

)
= J∗0 (x0).

In order to allow for the use of gradient methods
to tackle this problem, as proposed in (Markolf and
Stursberg, 2021), the following assumption is made,
which is not practically restrictive.

Assumption 1. Suppose that the functions gk,v(x,u),
k ∈ {0, . . . ,N−1}, v ∈V in (10) are continuously dif-
ferentiable with respect to u ∈U.

3 APPROXIMATE DYNAMIC
PROGRAMMING FOR SLS

In theory, dynamic programming (DP) provides a
scheme to solve the Problem 1: Starting from:

J∗N(xN) := gN(xN), (13)

the DP algorithm proceeds backward in time from
N − 1 to 0 to compute the optimal cost-to-go func-
tions:

J∗k (xk) = min
vk∈V

uk∈Uk(xk,vk)

[
gk,vk(xk,uk)+ J∗k+1( fvk(xk,uk))

]
.

(14)

Such a version of the DP-algorithm is similar to the
standard one without discrete inputs, as can be found
e.g. in (Bertsekas, 2005). Provided that the opti-
mal cost-to-go values J∗k are known for all relevant
xk and k, the optimal discrete and continuous input
sequences φv∗

0 and φu∗
0 for x0 ∈ X0 can be constructed

in a forward manner by:

(v∗k ,u
∗
k) ∈arg min

vk∈V
uk∈Uk(x∗k ,vk)

[
gk,vk(x

∗
k ,uk)+ J∗k+1

(
fvk(x

∗
k ,uk)

)]
,

(15)

with x∗0 = x0 and x∗k+1 = fv∗k
(x∗k ,u

∗
k).

For the general setup considered in this work, the
DP algorithm does not lead to closed-form expres-
sions for J∗k and for the respective optimal policies
denoted by:

π
u∗ := {µu∗

0 (·), . . . ,µu∗
N−1(·)}, µu∗

k : X →U, (16)

π
v∗ := {µv∗

0 (·), . . . ,µv∗
N−1(·)}, µv∗

k : X →V. (17)

Hence, numeric solution is necessary, but is known
to suffer from the curse of dimensions, thus limiting
practical applicability.

However, the optimal cost-to-go functions J∗k can
be approximated by parametric functions J̃k with real-
valued parameter vectors rJ

k , constituting a so-called
approximation in value space (Bertsekas, 2019). The
prediction of the optimal cost-to-go J∗k by J̃k given
some state xk is a typical regression task. Suppose for
a moment that a parametric function J̃k and a data set
consisting of state-cost pairs (xs

k,J
s
k), s ∈ {1, . . . ,qJ

k}
are available, where each Js

k is a regression target pro-
viding the desired value for the corresponding exam-
ple state xs

k. On this basis, the parameter vector rJ
k

of the parametric function J̃k can be adapted with the
objective to improve the performance on the consid-
ered regression task by learning from the data set.
The mean squared error is here (as usual) consid-
ered as performance measure. Such an adaption pro-
cedure for rJ

k , typically called training, is an exam-
ple for supervised learning. A challenge hereby is to
perform also well on previously not explored states
xk, which distinguishes the training procedure from
pure optimization. For a more detailed treatment, see
e.g. (Goodfellow et al., 2016).

The following Algorithm 1, which extends the se-
quential DP procedure from (Bertsekas, 2019) to SLS,
provides an approach for training the parametric ap-
proximators J̃k in a recursive manner (similar to the
typical DP procedure). Once the parametric approx-
imators J̃k are trained, approximations of the optimal
discrete and continuous input sequences, denoted as
φṽ

0 and φũ
0, can be constructed for x0 ∈ X0 in a forward

manner, similar to (15):

(ṽk, ũk) ∈arg min
vk∈V

uk∈Uk(x̃k,vk)

[
gk,vk(x̃k,uk)+ J̃k+1

(
fvk(x̃k,uk),rJ

k+1
)]

,

(18)
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with x̃0 = x0 and x̃k+1 = fṽk(x̃k, ũk).
Another way to obtain approximations of the op-

timal discrete and continuous input sequences is the
approximation of the optimal policies πv∗ and πu∗ by
so-called parametric policies:

