
Towards CRYSTALS-Kyber VHDL Implementation

Sara Ricci a, Petr Jedlicka b, Peter Cibik c, Petr Dzurenda d, Lukas Malina e and Jan Hajny f

Department of Telecommunications, Brno University of Technology, Brno, Czech Republic

Keywords: Post-quantum Cryptography, Lattice-based Cryptography, Key Encapsulation Scheme, Number-theoretic
Transform, FPGA, VHDL Implementation, Parallelization, Optimization.

Abstract: Kyber is one of the three finalists of the National Institute of Standards and Technology (NIST) post-quantum
cryptography competition. This article presents an optimized Very High Speed Integrated Circuit Hardware
Description Language (VHDL)-based implementation of the main components of the Kyber scheme, namely
Number-Theoretic Transform (NTT) and Keccak. We focus specifically on NTT, Keccak and their derivatives
since they largely determine Kyber’s performance due to their wide involvement in each step of the scheme.
Our high-speed implementation also takes into account the trade-off between the degree of parallelization and
the resources utilization. The NTT component is more than 27% faster than the state-of-the-art implementa-
tions. Furthermore, the optimization helps the algorithm to achieve 1 572 839 NTT operations per second.

1 INTRODUCTION

In 2016, the NIST initiated a call for proposal of new
Post-Quantum Cryptography (PQC) digital signatures
and Key Encapsulation Mechanisms (KEMs) for fu-
ture standardization (NIST, 2016). In January 2019,
NIST announced the third round finalists, where 3 sig-
natures and 4 KEMs were selected as potential future
standards from the competing 69 candidates (NIST,
2019). These schemes were chosen based on their
security strength, and software and hardware perfor-
mance.

While most of the finalists already include an
implementation optimized for large x86 processors,
they often lack optimized implementations for other
platforms. Table 1 shows the current state of NIST
PQC finalists VHDL-based and High-Level Synthe-
sis (HLS)-based implementations on the Field Pro-
grammable Gate Arrays (FPGA) platform (references
are given in the table). All schemes have HLS-based
implementations which have been published in differ-
ent articles. However, the outputs from HLS are of-
ten less efficient than native VHDL-based implemen-
tations, and could present security bugs. As shown in

a https://orcid.org/0000-0003-0842-4951
b https://orcid.org/0000-0003-0833-8068
c https://orcid.org/0000-0003-0780-6288
d https://orcid.org/0000-0002-4366-3950
e https://orcid.org/0000-0002-7208-2514
f https://orcid.org/0000-0003-2831-1073

Table 1, no pure VHDL implementation exists so far.
Remarkable is that 3 out of 4 third round final-

ists for KEM are based on structured lattices, i.e.,
they rely on arithmetic in polynomial rings. Indeed,
Lattice-based cryptography has gained significant at-
tention for its performance among the PQC families.
Especially CRYSTALS-Kyber (Avanzi et al., 2017),
shortly Kyber, which is designed to support very effi-
cient multiplication over polynomial ring without ad-
ditional memory. It is important to notice that Ky-
ber is identified as the fastest KEM after pipelining in
the PQC NIST KEM semifinalists comparison done
in (Basu et al., 2019).

1.1 Related Work

Several partial or whole FPGA implementations of
Kyber are currently available. The used technolo-
gies can be split in three groups: HLS-based design
(e.g., ANSI C/C++, and Matlab), software-hardware
co-design and RTL-based design (e.g., VHDL, and
Verilog).

(Chen et al., 2021) propose a polynomial ring pro-
cessor for Kyber on a Xilinx Artix-7 series FPGA
platform using HLS technology. They develop an op-
timized NTT which uses convolution-based polyno-
mial multiplier. (Basu et al., 2019) employ the HLS
method to implement and compare 11 NIST PQC
semifinalists on the Xilinx Virtex-7 FPGA platform.
CRYSTALS-Kyber is recognized as the fastest KEM

760
Ricci, S., Jedlicka, P., Cibik, P., Dzurenda, P., Malina, L. and Hajny, J.
Towards CRYSTALS-Kyber VHDL Implementation.
DOI: 10.5220/0010580407600765
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 760-765
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Table 1: VHDL and HLS implementations of NIST PQC finalists.

