
Towards Automatically Generating a Personalized Code Formatting
Mechanism

Thomas Karanikiotis a, Kyriakos C. Chatzidimitriou b and Andreas L. Symeonidis c

Dept. of Electrical and Computer Eng., Aristotle University of Thessaloniki, Thessaloniki, Greece

Keywords: Source Code Formatting, Code Style, Source Code Readability, LSTM, SVM One-Class.

Abstract: Source code readability and comprehensibility are continuously gaining interest, due to the wide adoption
of component-based software development and the (re)use of software residing in code hosting platforms.
Consistent code styling and formatting across a project tend to improve readability, while most code formatting
approaches rely on a set of rules defined by experts, that aspire to model a commonly accepted formatting.
This approach is usually based on the experts’ expertise, is time-consuming and does not take into account the
way a team develops software. Thus, it becomes too intrusive and, in many cases, is not adopted. In this work
we present an automated mechanism, that, given a set of source code files, can be trained to recognize the
formatting style used across a project and identify deviations, in a completely unsupervised manner. At first,
source code is transformed into small meaningful pieces, called tokens, which are used to train the models of
our mechanism, in order to predict the probability of a token being wrongly positioned. Preliminary evaluation
on various axes indicates that our approach can effectively detect formatting deviations from the project’s code
styling and provide actionable recommendations to the developer.

1 INTRODUCTION

Source code readability has recently gained much
research interest and is considered of vital
importance for developers, especially those working
under a component-based software engineering
scheme. It is a quite complex concept and includes
factors such as understanding of the control flow, the
functionality and the purpose of a given software
component. At the same time, source code
readability is highly related to maintainability and
reusability, pillar aspects of software quality.

In this context, the importance of readability is
obvious and a number of recent approaches aspire to
quantify readability of a source code component
(Scalabrino et al., 2018; Scalabrino et al., 2016;
Posnett et al., 2011); still, the selection of metrics
that properly quantify readability is under heavy
debate. What has been proven, though, is that the
selection of a suitable code styling and correct
formatting approach can improve source code
readability and can enhance the capability of the
developers to comprehend the content, the

a https://orcid.org/0000-0001-6117-8222
b https://orcid.org/0000-0003-0715-1197
c https://orcid.org/0000-0003-0235-6046

functionality and the intention of the source code
(Tysell Sundkvist and Persson, 2017); on the
contrary, different coding styles affect readability
(Lee et al., 2013). At the same time, studies have
shown that the indentation applied on source code,
which is a part of code formatting, directly affects
comprehensibility (Kesler et al., 1984).

There have been several efforts that mainly aspire
to identify styling errors and deviations from a
priorly accepted set of formatting rules and, possibly,
provide styling fixes (Loriot et al., 2019; Markovtsev
et al., 2019; Prabhu et al., 2017). The majority of the
related approaches make use of a predefined set of
”globally” accepted formatting rules and, based on
these rules, try to identify pieces of code that diverge
from them. These rules can only be turned on/off and
the developers are not able to alter any of them, or
add their own. In addition, some approaches
(Allamanis et al., 2014), aspire to identify alterations
on identifier or method names, sequence of function
calls or code structure that could make the code more
interpretable, focusing on program comprehension,
rather than on readability from the code styling
perspective.

The majority of the aforementioned approaches
aspire to provide a mechanism that models a

90
Karanikiotis, T., Chatzidimitriou, K. and Symeonidis, A.
Towards Automatically Generating a Personalized Code Formatting Mechanism.
DOI: 10.5220/0010579900900101
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 90-101
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

commonly accepted code styling and can help
developers apply it in practice. However, as teams
vary in skills and have different needs, not all styling
guidelines can apply to each one of them. At the
same time, the process of properly configuring the
set of formatting rules to match the needs of a
specific team can be a quite time consuming and
complex task, especially when there is a large group
of developers that participate in a team. Thus, an
unsupervised system that could model the desired
formatting style of a team is needed, which, based on
an existing project, could identify any styling
deviations from it.

In this work, we present an automated
mechanism that can learn the code style used in a
project or a repository in a completely unsupervised
manner. This mechanism can be used by single
developers or a team of developers with minimal
prior project knowledge, in order to detect and
highlight the points within a source code that deviate
from the global styling applied in the whole project.
Using this tool, a team of developers could keep a
common formatting across the whole project,
making it easier for them to maintain or reuse certain
pieces of code, or cooperate. At the same time, with
the appropriate selection of the data that will be used
for training, our approach can act like a common
formatter, which learns globally accepted styling
rules with no supervision and detects deviations from
them.