π
ṽ = {µṽ

1(·,rv
1), . . . ,µ

ṽ
N−1(·,rv

N−1)},
with µṽ

k(·,rv
k) : X →V, (19)

π
ũ = {µũ

1(·,ru
1), . . . ,µ

ũ
N−1(·,ru

N−1)},
with µũ

k(·,ru
k) : X →Uk(·,µṽ

k(·,rv
k)). (20)

This approach is an example of an approximation in
policy space (Bertsekas, 2019). Again, the parame-
ter vectors ru

k and rv
k can be adapted by standard su-

pervised learning techniques on the basis of avail-
able data sets (xs

k,u
s
k), s ∈ {1, . . . ,qu

k} and (xs
k,v

s
k),

s ∈ {1, . . . ,qv
k}, respectively. The data may originate

from solutions of (18), constituting an example of ap-
proximation in policy space on top of approximation
in value space.

4 OPTIMAL CONTROL OF SLS
WITH CONSTRAINTS USING
NN

Based on the rather conceptual derivations in the pre-
ceding chapter, the specific approach for synthesiz-
ing optimal control laws based on NN for SLS with
input and state constraints is now described. Two
procedures of using (deep) neural networks as para-
metric architectures for the approximation of the op-
timal continuous and discrete input sequences are pro-
posed, one by approximation in value space, and the
other by approximation in policy space. In both cases,

Algorithm 1: Sequential Dynamic Programming.

1: J̃N(xN ,rJ
N) := gN(xN)

2: for k = N−1 to 0 do
3: Generate a large number of states xs

k, s ∈
{1, . . . ,qJ

k} by sampling the state space Xk

4: for s = 1 to qJ
k do

5:

Js
k = min

v∈V
u∈Uk(xs

k,v)

[
gk,v (xs

k,u)+ J̃k+1
(

fv (xs
k,u) ,r

J
k+1
)]

6: end for
7: Determine rJ

k by training with (xs
k,J

s
k), s ∈

{1, . . . ,qJ
k}

8: end for

neural networks v̂k, k ∈ {0, . . . ,N− 1} with softmax
output units and parameter vectors rv

k are employed
to obtain for each xk ∈ Xk an nv-dimensional output
vector with v̂k,i(xk,rv

k) = P(v∗k = v[i] |xk). Thus, the
outputs of the neural network v̂k determine for xk a
probability distribution over the discrete control in-
puts, where v̂k,i(xk,rv

k) denotes the probability that the
discrete control input v[i] is optimal for xk at stage k.

4.1 Approximation in Value Space

Neural networks with continuous and continuously
differentiable activation functions are proposed as
parametric approximators J̃k for the optimal cost-to-
go functions J∗k , k∈{0, . . . ,N−1}. Furthermore, a set
Vpriority(v̂k,npriority) ⊆ V is introduced, which is used
in approximating the optimal discrete and optimal in-
put sequences in a forward manner for given x0 ∈ X0
and npriority ∈ {1, . . . ,nv}:

(ṽk, ũk) ∈arg min
vk∈Vpriority(v̂k(x̃k,rv

k),npriority)
uk∈Uk(x̃k,vk)

[

gk,vk(x̃k,uk)+ J̃k+1
(

fvk(x̃k,uk),rJ
k+1
)]

,

(21)

with x̃0 = x0 and x̃k+1 = fṽk(x̃k, ũk). Here, npriority ∈
{1, . . . ,nv} is a user-defined number used to specify
the number of elements in Vpriority(v̂k,npriority), where
these elements are selected to be the discrete inputs
with the highest probabilities according to v̂k. This
allows to establish a trade-off in (21) between the
consideration of only a single discrete input (with the
highest probability to be the optimal one) or all dis-
crete inputs contained in V . Fig. 1 provides an exam-
ple of the concept.