Digital Signature
Scheme Type HLS method pure VHDL implementation

Dilithium lattice (Soni et al., 2019; Soni et al., 2020) (Ricci et al., 2021)(Basu et al., 2019)
Falcon lattice (Soni et al., 2020) 7

Rainbow multivariate (Soni et al., 2020) (Ferozpuri and Gaj, 2018)
Encryption/KEM

Scheme Type HLS method pure VHDL implementation
Kyber lattice (Basu et al., 2019; Chen et al., 2021) 7

McEliece code (Soni et al., 2019; Basu et al., 2019) (Wang et al., 2018)
NTRU lattice (Soni et al., 2019; Basu et al., 2019) (Marotzke, 2020)

SABER lattice (Soni et al., 2019; Basu et al., 2019) (Roy and Basso, 2020)
Note: 7– pure hardware implementations without language specification, 7– algorithm is not implemented.

under pipelining directives.
(Dang et al., 2020) present a software-hardware

co-design approach for the implementation of three
NIST semifinalists: Kyber, NewHope and Round5
schemes. They combine C code with Register-
Transfer Level (RTL) design methodology on the Xil-
inx Artix-7 FPGA family.

Even if some Kyber RTL-based designs are now
available, there is still a lack of its optimized im-
plementation on FPGA. A Verilog Kyber imple-
mentation on Xilinx Artix-7 and Virtex-7 FPGAs
is presented in (Huang et al., 2020). The article
stays on a high level description of Kyber and no
NTT and Keccak results are shown. Furthermore,
(Chen et al., 2020) design an NTT optimization with
Gentlemen-Sande butterfly on Xilinx XC7A200T and
XC6SLX45T FPGA platforms. However, no specifi-
cation on the used language are given. At last, (Xing
and Li, 2021) develop a Kyber hardware implemen-
tation on the Xilinx XC7A12TCPG238-1 FPGA plat-
form. But even here, no specification on the used lan-
guage are given. Moreover, this lightweight platform
has small memory capacity and all the implementa-
tion has been design to run on this characteristic. On
the contrary, our implementation works on the high-
end Xilinx Virtex UltraScale+ XCVU7P FPGA plat-
form. Due to the bigger available resources, we could
focus on a high-speed implementation, i.e. on scheme
performance and optimization.

1.2 Contributions

The main contribution of this paper is to present op-
timized NTT and Keccak VHDL implementations for
Kyber on high-speed FPGA platform. Our high-speed
platform implementation targets the minimization of
the execution times of the major operations by com-
ponents optimization and operations/sub-components

parallelization. Moreover, our implementation fo-
cuses on the trade-off between the degree of paral-
lelization and the resources utilization. Our NTT
is more than a factor of 25 and 3 times faster than
the performance presented in (Chen et al., 2020) and
(Dang et al., 2020), respectively. Our Keccak im-
plementation is easy to use in specific instances of
SHA and SHAKE functions. In fact, each derivative
has its specific implementation of Keccak core blocks
hash core and pad10*1.

2 PRELIMINARIES

In this section, we discuss the mathematical back-
ground that is crucial for the understanding our im-
plementation. Moreover, we recall NTT, Keccak and
Kyber scheme. Finally, we describe the main charac-
teristic of FPGA implementations and how they can
be compared. We denote by Rq the polynomial ring
Z[x]q/(xn + 1) where n = 256 and q = 3329. Bold
lower-case letters (v) are used for column vectors in
Rq, while regular font letters (v) for elements in Rq.
Matrices are represented by bold upper-case letters
(A). The coefficient-wise multiplication of two poly-
nomials in the NTT domain with the natural extension
to vectors and matrices is denoted by ◦.

NTT. NTT is a very efficient way to perform mul-
tiplications in polynomial rings (Nejatollahi et al.,
2019). In NTT, a polynomial becomes a multi-point
evaluation at powers of a root of unity. Therefore, the
polynomial multiplication consists in applying NTT
in O(n logn), then performing point-wise multiplica-
tion in O(n) and finally converting the result to a co-
efficient representation in O(n logn). There are many
ways to compute the number-theoretic transform. Ky-

Towards CRYSTALS-Kyber VHDL Implementation

761



ber uses Cooley-Tukey butterfly for NTT, Gentleman-
Sande butterfly for NTT−1, Montgomery algorithm
for modular multiplication and Barrett algorithm for
modular reduction.
Keccak. The performance of Kyber is largely deter-
mined by hashing and pseudorandom number gener-
ation. All these symmetric primitives require Kec-
cak permutation (Bertoni et al., 2009). Keccak is a
family of sponge functions using Keccak- f permu-
tation as the underlying function. The function f
maps a single fixed-length string b = r + c, where r
is the bitrate and c the capacity, to another string of
the same length. It is important to mention that the
Kyber scheme includes several hash functions such
as SHA3-256 and SHA3-512, and extendable output
functions SHAKE-128 and SHAKE-256 which are all
based on Keccak.