The rest of this paper is organized as follows.
Section II reviews the recent approaches on source
code formatting and discusses how our work
differentiates and further extends them. Our
methodology, as well as the models we have
developed and the data used to train the models are
depicted in Section III, while in Section IV we
evaluate the performance of our approach in the
detection of formatting errors. Finally, in Section V
we analyze potential threats to our internal and
external validity, while in Section VI we discuss the
conclusions of our approach and provide insights for
further research.

2 RELATED WORK

The importance of source code readability and
comprehension has gained increasing interest during
the recent years, especially in the cases where the
software development process involves large teams
of developers or the component-based software
development paradigm is followed. Such cases
require projects to be processed quickly and maintain

a standard level of quality and readability is
considered a success or fail factor. Additionally, in
the context of software quality, readability is one of
the software attributes that is closely linked to
maintainability, which, as the importance of correct
and evolving code is given, has gained the attention
of research approaches in the recent years.

While software readability and code
comprehension have abstract meanings and their
quantification is still to be clarified, the code styling
and formatting approach used across the source code
can unquestionably ease the process of reading and
understanding the functionality, the intentions and
the content of a given source code. Code indentation,
one of the most important attributes of code
formatting, has been proven to change the way a
developer perceives the content of the source code,
separates the various blocks of code that may appear
and apprehends their purpose. Persson and Sundkvist
(Tysell Sundkvist and Persson, 2017) argue that the
readability and interpretation of source code can be
improved by the use of correct indentation, providing
faster understanding of the code purpose and
functionality as the source code size increases.
Hindle et al. (Hindle et al., 2008) conducted a study
about the relationship between the shape that is
drawn from the code indentation and the code
block’s syntactic structure. The study concluded that
there is a high correlation between the indentation
shape and the code structure, which can help the
developers better perceive the content of the given
code.

Prabhu et al. (Prabhu et al., 2017), on the other
hand, focus on building an editor that can separate
the content of the source code from the presentation
(e.g. styling) and provide features such as
auto-format coding, including auto-indentation and
auto-spacing. However, the auto-formatting features
are strictly based on algorithms developed by the
authors, that aspire to follow a global styling pattern
and do not allow alterations. Additionally, Wang et
al. (Wang et al., 2011) built a heuristic method in
order to segment a given Java method into
meaningful blocks that implement different
functionalities, trying to ease the developer’s task to
comprehend the code functionality. At the same
time, there are a lot of tools, like Indent (GNU
Project, 2007) and Prettier (Prettier, 2017), that,
based on a set of expert-defined rules, aspire to detect
styling mismatches and pieces of code that diverge
from the ”ground truth”.

While there are a lot of approaches that aspire to
detect code formatting errors based on a set of
predefined rules and, possibly, provide fixes (Loriot

Towards Automatically Generating a Personalized Code Formatting Mechanism

91

et al., 2019), developers are not able to edit these
rules or add their own, in order to build a custom
code styling that best matches their needs. In large
teams of developers, maintaining a common
formatting, that is also configured according to their
requirements, is a crucial factor towards quality
code. The work of Kesler et al. (Kesler et al., 1984)
supports this argument; they ran an experiment on
the effects of no indentation, excessive indentation
and a moderate indentation on the comprehensibility
of a program. The results of the experiment depicted
that, while the moderate indentation seems to yield
the best results, one can conclude that there is no
perfect indentation style and it should be chosen
carefully at each time. Miara et al. (Miara et al.,
1983) conducted a study for the most popular and
most used indentations, which concluded that
multiple and different indentation styles may be
found across programs and the level of indentation
could be a crucial factor for code comprehensibility.
Therefore, there is a need for models that could
identify the code formatting that is used across the
same project and detect deviations from it.

