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Abstract: Multi-microgrids (MMGs) provide economic and environmental benefits to society by improving operational
flexibility, stability and reliability of a smart grid. MMGs have greater complexity than conventional power
networks due to the use of multiple infrastructures, communication protocols, controllers, and intelligent
electronic devices. The distributed and heterogeneous connectivity technologies of the MMGs and their need
to exchange information with external sources as well as the vulnerabilities in the communication networks and
software-based components, make MMGs susceptible to cyberattacks. In this work, we present a conceptual
framework for collaborative adaptive cybersecurity that is able to proactively detect security incidents. The
framework utilizes federated learning for collaborative training of shared prediction models in a decentralized
manner. The methodology used in this research is mainly analytical. This involves analysis of how the
principles of a collaborative adaptive cybersecurity can be applied to the MMG environments resulting in the
development of theoretical models which can then be validated in practice by prototyping and using real time
simulation.

1 INTRODUCTION

Novel and effective solutions for cybersecurity and
cyber resilience of multi-microgrids (MMGs) are cru-
cial for their reliable and safe operation. MMG is a
cluster of interconnected microgrids (MGs) that are
coupled to the main power grid via switch for the
purpose of achieving power resilience and stability
through fast power exchange. It also enables a smooth
and high penetration of distributed energy resources
(DERs) in the grid (Wu et al., 2018; Goyal and Ghosh,
2016) and provides operational, economic, environ-
mental and sustainability benefits to society (Anas-
tasiadis et al., 2010; Saad et al., 2011). As shown
in Fig. 1, the MMG’s physical system is composed
of multiple two-way interconnected systems such as
DER, energy storage systems (ESS), active loads
(e.g. electric vehicles,), fixed loads and controllers.
Its cyber system has greater complexity due to the
use of multiple infrastructures, communication proto-
cols, controllers, intelligent electronic devices (IEDs),
smart meters and phasor measurement units. The dis-
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tributed and heterogeneous connectivity technologies
of the MMGs and their need to exchange informa-
tion with external sources as well as the vulnerabil-
ities in the communication networks and software-
based components, make MMGs susceptible to cy-
berattacks. High profile cyberattacks on power sys-
tems had been launched by various actors. The cy-
berattacks that impaired the Ukrainian power system
in 2015 and 2016, which left 250,000 people without
power for several hours, were due to the vulnerabil-
ity of the substation communication protocol to false
data injection attack (FDIA) (Whitehead et al., 2017).
Suspicious cyber events within the power grid of US
were reported in 2020 (OE-, 2020). Cyber incidents
in MMGs include various attacks, such as bias injec-
tion, zero dynamics, denial of service, eavesdropping,
replay, stealthy, covert, dynamic false data injection
and time synchronization attacks (Pasqualetti et al.,
2013). Stealthy attacks can easily penetrate the net-
worked systems without altering the system observ-
ability (Zhao et al., 2018).

Since attacks targeting critical infrastructures are
becoming stealthy, complex and continuously evolv-
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Figure 1: Multi-Microgrid Architecture.

ing, conventional security measures fail to detect and
prevent. Therefore, proactive cybersecurity and cy-
ber resilience solutions are required to ensure their
safety, security and reliability of MMGs. To be effec-
tive, these solutions need to comply with complexity
and diversity of critical infrastructures and to adapt
to constantly evolving attacks. To address highly-
distributed and heterogeneous nature of MMGs, we

intend to utilize the federated learning concept to
facilitate collaborative and decentralized training of
proactive detection models and outline the concep-
tualization of the overall collaborative adaptive ap-
proach. For this purpose, we analyse the measures
needed to improve security protection of MMGs, and
propose the collaborative adaptive security imple-
mentation roadmap.
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The work proposed in this paper includes the fol-
lowing contributions: 1) analysis of federated learn-
ing, intrusion detection, adaptivity, multi-layer feed-
back loops, and collaboration; 2) conceptualisation
and analysis of a framework for federated learning-
based collaborative adaptive cybersecurity; and 3)
roadmap for implementation.

2 RELATED WORK

Researchers have proposed intrusion detection sys-
tems (IDSs) for MG as one of the defence mecha-
nisms (Ameli et al., 2020; Lu et al., 2019; Zhang
et al., 2019; Habibi et al., 2020; Vu et al.,
2019). These IDSs focus on detection of spe-
cific attack(s), and/or malicious activities in subsys-
tem(s)/process(es) in MGs. FDIA detection has got
much attention as it can impede several MG func-
tionalities, such as frequency/voltage restoration (Lu
et al., 2019; Abhinav et al., 2018a; Abhinav et al.,
2018b), load sharing (Zhang et al., 2019) and state
estimation (Zhao et al., 2018). Furthermore, most of
the proposed IDSs target a single MG without consid-
erations of changes in threat landscape when it is in-
terconnected with other MGs (MMG). Conventional
host-based or network-based IDSs that operate indi-
vidually at a single layer are not scalable to large net-
worked systems nor to massively parallel attacks tar-
geting different layers and components, resulting in
low detection performance. In MMG, a skilled in-
truder can slowly change the behaviour to avoid de-
tection by independently operating IDSs.