Algorithm 1: CPA KeyGen().

1: ρ,σ←{0,1}256×{0,1}256 B SHA3-512
2: A ∈ Rk×k

q B SHAKE-128 & NTT
3: s,e ∈ Rk

q B SHAKE-256

4: t̂ := A◦NT T (s)+NT T (e) B NTT
5: return pk = (ρ, t̂), sk = s

Kyber. CRYSTALS-Kyber scheme (Avanzi et al.,
2017) is part of the Cryptographic Suite for Algebraic
Lattices (CRYSTALS), which counts KEM, namely
Kyber, and a signature, namely Dilithium. Both pro-
tocols’ security relies on the hardness of the Module
variant of the Learning With Error (MLWE) problem
(Brakerski et al., 2014; Langlois and Stehlé, 2015).

Algorithm 2: CPA Encryption(ρ, t̂,m).

1: Â ∈ Rk×k
q B SHAKE-128 & NTT

2: r,e1 ∈ Rk
q B SHAKE-256

3: e2 ∈ Rq B SHAKE-256
4: r̂ := NT T (r) B NTT
5: u := NT T−1(ÂT ◦ r̂)+NT T (e1) B NTT
6: v := NT T−1(t̂T ◦ r̂)+ e2 +m B NTT
7: return c = (Compress(u),Compress(v))

Kyber uses the MLWE problem with n and q fixed
while the dimension of the module is being varied.
This gives the advantage that changing the security
level of Kyber involves doing more (or fewer) of the
same ring operations. On the contrary, changing the
ring would require the re-implementation of all the
operations. Kyber is constructed in two-stage ap-
proach: 1) Basic version Kyber.CPAPKE and 2) ex-
tended version Kyber.CCAKEM (shortly Kyber), see

(Avanzi et al., 2017) for more information.

Algorithm 3: CPA Decryption(sk = s,c).

1: u := Decompress(c1)
2: v := Decompress(c2)
3: A ∈ Rk×k

q

4: m :=Compress(v−NT T−1(sT ◦NT T (u))) B
NTT

5: return m

Algorithms 1, 2 and 3 show a brief description of the
main core of CPAPKE.Kyber scheme. In the afore-
mentioned algorithms, NTT and Keccak derivatives
usage are specified. CCAKEM.Kyber scheme variant
differs from CPAPKE.Kyber on the usage of a hashed
message m and a hashed public key pk in the encryp-
tion and decryption phases. In particular, SHA3-256 is
used for hashing. It is remarkable that the high pres-
ence of NTT and Keccak derivatives in all algorithms,
in particular in Algorithms 1 and 2. In fact, these
functions largely determine Kyber performance.

FPGA Implementations. Hardware implementa-
tions outperform software ones considering at least
one of the following metrics: speed, power con-
sumption, or energy usage (Dang et al., 2020). The
FPGA implementations can be split into high-speed
and lightweight. They try to minimize the execu-
tion times of the major operations by protocol opti-
mization and operations/sub-components paralleliza-
tion. On the contrary, lightweight implementations
try to achieve minimum resource utilization, assum-
ing of not exceeding a predefined maximum execu-
tion time. In particular, resource utilization is a vec-
tor counting the number of Logic Cells, Look-Up Ta-
bles (LUTs), Flip-Flops (FFs), Digital Signal Proces-
sor (DSP) slices and Block Random Access Memo-
ries (BRAMs).

3 VHDL IMPLEMENTATION

NTT Design and Implementation. The NTT and
NTT−1 components consist of several functional sub-
blocks including two butterflies, Montgomery algo-
rithm, and Barrett algorithm. These sub-blocks are
implemented and then integrated into the two compo-
nents.

Whereas our design is speed-optimized, pipelined
processing is applied and Digital Signal Processing
(DSP) blocks are used for the implementation of
all arithmetical operations necessary for NTT and
NTT−1 functions. Moreover, the arithmetical oper-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

762



Table 2: Hardware specifications of the FPGA platforms for Kyber components.