Towards dynamic adaptation and homogenization
of code styling, Allamanis et al. (Allamanis et al.,
2014) carried out one of the first approaches towards
learning the styling used by one or more developers
in a single project and, then, detecting and
identifying variations from it. The authors built a
framework, called NATURALIZE, that could suggest
identifier names and styling changes in the given
source code, in order to increase styling consistency
across the files of a project. While NATURALIZE
was proven effective for providing accurate
suggestions, it could process only local context and
could not incorporate semantically valid suggestions,
while it was mainly focused on the use of indentation
and whitespaces and not on other aspects of code
formatting (e.g. the placement of comments within
the code). Furthermore, Parr et al. (Parr and Vinju,
2016) proposed CODEBUFF, a code formatter based
on machine learning, that could automatically create
universal code formatters built from the grammar of
any given language. CODEBUFF achieved quite
good results, but it was based on a complex model
trained by trial and error, with no generalization
capabilities. Moreover, it could not handle some
ordinary cases, such as mixed indentation with tabs
and spaces or mixed quotes with single and double
quotes. Towards avoiding these limitations,
Markovtsev et al. (Markovtsev et al., 2019) created a
tool, called STYLE-ANALYZER, which can mine the
formatting style of a given Git repository, identify
style inconsistencies and propose fixes. Even though

STYLE-ANALYZER can achieve pretty good results
at modelling the code styling of the respective
project, the proposed model is quite complex and
time-consuming and is targeted only on javascript
source code. Finally, Ogura et al. (Ogura et al., 2018)
proposed STYLECOORDINATOR, a tool that can
help developers maintain a consistent code styling
across their project and, also, use their own local
formatting style. StyleCoordinator could process the
code of a repository and produce a styling
configuration stored in a file. This configuration file
would then be used to provide consistency in every
new or modified file in the user’s repository.
However, StyleCoordinator is initially based on a
common convention configuration, in order to ensure
consistency, and is not able to extract the code
styling selected by the user from the ground, while
its efficiency is yet to be clarified.

In this work, we aspire to confront the main
limitations introduced in the aforementioned related
approaches. We propose a generalizable model,
which can dynamically learn the formatting style
applied across a project or set of files and, then,
identify and highlight any deviations from it. Using
our approach, single developers or teams of
developers are able to feed their existing source code
files to indicate the desired formatting and then use
the generated model to format future code in the
same styling. This way they can save time in
understanding their source code, while helping their
team keep a uniform way of developing software.
Our approach requires no specific domain knowledge
or even rules customisation, which most of the recent
linters and style checkers need.

3 METHODOLOGY

In this section we design our formatting error
detection system (shown in Figure 1) based on two
approaches that aspire to model the formatting of a
given source code from different aspects: the
generative model and the outlier detection model.

3.1 User Dataset

In the first step towards creating our system, the set
of source code files that will determine the selected
formatting style needs to be defined. This is one of
the main points where our system differentiates from
other similar approaches. Instead of using a set of
predefined formatting rules to determine styling
deviations, we allow every developer or team of
developers to use their own source code files to

ICSOFT 2021 - 16th International Conference on Software Technologies

92

User
Dataset

[0,1,3,2,]

Tokenizer &
Vectorizer

Formatting
Error

Position

Generative
Model

Outlier Detection
Model

Figure 1: Overview of the Formatting Error Detection Methodology.

define the desired code styling. The rest of our
modelling procedure simply adapts to the provided
dataset and, thus, our system is dataset agnostic.

In order to showcase the performance of our
approach on frequently encountered formatting
errors that have been found across projects, we
trained our formatting error detection mechanism on
a code writing style that is widely used by
developers. Specifically, we made use of the dataset
used by Santos et al. (Santos et al., 2018). The
authors mined the top 10,000 Java repositories and
extracted the latest snapshot of the default branch,
keeping only the syntactically-valid Java files. In
total 2,322,481 Java files were collected.

While these files are syntactically valid and
depict the formatting style used by most of the
developers, we also want to ensure that they do not
diverge from widely known formatting rules, in order
to evaluate the ability of our mechanism to identify
also commonly found styling deviations. Thus, a set
of rules has been defined manually, which describes
the occasions when a formatting error occurs. We
created a set of 22 regular expressions that are able to
identify the corresponding formatting errors that
occur in a single Java file. Table 1 depicts a regular
expression of our corpus and a corresponding
example of source code, where the formatting error
is identified by the expression. The complete corpus
of our 22 regular expressions can be found on our
page1. It should be noted once again that the
selection of widely known formatting errors is used
only for showcasing and does not affect the adaptive
nature of our approach, while each developer could
train the system with his/her own specific code
styling guidelines, just by providing a set of source
code files.

Using the set of the 22 regular expressions we
defined, we were able to identify 10,000 Java files
from the dataset used by Santos et al., that did not
contain any formatting deviations from the
commonly accepted standards and, thus, could be
used as the basis for the training of our models.