Recently, efforts have been made in the develop-
ment of collaborative IDSs in smart grid (Nikmehr,
2019). Collaborative IDSs can analyse evidence from
multiple domains simultaneously through distributed
monitoring agents to create a holistic view of the ac-
tivities in MMG. In addition to collaborative, cross-
layered operation of IDSs is necessary to detect in-
trusions at perception, network and application lay-
ers of MMG. Adaptability of the detection and pre-
vention mechanisms are also crucial as the threats in
critical infrastructures are often dynamically chang-
ing to evade detection. To address the anomaly de-
tection problem of cyber-physical systems, the study
(Xu et al., 2021) presents a novel digital twin-based
solution. The solution consists of a timed automaton-
based digital twin model and a GAN-based anomaly
detector.

Surveys and taxonomies of adaptive security can
be found from (Elkhodary and Whittle, 2007; Yuan
and Malek, 2012). The study (Bakhsh et al., 2019)
proposes an adaptive IDS to enhance security along

with the growth of connected devices. Security met-
rics provide the on-line means with which to score se-
curity countermeasure effectiveness. The metrics ap-
proaches that are most valuable for adaptive security
focus on cybersecurity objectives. Security objective
decomposition–based metrics approaches were pro-
posed in (Savola and Abie, 2009). Summaries of se-
curity metrics approaches are reported in (Savola and
Abie, 2009; Herrmann, 2007; Jaquith, 2007; Pendle-
ton et al., 2016).

There exist various adaptive architectures and
frameworks. These include ACT-R (Adaptive Con-
trol of Thought—Rational) (Oltramari et al., 2013)
for cognitive-based decision support in cyber op-
erations, OODA (observe, orient, decide, act) cy-
cle for cyber-situational awareness (Lenders et al.,
2015), MAPE-K (monitor, analyse, plan, execute,
knowledge) cycle for autonomic computing capabil-
ities (self-configuring, self-healing, self-optimizing,
and self-protecting) (ibm, 2005), etc. Our model is
similar to most of these frameworks in that it models
the basic monitor-analyse-adapt cycle in an efficient
way but differs in that it combines the decide-act or
plan-execute cycles into the adapt phase for optimiza-
tion purpose for constrained devices and the knowl-
edge is distributed among the three phases unlike the
centralized knowledge of the MAPE-K cycle. We be-
lieve that the decide-act or plan-execute cycles are
natural activities of the adapt single phase.

There have been several studies performed on fed-
erated learning (McMahan et al., 2017). It is a rela-
tively new research initiative that utilizes distributed
ML approach. In (Brisimi et al., 2018), a decentral-
ized optimization framework was developed that en-
ables multiple data holders to collaborate and con-
verge to a common predictive model in a decentral-
ized manner. Sparse Support Vector Machine (sSVM)
classifier was used. The authors developed an iter-
ative cluster Primal Dual Splitting (cPDS) algorithm
for solving the large-scale sSVM problem. The au-
thors claim that cPDS converges faster than central-
ized methods at the cost of some communication be-
tween agents.

In (Preuveneers et al., 2018), the authors present
a permissioned blockchain-based federated learn-
ing method for anomaly detection on the dis-
tributed ledger. Federated learning is integrated with
blockchain technology without centralizing the train-
ing data. The authors achieved full transparency over
the distributed training process of the neural network.

In (Nguyen et al., 2019), the authors present an
autonomous self-learning distributed system for de-
tecting compromised IoT devices. The solution uses
unlabeled data and does not require any human in-
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tervention. The authors demonstrated the efficacy of
anomaly detection in detecting a large set of mali-
cious behaviour from devices infected by the Mirai
malware.

In (Zhao et al., 2019), a multi-task deep neural
network in federated learning was proposed to per-
form network anomaly detection task, VPN traffic
recognition task, and traffic classification task, si-
multaneously. The results showed that the multi-
task method reduced training time overhead com-
pared with multiple single-task models.

In (Mothukuri et al., 2021), Long Short Term
Memory Networks and Gated Recurrent Units were
utilized to build a federated learning-based solution
for anomaly detection on the IoT networks. The au-
thors showed that their solution ensured the privacy
of user data and outperformed the non-FL version of
intrusion detection algorithms.