Design Platform Logic Cells / LUTs FFs DSP BRAMs / Block Size
High-speed platforms

Our work UltraScale+ XCVU7P 1 724 100 / 788 160 1 576 320 4 560 1 440 / 36 Kb
(Dang et al., 2020) UltraScale+ Zynq XCZU9EG 599 550 / 274 080 548 160 2 520 912 / 36 Kb
(Huang et al., 2020) Virtex-7 VC707 XC7VX485T 485 760 / 303 600 607 200 2 800 1 030 / 36 Kb

Lightweight platforms
(Chen et al., 2021) Artix-7 XC7A200T 215 360 / 134 600 269 200 740 365 / 36 Kb
(Xing and Li, 2021) Artix-7 XA7A12T 12 800 / 8 000 16 000 40 20 / 36 Kb
(Chen et al., 2020) Spartan-6 XC6SLX45T 43 661 / 27 288 54 576 58 116 / 18 Kb

ations are run in parallel with a throughput equal to
one output per one clock cycle.

The computation of NTT or NTT−1 functions is
performed over 256 coefficients in 7 iterations. As
trade-off between the degree of parallelization and
hardware resources, 4 butterflies in a 2x2 arrange-
ment are deployed. This leads to the computation
of 2 NTTs iterations in parallel with 2 butterflies in
each of them. It is remarkable that the 7th iteration is
performed using only two butterflies in the first layer
while the remaining butterflies are bypassed. The but-
terflies are distributed in two iterations to reduce the
number of coefficients or intermediate results needed
to be stored in the Block Random Access Memory
(BRAM) at one clock cycle. The block diagram of
the NTT component is shown in Figure 1. The co-
efficients, intermediate results and output values are
stored in BRAMs. The roots of unity needed for the
NTT computation are stored in the Read-Only Mem-
ory (ROM) whose address is controlled by the control
unit and data bus is accessed by the butterflies.

BRAM
interface
switch

control unit

coefficients
4x18k
BRAM

roots of unity
3x18k ROM

data in
[127:0]

data out
[127:0]

addr
[5:0]

we

select

start

ready

4x addr
[6:0]

we

data out [127:0]

data in
[127:0]

3x addr [7:0]

split

akalaman

merge

butterflies 2x2

bypass

Figure 1: The block scheme of the NTT implementation.

The only difference between NTT−1 and NTT im-
plementation is order in which the iterations are per-

formed. In fact, in NTT−1 the distribution of the but-
terflies is reversed with respect to NTT component.
The Montgomery reduction of the output coefficients
is additionally performed for NTT−1 transformation.

Keccak and Derivatives Design and Implemen-
tation. Our Keccak implementation consists of
two main components: hash-core and pad10*1.
The Keccak sponge function is implemented in the
hash-core component with parameter b = 1600 and
counts 24 rounds. Our implementation computes two
rounds per clock cycle, which means that the out-
put value is pre-computed for 512-bit input approx-
imately each 12 clock cycles. The pad10*1 compo-
nent is responsible of adding the multi-rate padding
(10*1) and the specific derivative functions padding,
e.g. ”1111” and ”01”, to the last block of input mes-
sage (NIST, 2015).

The derivative functions SHA3-512, SHA3-256,
SHAKE128 and SHAKE256 are implemented as a top
component with specific setting of internal sub-
components. Each top component has 512-bit input
interface and for both input and output interfaces has
handshake signals (src and dst ready) for transaction
transmission.

4 EXPERIMENTAL RESULTS
AND COMPARISON

This section describes the experimental results of our
hardware implementation design for NTT, NTT−1,
Keccak function and Keccak derivatives used in the
Kyber scheme. Moreover, we compare our work
with existing implementations. Our implementation
works with high-speed FPGA Xilinx Virtex Ultra-
Scale+ XCVU7P with manufacturer product number
xcvu7p-flvb2104-2-i. Table 2 lists the basic hard-
ware specifications of our FPGA and other FPGA
platforms used in related works that are mentioned in
this paper. The table categorizes FPGA platforms to
high-speed and lightweight.

Towards CRYSTALS-Kyber VHDL Implementation

763



Table 3: Comparison of hardware resources and performance of NTT component of Kyber scheme on FPGA. ”Max. Freq.”
states for maximum frequency, and ”Ops” for operations per second. Not available parameters are marked as ”-”.