1https://gist.github.com/karanikiotis/
263251decb86f839a3265cc2306355b2

Table 1: A regular expression used to identify a semicolon
that appears on the next line.

Regular Expression ”[\r\n];”

Source Code Example System.out.println(”Hello World”)
;

3.2 Tokenizer & Vectorizer

Before the source code is further processed by our
models, it needs to be transformed into a suitable
form. This procedure is called tokenization and
transforms the source code into a set of tokens. Each
programming language consists of a list of all
possible unique tokens, which is called vocabulary,
and contains all the possible keywords and operators
used by the language. The source code contains also
a set of out-of-vocabulary tokens, which are the
variable names, string literals and numbers used by
the developer. These tokens are usually projected
into an abstract form and they are represented by the
respective token that indicates the corresponding
category the token belongs to (variable, string or
number).

In this work, our main target was token
differentiation regarding the way they are placed
between the rest of the tokens of the source code.
The tokenizer identifies and abstracts the set of
variables, strings and numbers used by the developer,
detects the set of keywords and groups tokens with
similar formatting behaviors and returns the set of
tokens identified, as well as the number of characters
each token occupies in the initial source code. Table
2 depicts some example of keywords identified in the
initial source code by the tokenizer and the
corresponding token they are transformed into.

Table 2: Examples of keywords and their respective tokens.

Token Name Token Symbol Keywords

KEYWORD <keyword> break, for, if, return, ...
LIT <lit> float, int, void, ...
LITERAL <literal> true, false, null
NUMBER <number> 123, 5.2, 10, 1, 0, ...
STRING <word> ”a”, ”hello”, ...

Towards Automatically Generating a Personalized Code Formatting Mechanism

93

Using the tokenizer, each token from the initial
source code is categorized into the appropriate token
category. For example, whenever any of the words
true, false or null are identified in the source code,
they are transformed and treated with the token
LITERAL. Special attention was required in the
correct tokenization of indentation characters (e.g.
whitespaces and tabs), brackets and special symbols,
such as semicolons, which are vital for an
appropriate code styling.

In order to convert source code into a form that is
suitable for training our models, a two step procedure
is followed. First, the source code is tokenized using
the aforementioned tokenizer and, thus, a set of
tokens is returned. Subsequently, this set of tokens is
processed to extract the total vocabulary of tokens
used. Each token is then assigned a positive integer
index, that will then be used as the input in the
following models. Table 3 depicts an example of a
full transformation; the initial source code is
transformed to a numeric vector that can be treated
by our models.

Table 3: The tokenization pipeline from the source code
to a numeric vector. The vocabulary indexes for this
example are ”<lit>” = 0, ”<space>” = 1, ”<word>” =
2, ”<equal>” = 3, ”<number>” = 4 and ”<semicolon>”
= 5.

Source Code int x = 1;

Tokens
[’<lit>’, ’<space>’, ’<word>’,
’<space>’,’<equal>’, ’<space>’,
’<number>’, ’<semicolon>’]

Tokens Lengths [3, 1, 1, 1, 1, 1, 1, 1]
Vectorization [0, 1, 2, 1, 3, 1, 4, 5]

3.3 Model Generation

Given the sequence of tokens that appear in the
training corpus and that constitute the formatting
style that will be followed, we trained two different
models that aspire to detect a formatting error. The
main goal of our modelling approach is to
approximate a function that, given a set of tokens,
determines the possibility of a token being wrongly
positioned among the others, i.e. a formatting error.
In order to do so, each token coming from the source
code needs to be assigned a likelihood of being a
formatting error, as shown in the following equation:

P(f ormatting error token|context) (1)
Each of the two models used in our approach,

aspires to approximate the aforementioned
probability from its own perspective for every token
that appears in the source code. The final

probabilities are then calculated by aggregating the
outputs of the respective models.

3.3.1 Generative Model

Given a series of tokens that have already been
identified in the source code, the generative model
predicts the next token that will be found, assigning a
probability at each possible token from the
vocabulary. The technology employed to accomplish
this goal is a long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) recurrent neural
network. LSTM neural networks are an extension of
RNNs (recurrent neural networks), that resolve the
vanishing gradient problem and, thus, can memorize
past data easier. LSTMs have been proven really
effective in processing source code and predicting
the next tokens in a sequence of previous ones
(Hellendoorn and Devanbu, 2017).