In our analysis, we recognise that certain research
has been done on applying federated learning to de-
tect anomalies and attacks in distributed environ-
ments. However, a problem of detecting and predict-
ing security incidents in MMG systems is not thor-
oughly addressed. The dynamic, distributed and het-
erogeneous nature of these systems needs to be care-
fully analysed. Further research on how to integrate
federated learning and adaptive security techniques is
also required.

3 PROPOSED COLLABORATIVE
ADAPTIVE APPROACH

Adaptive security refers to a security solution that
learns and adapts to the changing environment dur-
ing run-time in the face of changing threats and an-
ticipated threats before they are manifested. The re-
sponse can be by (i) adjusting internal parameters,
such as encryption schemes, security protocols, secu-
rity policies, security countermeasures, or (ii) making
dynamic changes in the structure of the security sys-
tem (Shnitko, 2003; Abie and Balasingham, 2012).
This is an approach for a real-time monitor-analyze-
adapt optimized cycle for IoT and it will be extended
for multi-microgrids without loosing any clarity or
functionality.

3.1 Adaptation Loop with Federated
Learning Component

As seen in Fig. 2, the system employs various com-
ponents. It will be developed using collaborative
distributed adaptive monitoring and control agents,

hybrid security incident detection technique (signa-
ture, specification, anomaly), data-driven situational
awareness, collaborative and cross-layered protocols
as well as adaptability methods.

Adaptive Monitoring is necessary for adjust-
ing threat detection thresholds dynamically accord-
ing to the local and global context of the environ-
ment. Adaptive Monitoring continuously collects,
aggregates, filters and reports contextual information
received from both internal and external MMG envi-
ronments using sensors.

Adaptive Security Management employs adap-
tivity mechanisms, decision making, and metrics-
based security enforcing actuators. It comprises of
Analytics Module and Adaptive Models. Analytics
Module processes this information using the feder-
ated learning models and context and location aware-
ness. The results of this analysis are used to dynam-
ically estimate and predict security and privacy inci-
dents. Adaptive Models use security actuators and
countermeasures to adapt to the dynamism of MMGs,
their interactions, and the environments, and to the
varying degrees of security incidents that the MMG
system will be compromised. These models can uti-
lize security measurement and metrics for quantita-
tive measures by which MMG security solutions can
be evaluated.

MMG uses heterogeneous networks and devices
as well as diverse processes. To address distributed
dynamic and heterogeneous features of MMG, we
consider federated learning approach where train-
ing of a ML model is coordinated between multiple
agents. The model training is done in a decentralized
manner on various edge devices using their local data
and thus the local data are not shared with any other
participating devices. A random subset of agents is
selected for training for each training round. Their lo-
cal data and computational resources are used to com-
pute the new weights of the model. It serves as the
main component of Analytics Module.

This solution improves scalability, allows for
lower latency and less power consumption, and helps
to preserve privacy. To better control privacy ex-
posure, federated learning can be reinforced by pri-
vacy preserving methods such as differential privacy
(Dwork, 2006) and secure multiparty computation
(Frikken, 2011). The other advantage of using fed-
erated learning is the ability to deal with unbalanced,
sparse and non-representative data at local nodes.
This fits well into distributed nature of MMGs. A
global ML model will be created from local ML mod-
els trained by multiple MGs. This will make the MGs
better adapted to their local threats and will provide
mechanisms for sharing the knowledge about new
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Figure 2: Adaptation loop for adaptive monitoring, analytics and federated learning, and adaptive models.

types of attacks among the community of the MGs.
Poisoned attacks also need to be carefully studied.

The evaluation of the developed cybersecurity
system is done by Collaborative Adaptive Cyber-
security Evaluation. It concretizes the results of the
analysis and adaptivity by demonstrating the validity
of the system through well-designed case study, secu-
rity metrics and verification method.

3.2 Main Components of Collaborative
Adaptive Approach

Fig. 3 depicts the main components of the proposed
collaborative adaptive approach. Each component im-
plements the adaptation (monitor-analyse-adapt) loop
depicted in Fig. 2 and can use evaluation metrics to
evaluate the analysis and adaption. The main compo-
nents are as follows. MGCollAdapter is an MG lo-
cal collaborative adaptive model with the necessary
functionality to monitor, predict and mitigate cyber-
attacks at the MG level. MMGCollAdapters are col-
laborative adaptive models at the MMGs level with
functionality monitoring, predicting and mitigating
MMGs related attacks. MGCollAdapter, and MMG-
CollAdapters collaborate with each other to form a
global view of the cyberspace with feedback loops
using collaboration protocols. ApplCollAdapters are
collaborative adapters at the application level for
monitoring, predicting and mitigating application re-
lated attacks.