It will be addressed in detail in Sec. 4.3 how to
compute Uk(x,v), k ∈ {0, . . . ,N−1}, and to show that

Figure 1: Example for illustrating the use of the neural net-
work v̂k.
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Uk(x,v) in (12) is a polytope for all x ∈ Xk and v ∈V .
The architecture of the neural networks and a closed-
form expression for the partial derivative of J̃k(x,rJ

k)
with respect to x will be described in Sec. 4.4. The
property that Uk(x,v), k ∈ {0, . . . ,N−1} is a polytope
and the availability of closed-form expressions for
[∂J̃k/∂x](x,rJ

k) open the door for addressing the min-
imization problems in (18), (21), and Algorithm 1 by
applying well-established gradient methods for each
considered discrete input v ∈ V . The satisfaction of
the convex constraints u ∈Uk(x,v) in state-of-the-art
methods of this type is not a problem. Hence, the sat-
isfaction of the considered state and input constraints
in (11) is guaranteed, even in case of imperfect ap-
proximations of the optimal cost-to-go functions, or
if the iterative procedure of the gradient method is
stopped before finding a local minimum. This ap-
proach can be based on existing work on gradient-
methods for systems without switching (Markolf and
Stursberg, 2021).

4.2 Approximation in Policy Space

Alternatively, NN can be used directly as parametric
approximators µũ

k of the optimal continuous policies
µu∗

k , k ∈ {0, . . . ,N − 1}. The optimal discrete input
policies µv∗

k are approximated by:

µṽ
k(xk,rv

k) ∈
{

v[i] ∈V | for all j ∈ {1, . . . ,nv} :

P
(
v∗k = v[i] |xk

)
≥ P

(
v∗k = v[ j] |xk

)}
.

(22)

For a given initial state x0 ∈ X0, the scheme is then
to approximate the optimal continuous and discrete
input sequences in forward manner by computing:

ṽk = µṽ
k (x̃k,rv

k) ∈V, (23)

ũk = µũ
k (x̃k, ṽk,ru

k) ∈Uk(x̃k, ṽk), (24)

with x̃0 = x0 and x̃k+1 = fṽk(x̃k, ũk).
Provided that µũ

k(xk,vk,ru
k) ∈ Uk(xk,vk) for each

xk ∈ Xk and vk ∈V , the satisfaction of the state and in-
put constraints considered in (11) is guaranteed. This
can be achieved by projecting the output of the neural
network onto the polytope Uk(xk,vk). An approach to
projecting the output of a neural network onto a poly-
tope can be found in (Chen et al., 2018).

4.3 Controllable Sets

For a given v ∈ V , let Prev(X ) be the set of state pre-
decessors to X , i.e. containing all the states x ∈ Rnx

for which at least one input u ∈ U exists such that
fv(x,u) ∈ X :

Prev(X ) = {x ∈ Rnx |∃u ∈U such that fv(x,u) ∈ X }.
(25)

If X is a polytope, then Prev(X ) results from a linear
transformation of X , and is thus also a polytope. De-
tails about the computation of Prev(X ) for a polytope
X can be found e.g. in (Borrelli et al., 2017).

Starting from a target set XN ⊆ X , the sequence of
state sets {X0, . . . ,XN−1} can be computed recursively
as shown in Algorithm 2. Since XN is specified in (8)
as polytope, each Xk, k ∈ {0, . . . ,N−1} defined in (9)
is again a polytope:

Xk =
{

x ∈ Rnx |HXk x≤ hXk
}
. (26)

For polytopic sets Xk, k ∈ {0, . . . ,N−1}, also the
sets Uk(x,v) defined by (12) are polytopes for all x ∈
Xk and v ∈V , and given by:

Uk(x,v) = {u ∈ Rnu |HUk(v)u≤ hUk(x,v)}, (27)

with:

HUk(v) =
[

HXk+1Bv
HU

]
, (28)

hUk(x,v) =
[

hXk+1 −HXk+1Avx
hU

]
. (29)

4.4 Neural Networks

Feed-forward NN characterized by a chain structure:

h(x) = (h(L) ◦ · · · ◦h(2) ◦h(1))(x) (30)

are considered, with final layer h(L) and hidden layers
h(`), `∈ {1, . . . ,L−1}. Such structures are commonly
used and detailed information can be found in several
textbooks, see e.g. (Goodfellow et al., 2016). The
output of layer ` is denoted as η(`) in the following,
while η(0) is defined to be the input of the overall net-
work:

η
(0)(x) = x, (31)

η
(`)(x) = (h(`) ◦ · · · ◦h(1))(x). (32)

Here, the hidden layers are (as usual) considered to be
vector-to-vector functions of the form:

h(`)(η(`−1)) = (φ(`) ◦ψ
(`))(η(`−1)), (33)

with affine and nonlinear transformations ψ(`) and
φ(`), respectively. The affine transformation can be

Algorithm 2: Controllable Set Computation.