Our modelling goal using the LSTMs is to
approximate a function that, given the previous n−1
tokens that have been identified in the series of
source code tokens, approximates the probability of
the next token to be found. LSTMs return an array of
probabilities that depict the likelihood of the next
token to be the respective one. It can be also
considered as a categorical distribution of the
probability across the vocabulary of all possible
tokens. The following equation depicts the
categorical distribution, i.e. the vector of
probabilities given by the LSTMs:

P(next token|context) =

P(< word > |context)
P(< space > |context)
P(< number > |context)
...

(2)
Figure 2 illustrates the way the LSTM predicts the

token <semicolon> given the previous tokens from
the source code ”int x = 1;”.

As already mentioned, the LSTM neural network
calculates a vector of probabilities for each token
from the vocabulary of the possible ones, which
depict the likelihood of each token to be the next one
to be identified in the series of tokens. By inverting
this probability, we can approximate the probability
of identifying any other token, except from the
respective one, which can also be considered as the
probability of the respective token being wrongly
placed in the specific position in the source code.
The following equation depicts the probability of the
token <tok> being wrongly positioned, i.e. the
probabilities of every other possible token:

ICSOFT 2021 - 16th International Conference on Software Technologies

94

Source Code:

Tokens:

Context Adjacent

LSTM:

int

<lit> <space> <word> <equal> <number> <semicolon><space> <space>

<lit> <space> <word> <equal> <number> <semicolon><space> <space>

x 1 ;=

Figure 2: The LSTM prediction of the adjacent token, given the source code ”int x = 1;”.

P(<tok> wrong|context) =
1−P(next tok =< tok > |context) (3)

where <next tok> is the next token in the
sequence of the previously identified context.

We feed-forward the LSTM architecture with the
tokens coming from the source code that needs to be
checked for formatting errors. It should be noted
that, in order for the first n tokens of the source code
to be checked also by the LSTMs, we manually
added a set of n starting tokens, so the first token to
be predicted from the architecture is the actual first
token of the code. For the creation of the LSTM
neural network we made use of the Keras 2 deep
neural network framework, with two layers of 400
LSTM nodes each, parameters that were selected
upon testing. The sliding window that was applied to
the tokens of the source code in order to create the
input vector was chosen to have a context length of
20 tokens, as it was proven to be effective on source
code (White et al., 2015); A window of 20 tokens is
selected at each time-step and is given as input to the
LSTM network. The model outputs the probability
of each possible token to be the next one in the
series. We compare these probabilities with the
actual next token and, using equation 3, we transform
this probability into an error probability.

3.3.2 Outlier Detection Model

The problem of identifying a piece of source code
that diverges from the common formatting style can
also be seen from a different perspective, which is
the classification approach using n-grams. N-grams
are a set of n continuous tokens from the given
source code. Figure 3 illustrates the procedure of
tokenizing the source code ”int x = 1;” and splitting
the generated tokens into different n-grams, with n =
1, n = 2 and n = 3.

By transforming the source code into a set of
n-grams, we can approach the formatting error
detection problem from the outlier detection

2https://github.com/keras-team/keras

perspective. Using this perspective, we aspire to
detect n-grams in the source code that is examined
for formatting errors, which have not been previously
met in the training corpus, e.g. the set of files that
define the developer’s coding style. Indeed, if the
most of the n-grams a specific token participates in
are classified as outliers, then, probably, this
particular token has not been previously used in this
way and constitutes a formatting error.

The technology we employed for the outlier
detection was a Support Vector Machine - SVM
One-Class algorithm, which has been proven
successful in outlier detection problems (Seo, 2007).
The SVM One-Class model is trained using only
data coming from the original (or ”positive”) class,
this way identifying new data that deviate from the
”normal” behavior. In our approach, the model is
trained on n-grams coming from the training corpus,
which define the developer’s preferable code styling,
and is then used to detect n-grams that diverge.

As multiple and previously unknown n-grams
may be found during the prediction stage of the SVM
One-Class, the model has to be flexible and adaptive.
However, the tuning of the SVM parameters, which
are the nu and gamma parameters, tends to confine
the model. In order to overcome this limitation, we
applied the following approach: instead of simply
using one single SVM One-Class model, with a
certain set of nu and gamma parameters, we created
a set of SVM models with various nu-gamma pairs,
that aspire to cover a large area of the fine-tuning
procedure. Each model is trained separately and,
then, all the predictions are aggregated, leading to
the final prediction.