Design LUTs FFs DSP BRAMs Latency
Cycles

Max. Freq.
[MHz]

Ops

Our Work 1 107 1 407 28 3.5 405 637 1 572 839
(Chen et al., 2020)a 442 237 1 1.5 2 055 136 66 180
(Chen et al., 2020)b 446 237 1 2 2 055 85 41 443
(Chen et al., 2021) 479 472 1 2 - 240 -
(Dang et al., 2020)c 2 325 2 346 24 7 1 271 455 357 986
(Dang et al., 2020)d 2 040 3 223 24 5 1 271 500 393 391
(Xing and Li, 2021) 1 737 1 167 2 3 - - -

Note: a with Artix7 FPGA platform, b with Spartan6 FPGA platform, c results of HLS implementation, d results of RTL implementation.

4.1 Performance Results

Tables 3 and 4 show our results after the synthe-
sis of NTT components and Keccak component, re-
spectively. The tables show the resources utilization
(e.g., LUTs, FFs, DSP slices and BRAMs) and also
the theoretical operating frequency and latency that
can serve for the assessment of computational perfor-
mance. Similarly to NTT, NTT−1 requires in average
1 572 LUTs, 2 002 FFs, 60 DSP, 3.5 BRAMs, 418
cycles Latency, and 637 MHz Frequency. In Keccak
evaluation, DSP, and BRAMs are zero since they are
not needed in the implementations. Note that NTT
and NTT−1 require DSP and BRAMs due to their
higher complexity. In particular, DSP slices are used
for optimization reasons while BRAMs blocks are
needed to store NTT (and NTT−1) input, intermedi-
ate and output values.

Table 4: The hardware resources utilization of Keccak and
derivatives components after an RTL synthesis. ”Max.
Freq.” states for maximum frequency and ”r” for bitrate.

Component r
[bit]

LUTs FFs Max. Freq.
[MHz]

SHA3–512 576 18 543 4 829 237
SHA3–256 1 088 13 879 5 608 242
SHAKE128 1 344 18 448 8 873 230
SHAKE256 1 088 15 704 7 592 241

4.2 Comparison

Table 3 shows the comparison of several NTT imple-
mentations results. (Chen et al., 2020) present hard-
ware NTT optimization with Gentlemen-Sande but-
terfly on Xilinx XC7A200T and XC6SLX45T FPGA
platforms. However, no specifications on the used
language are given. Checking the number of Oper-
ations Per Second (ops), their implementations are
able to perform around 25 times less NTT transfor-
mations per second while using 4 times less hard-
ware resources (LUTs and FFs). Moreover, if we de-

fine the comparison effectiveness of two implemen-
tations on two different FPGA platforms as (ops ra-
tio)/(utilization ratio)/(theoretical max. frequency ra-
tio), then our implementation is around 3.7 times
more effective than (Chen et al., 2020). In particu-
lar, we assume that the typical theoretical maximum
frequency of a low cost FPGA such as Artix7 is 464
MHz while our UltraScale+ is able to run at 775 MHz.

The differences between our and their implemen-
tation is due to the available resources of the used
FPGA platforms. Our high-speed implementation
also takes into account the trade-off between the de-
gree of parallelization and the resources utilization. In
fact, if we consider the most lightweight FPGA plat-
form Spartan-6 XC6SLX45T used by (Chen et al.,
2020), we need only ca. 4% LUTs, 3% FFs, 48%
DSP, and 6% BRAMs of its available hardware re-
sources. Furthermore, (Dang et al., 2020) hardware-
software co-design reaches more than 3 times less
NTT transformations per second while using twice
more hardware resources. Regardless the platform
they used, our implementation is more effective. In
(Xing and Li, 2021) and (Chen et al., 2021), no NTT
component performance results are provided.

Our Keccak implementation focuses mainly on
performance. However, the impact on resource con-
sumption remains negligible and comparable with
other state-of-the-art solutions. In (Xing and Li,
2021), no performance results of Keccak and its
derivatives (i.e., latency, maximum frequency, ops
values) are provided, and therefore it is also hard to
objectively compare our solutions.

5 CONCLUSIONS

In this paper, we present a pure and optimized im-
plementation for the main algorithms of the Kyber
scheme, namely The NTT and Keccak algorithms.
The implementations are written in the VHDL lan-
guage and performed on the UltraScale+ XCVU7P

SECRYPT 2021 - 18th International Conference on Security and Cryptography

764



FPGA chip. Our high-speed implementation also
takes into account the trade-off between the degree
of parallelization and the resources utilization. Our
implementation is more efficient than currently exist-
ing implementations. In particular, our NTT imple-
mentation is ca 27% faster than (Dang et al., 2020)
while using significantly less resources, and ca 155%
faster than (Chen et al., 2021) proposal. Indeed,
(Chen et al., 2021) is most resources friendly im-
plementation. Note that if we consider the most
lightweight FPGA platform Spartan-6 XC6SLX45T
used by (Chen et al., 2020), we need only ca. 4%
LUTs, 3% FFs, 48% DSP, and 6% BRAMs of its
available hardware resources. Our future work will
focus on the implementation of the complete Kyber
scheme, its optimisation and resistance against side
channel attacks.