Input: nv, N, X , XN
Output: X1, . . . ,XN−1

1: for k = N−1 to 0 do
2: Xk = X
3: for i = 1 to nv do
4: Xk← Prev[i] (Xk+1)∩Xk
5: end for
6: end for
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affected by the choice of the weight matrix W (`) and
the bias vector b(`):

ψ
(`)(η(`−1)) =W (`)

η
(`−1)+b(`). (34)

Each layer can be interpreted to consist of parallel act-
ing units, where a positive integer S(`) is used here to
describe the number of units in layer `. Each unit i
in layer ` defines a vector-to-scalar function, which is
the i-th component of h(`). In the case of hidden lay-
ers, h(`)i (η(`−1)) = φ

(`)
i (W (`)η(`−1)+b(`)), where φ

(`)
i

is known as activation function and often chosen as
a rectified linear unit or a sigmoid function. For the
purposes of this work, linear and softmax output units
are considered. For a neural network with linear out-
put units, the function h(L) is an affine transformation:

ψ
(L)(η(L−1)) =W (L)

η
(L−1)+b(L). (35)

Such an affine transformation arises also in softmax
output units, in which h(L)i is set to:

softmaxi

(
ψ
(L)
(

η
(L−1)

))
=

exp
(

ψ
(L)
i

(
η(L−1)

))
∑

S(L)
j=1 exp

(
ψ
(`)
j
(
η(L−1)

)) . (36)

The neural network (30) belongs to the family of para-
metric functions, whose shape is formed by the pa-
rameter vector consisting of the weights and biases:

r =
[
W (1)

1,1 . . . W (L)
S(L),S(L−1) b(1)1 . . . b(L)

S(L)

]T
.

(37)

4.4.1 Approximating the Optimal Cost-to-Go
Functions

For approximating the optimal cost-to-go functions
J∗k by J̃k, k ∈ {0, . . . ,N−1}, the NN structure (30) is
used with continuous and continuously differentiable
activation functions (such as sigmoid functions) and
linear output units. This allows for deriving closed-
form expressions (Markolf and Stursberg, 2021) for
the partial derivatives of h with respect to its argu-
ments:

∂h(x)
∂x

=
L−1

∏
i=0

∂h(L−i)(η(L−(i+1))(x))
∂η(L−(i+1)) , (38)

with:

∂h(`)(η(`−1)(x))
∂η(`−1) =

∂φ(`)(ψ(`)(η(`−1)(x)))
∂ψ(`)

·W (`)

(39)

for ` ∈ {1, . . . ,L−1}, and:

∂h(L)(η(L−1)(x))
∂η(L−1) =W (L). (40)

4.4.2 Approximating the Optimal Discrete Input
Policies

As described above, the optimal discrete policies µv∗
k

can be approximated by parametric policies µṽ
k based

on the probability distributions defined by the neu-
ral networks v̂k, k ∈ {0, . . . ,N − 1}. For this, the
NN structure (30) with softmax output units (36) is
used as architecture for v̂k. Softmax units as output
units are common, e.g. in classification tasks (Good-
fellow et al., 2016), to represent probability distribu-
tions over different classes. According to (36), each
output of the NN with softmax output units is in be-
tween 0 and 1, and all outputs sum up to 1, leading to
a valid probability distribution.

4.4.3 Approximating the Optimal Continuous
Input Policies

For the approximation of the optimal continuous in-
put policies µu∗

k by µũ
k , k ∈ {0, . . . ,N− 1}, the use of

the NN structure (30) with common activation func-
tions and linear output units is proposed, following
(Chen et al., 2018), where Dykstra’s projection algo-
rithm is used to project a potentially infeasible output
onto the admissible polytope. This is exploited here
to ensure that each ũk, as computed for xk ∈ Xk and
vk ∈V by (24), is an element of the polytope (27).

4.5 Main Algorithms

In order to summarize and combine the concepts in-
troduced above, this subsection contains the overall
algorithms to compute approximations of the optimal
discrete and continuous input sequences as solution to
Problem 1. While Algorithm 3 contains the procedure
for approximation in value space, Algorithm 4 estab-
lishes the solution by approximation in policy space.