These multi-layer feedback loops improve scala-
bility and flexibility for varying devices in increas-
ing complexity. For instance, certain activities oc-
cur at very rapid speeds requiring a very tight feed-
back loop to support adaptive control. Other activ-
ities occur on a longer timescale and adaptive con-
trol algorithms may need to consider a wider range
of factors in a slow feedback loop. The challenge
is then the correlation of cause and effect of actions
due to the variety of temporal loops and their dra-
matic speed differences. The specific challenge is to
design algorithms that adapt to the constraints and ca-
pabilities of the different devices, as well as to the
possible dynamicity of these constraints and capabil-
ities. The approach uses federated learning model
with a single hidden layer to run it on resource con-
strained devices, with more hidden layers to run it
on edge devices to enhance the capability of learn-
ing better features to represent edge data, and with
deep hidden layers to run it on more computationally
powerful devices to improve the detection and predic-
tion accuracy and to reduce the detection delay. The
Adapters act as autonomous systems in their local en-
vironment accomplishing their tasks, achieving their
goals, and interacting with their surroundings with no
human involvement. They can also implement pre-
vention mechanisms autonomously representing the
ultimate autonomous level that can be achieved in-
creasing complexity.

Explainable AI Collaborative Adaptive Cyberse-
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Figure 3: Components of collaborative adaptive cybersecurity of MMGs.

curity implements explainable collaborative adaptive
cybersecurity of the MG and MMGs for the stake-
holders and end-users. The Explainable AI Mod-
els will provide the decision support mechanisms to
end-users in their decision making in understandable
ways. This will include, among others, monitored
information, identification of adaptation options, as-
sessment of the adaptation options, adaptation plans
and adaption actions. For this the use of the Shapley-
Lorenz decomposition (Giudici and Raffinetti, 2021)
that appears as a new explainable artificial intelli-
gence method will be investigated.

Security metrics support development of explain-
able AI/ML for the purposes of cybersecurity. They
enable transparency and traceability of security infor-
mation, obtained from security functionalities used
in training. In AI/ML, transparency consists of
traceability, explainability and communication (High-
Level Expert Group on AI, 2019).

3.3 Roadmap for Implementation

The components of the proposed approach will be
designed, evaluated, and implemented. We consider
to address several research challenges. We intend to
define architectural design that enables collaborative
and cross-layered features of the system, and facili-

tates functioning of federated learning tasks. In-depth
analysis of vulnerabilities and threats in MMGs’ net-
work protocols, components and platforms will be
carried out. Based on the analysis, we will develop
a threat model for identifying a set of potential at-
tacks on MMGs. The capability of various cyberse-
curity mechanisms in preventing the determined po-
tential attacks will be analysed. The findings of this
analysis serve as input to the specification of the sys-
tem architecture.

Fig. 3 depicts the proposed approach with its vari-
ous components that implement the adaptation loop
for adaptive monitoring, analytics, and predictive
models and adaptive models depicted in Fig. 2. Fur-
ther, we will develop an adaptive detection and pre-
vention of security incidents that is compliant with ar-
chitecture and requirements of MMG. To proactively
detect security incidents, different machine learning
and deep learning methods will be evaluated accord-
ing to the changing and distributed context within the
environment. We plan to evaluate convolutional neu-
ral networks, recurrent neural networks, deep belief
networks, and a set of ensemble methods within the
context of distributed learning. Several open datasets
exist and can be applied for training and evaluating
the models (Ferrag et al., 2020). Based on the evalua-
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tion results, the system will select and apply the meth-
ods that prove to be most effective in current observa-
tions. To evaluate the effectiveness of the component,
a set of metrics will be used. We intend to use high ac-
curacy, low false positive rate, trustworthiness, scala-
bility, flexibility. Decision criteria will be defined and
applied.

A set of relevant cybersecurity countermeasures
for the adaptive security management will be devel-
oped, along with their operational adaptivity logic
based on security metrics and context and location in-
formation. Adaptive security management function-
alities will be designed. The goal is an efficient self-
protecting monitor-analyze-adapt mechanism, which
will rely on learning and adapting to the changing
context and location, anticipating threats. The ap-
proach will be cross-layered and federated.

4 CONCLUSION AND FUTURE
WORK

This paper defines the conceptualization and the
roadmap for collaborative adaptive cybersecurity of
multi-microgrids. Federated learning is utilized to fa-
cilitate collaboration and to support adaptation in a
distributed and heterogeneous context. We have stud-
ied the literature and outlined system architecture and
components required for the development and imple-
mentation. At this stage, our work is in the con-
cept phase. We plan to facilitate and evaluate feder-
ated learning process, develop adaptive security man-
agement, implement prototypes and validate them re-
garding system complexity, processing time, adaptiv-
ity, stability, security requirements. We intend to val-
idate the feasibility of the approach using real time
simulation.
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