ACKNOWLEDGEMENTS

This work is supported by Ministry of the Interior of
the Czech Republic under grant VJ01010008.

REFERENCES

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G.,
and Stehlé, D. (2017). Crystals-kyber algorithm spec-
ifications and supporting documentation. NIST PQC
Round, 2:4.

Basu, K., Soni, D., Nabeel, M., and Karri, R. (2019).
Nist post-quantum cryptography-a hardware evalua-
tion study. IACR Cryptol. ePrint Arch., 2019:47.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.
(2009). Keccak specifications. Submission to nist
(round 2), pages 320–337.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014).
(leveled) fully homomorphic encryption without boot-
strapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36.

Chen, Z., Ma, Y., Chen, T., Lin, J., and Jing, J. (2020). To-
wards efficient kyber on fpgas: A processor for vec-
tor of polynomials. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC),
pages 247–252. IEEE.

Chen, Z., Ma, Y., Chen, T., Lin, J., and Jing, J. (2021).
High-performance area-efficient polynomial ring pro-
cessor for crystals-kyber on fpgas. Integration, 78:25–
35.

Dang, V. B., Farahmand, F., Andrzejczak, M., Mohajerani,
K., Nguyen, D. T., and Gaj, K. (2020). Implemen-
tation and benchmarking of round 2 candidates in
the nist post-quantum cryptography standardization
process using hardware and software/hardware co-
design approaches. Cryptology ePrint Archive: Re-
port 2020/795.

Ferozpuri, A. and Gaj, K. (2018). High-speed fpga im-
plementation of the nist round 1 rainbow signature
scheme. In 2018 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages
1–8. IEEE.

Huang, Y., Huang, M., Lei, Z., and Wu, J. (2020). A pure
hardware implementation of crystals-kyber pqc algo-
rithm through resource reuse. IEICE Electronics Ex-
press, pages 17–20200234.

Langlois, A. and Stehlé, D. (2015). Worst-case to average-
case reductions for module lattices. Designs, Codes
and Cryptography, 75(3):565–599.

Marotzke, A. (2020). A constant time full hardware imple-
mentation of streamlined ntru prime. In International
Conference on Smart Card Research and Advanced
Applications, pages 3–17. Springer.

Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee,
I., and Cammarota, R. (2019). Post-quantum lattice-
based cryptography implementations: A survey. ACM
Comput. Surv., 51(6):129:1–129:41.

NIST (2015). Fips pub 202 sha-3 standard: Permutation-
based hash and extendable-output functions.

NIST (2016). Submission requirements and evaluation
criteria for the post-quantum cryptography stan-
dardization process. https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

NIST (2019). Computer security resource cen-
ter (csrc): Post-quantum cryptography - round
3 submissions. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.
Last accessed 04-March-2021.

Ricci, S., Malina, L., Jedlicka, P., Smekal, D., Hajny,
J., Cibik, P., and Dobias, P. (2021). Implementing
crystals-dilithium signature scheme on fpgas.

Roy, S. S. and Basso, A. (2020). High-speed instruction-set
coprocessor for lattice-based key encapsulation mech-
anism: Saber in hardware. IACR Cryptol. ePrint
Arch., 2020:434.

Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M.,
and Karri, R. (2020). Hardware architectures for post-
quantum digital signature schemes.

Soni, D., Basu, K., Nabeel, M., and Karri, R. (2019). A
hardware evaluation study of nist post-quantum cryp-
tographic signature schemes. In Second PQC Stan-
dardization Conference. NIST.

Wang, W., Szefer, J., and Niederhagen, R. (2018). Fpga-
based niederreiter cryptosystem using binary goppa
codes. In International Conference on Post-Quantum
Cryptography, pages 77–98. Springer.

Xing, Y. and Li, S. (2021). A compact hardware im-
plementation of cca-secure key exchange mechanism
crystals-kyber on fpga. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages
328–356.

Towards CRYSTALS-Kyber VHDL Implementation

765