Algorithm 3: Finite-Horizon Control by Approximation in
Value Space.

Input: x̃0 ∈ X0, npriority ∈ {1, . . . ,nv}
Output: φx̃

0 = {x̃0, . . . , x̃N}, φũ
0 = {ũ0, . . . , ũN−1},

φṽ
0 = {ṽ0, . . . , ṽN−1}

1: for k = 0 to N−1 do
2: determine Vpriority(v̂k(x̃k,rv

k),npriority)
3: obtain (ṽk, ũk) from (21) for x̃k
4: compute x̃k+1 = fṽk(x̃k, ũk)
5: end for
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Algorithm 4: Finite-Horizon Control by Approximation in
Policy Space.

Input: x̃0 ∈ X0
Output: φx̃

0 = {x̃0, . . . , x̃N}, φũ
0 = {ũ0, . . . , ũN−1},

φṽ
0 = {ṽ0, . . . , ṽN−1}

1: for k = 0 to N−1 do
2: determine ṽk = µṽ

k

(
x̃k,rv

k

)
3: compute ũk = µũ

k

(
x̃k, ṽk,ru

k

)
4: evaluate x̃k+1 = fṽk(x̃k, ũk)
5: end for

5 NUMERICAL EXAMPLE

This section provides a numerical example for the il-
lustration and evaluation of the proposed approaches.
Hereto, a switched system (2) with matrices:

A1 =

[
0 1
−0.8 2.4

]
, A2 =

[
0 1
−1.8 3.6

]
,

A3 =

[
0 1

−0.56 1.8

]
, A4 =

[
0 1
−8 6

]
,

B1 = B2 = B3 = B4 =

[
0
1

] (41)

is considered. This simple example, which is taken
from (Görges, 2012), is chosen with the intention to
ease the illustration of the procedures (not to demon-
strate computational efficiency). The polytopes X =
{x∈R2 | |xi| ≤ 1} and U = {u∈R | |u| ≤ 4} are speci-
fied as state and input constraints, and a quadratic cost
function (10) is chosen:

gN(x) = xT x, (42)

gk,v(x,u) = xT x+u2 for all
k ∈ {0, . . . ,N−1},v ∈V.

(43)

The target set is specified to be identical to the origin
of the state space XN = {0}. If for this simple system,
a low number N = 6 is chosen, the optimal solution of
the corresponding instance of Problem 1 can be com-
puted by enumerating over the 4N possible discrete
input sequences and solving one quadratic program
(QP) each – this optimal solution serves to compare
it with the approximating solutions obtained from the
two proposed approaches based on approximation in
value space, or in policy space respectively.

For all NN required in the proposed approaches,
structures with one hidden layer and 50 units have
been chosen. In each hidden unit, the hyperbolic tan-
gent has been selected as activation function. The
neural networks J̃k used for approximating the opti-
mal cost-to-go values have been trained with state-
cost pairs (xs

k,J
s
k), s ∈ {1, . . . ,qJ

k} generated on the

0 1 2 3 4

1

Optimal Costs

Figure 2: Box plot diagram with showing the distribution of
the optimal costs J∗0 (x

p
0 ) for 1000 initial states xp

0 obtained
by gridding X0.

basis of the sequential dynamic programming proce-
dure described in Algorithm 1, where qJ

k = 1000 states
xs

k have been obtained for each k ∈ {0, . . . ,N − 1}
by gridding the state space Xk obtained from Algo-
rithm 2.

For the same states xs
k, the NN for approximat-

ing the optimal discrete and continuous input policies
have been trained with state-input pairs (xs

k,u
s
k) and

(xs
k,v

s
k), respectively, generated by addressing a mini-

mization problem of type (18) with the previously de-
termined J̃k+1.

Let φũ
0 and φṽ

0 denote approximated input se-
quences obtained for a specific initial state x̃0 ∈ X0 by
either applying Algorithm 3 or Algorithm 4. More-
over, let φx̃

0 be the resulting state sequence, and Ĵk(x̃0)
the cost obtained for φx̃

0, φũ
0, and φṽ

0 according to (10).
For the evaluation of the approximation quality, 1000
initial states xp

0 , p ∈ {1, . . . ,np = 1000} have been de-
termined by gridding the set X0, which is the back-
ward reachable set from XN for the selected N. The
distribution of the optimal costs J∗0 (x

p
0) for the ini-

tial states xp
0 , p ∈ {1, . . . ,np} is illustrated in the box

plot shown in Fig. 2. The average computation time
for the determination of the optimal costs was 19.8s
on a common notebook (Intel R© CoreTM i5− 7200U
Processor), where the CPLEXQP solver from the
IBM R© ILOG R© CPLEX R© Optimization Studio has
been used for the solution of the quadratic programs.
On the other hand, the costs Ĵ0(x

p
0) for the initial states

xp
0 , p ∈ {1, . . . ,np} were determined for the approxi-

mated solutions obtained from the approaches for ap-
proximation in value space, or approximation in pol-
icy space, where for the former all possible values
for nPriority ∈ {1, . . . ,4} were considered. The cor-
responding mean-squared errors can be found in the
third column of Table 1, using:

MSE =
1
np

np

∑
p=1

(
J∗0 (x

p
0)− Ĵ0(x

p
0)
)2
. (44)

The average computation times are listed in the fourth
column of the same table.

As documented in Table 1, the average computa-
tion time for the optimal results is significantly higher
than those for the approximated results. Moreover,
the average computation time for the approach based
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Figure 3: Solutions for the initial state x0 =
[
1 1

]T : optimal one, and for the two proposed techniques. The shaded polytope
marks X0.

Table 1: Mean squared errors according to (44) and aver-
age computation times to determine Ĵ0(x

p
0 ) for 1000 initial

states xp
0 obtained by gridding X0.

Type of nPriority MSE Average
Approx. Comp. Time

Value 4 3.51×10−4 1.73 s
Space 3 3.51×10−4 1.38 s

2 3.50×10−4 1.03 s
1 6.56×10−4 0.61 s

Policy − 5.27×10−2 0.27 s
Space

on approximation in policy space was smaller than
those for the approximating in value space. For the
latter, the average computation times obviously grow
with increasing nPriority. Not surprisingly, the rela-
tively high computation time for the optimal solutions
are due to the large number of possible discrete input
sequences. The use of an NN, as required for approxi-
mation in policy space, is in general faster than apply-
ing the gradient method nPriority-times in the approach
based on approximation in value space. Interestingly,
the MSE for nPriority = 2 to nPriority = 4 are almost the
same and very small. The observation that the MSE
for the approximation in policy space is the largest de-
pends (among other factors) on the fact that the train-
ing data for the NN µ̃k has been generated on top of
approximation in value space.

The state trajectories obtained from the optimal
and approximated solutions of Problem 1 for the ini-
tial state x0 =

[
1 1

]T , as well as the polytope X0 are
illustrated in Fig. 3. The optimal state trajectory and
the one approximated in value space are almost iden-
tical. For the state trajectory obtained from approxi-

mation in policy space, a slight difference is visible.
It is worth to stress that also for the approximated

solutions, the sets defined in (27) ensure the satisfac-
tion of the state and input constraints in (11).

6 CONCLUSION

This paper has proposed two solution techniques to
synthesize optimal closed-loop controllers in form
of NN for finite-horizon optimal control problems
for discrete-time and constrained switched linear sys-
tems. Two general types of ADP, namely approxima-
tion in value space and approximation in policy space,
were considered for fast approximation of the opti-
mal solutions. For both ADP types, (deep) neural net-
works were chosen as parametric approximators. Es-
tablished methods for projection or for constraint han-
dling in nonlinear programming have been exploited
to ensure the satisfaction of polytopic state and input
constraints.

Properties of the optimal cost-to-go functions and
optimal policies for the considered problem class
have not been investigated in this work. Gaining a
deeper insight by future work may help to specify the
architectures of the neural networks. An approach to
ensure the satisfaction of polytopic (continuous) input
constraints by a policy based on neural networks with-
out a subsequent projection has been recently pro-
posed in (Markolf and Stursberg, 2021). A point of
work future is to investigate if also that approach can
be extended to guarantee the satisfaction of the con-
sidered state constraints.
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