As our primary modelling target is the prediction
of the probability of a single token being a formatting
error, we cannot make use of the classification of an
n-gram into the original or the outliers class. Instead,
we take into account the prediction probabilities that
are produced by each model. The n-gram is feeded
into all the different SVM One-Class models, which
return their prediction probabilities of the n-gram
being an outlier, i.e. the n-gram does not have the
same behavior with the ones met in the training

Towards Automatically Generating a Personalized Code Formatting Mechanism

95

Source Code:

Tokens:

N=1:

int

<lit> <space> <word> <equal> <number> <semicolon><space> <space>

<lit> <space> <word> <equal> <number> <semicolon><space> <space>

N=2: <lit> <space> <word> <equal> <number> <semicolon><space> <space>

x 1 ;=

N=3: <lit> <space> <word> <equal> <number> <semicolon><space> <space>

Figure 3: The n-grams that are produced from the source code ”int x = 1;” for n = 1, n = 2 and n = 3. For n = 1 the unigrams
are ”<lit>”, ”<space>”, etc., for n = 2 the bigrams are ”<lit> <space>”, ”<space> <word>”, etc. and for n = 3 the
trigrams are ”<lit> <space> <word>”, ”<space> <word> <space>”, etc.

corpus. Subsequently, the predictions of all SVM
models are being aggregated and the final prediction
for the n-gram is made.

Finally, each token coming from the source code
is assigned a probability of being a formatting error
as the mean probability of all the n-grams it
participates. Equation 4 depicts the calculation of the
formatting error probability for the token <tok>,
where n-grams is the set of all n-grams the token
participates in, SVM models is the set of all the SVM
models we used and context is the previously
identified context.

P(<tok> being wrong|context) =

∑
n−grams

∑
SV M models

Pmodel(n-gram is outlier) (4)

3.3.3 Final Pipeline

The final pipeline of our approach is the merging of
the two models, as illustrated in Figure 1. Overall,
the source code that needs to be checked for
formatting errors is firstly tokenized and then is
forwarded into the two selected models, the LSTM
and the SVM One-Class. For each token found in the
initial source code, the models output their
probabilities of the token being wrongful present in
the specific position. In the aggregation stage, the
two predictions are combined to form the final
prediction of the system. By averaging the
probabilities calculated from each model, we were
able to fix some ambiguous decisions made by a
single model, i.e. a token probably misclassified as
formatting error but with low prediction probability
from the one model, would be correctly classified
with a high probability from the second one. Finally,
the tokens along with their respective probabilities

are being sorted to create a descending order of
tokens possibly being formatting errors.

4 EVALUATION

In this section we evaluate our methodology for
detecting formatting errors and deviations from a
globally used code styling. At first, in an effort to
evaluate our system, we apply our methodology on
the codrep dataset 3, in order to measure its
performance. Additionally, towards the evaluation of
the effectiveness of our approach in practice, we
apply our system in real-world scenarios, in order to
assess its ability of providing actionable
recommendations that can be used in practice during
development.

4.1 System Evaluation

In the first step towards assessing the effectiveness of
our system and identifying code styling
inconsistencies and pieces of code that diverge from
a common formatting, we tested our system against
data coming from the Codrep competition (Codrep,
2019). Codrep is a competition for applying machine
learning on source code. The main task of the codrep
2019 competition was the identification of the
position in a code file in which a formatting error
appears. Codrep dataset consists of 8,000 Java files,
each one of which contains a single formatting error
in a specific character position. An additional file is
given, which includes the character position the
formatting error appears for each one of the 8,000

3https://github.com/KTH/codrep-2019/tree/master/
Datasets

ICSOFT 2021 - 16th International Conference on Software Technologies

96

1 2 3 4 5 >5
LSTM

0

1000

2000

3000

4000

5000

6000
Nu

m
be

r o
f f

ile
s

1 2 3 4 5 >5
7-gram SVM

1 2 3 4 5 >5
7-gram SVM & LSTM

1 2 3 4 5 >5
10-gram SVM

1 2 3 4 5 >5
10-gram SVM & LSTM

Figure 4: The histograms of the positions the correct answer was found in.

files. Figure 5 depicts an example, in which a
formatting error appears. In this case, the formatting
error is the unnecessary space that appears in
character position 30.

1 public class test{
2 int a = 1 ;
3 }
4

Figure 5: Example of code file containing a single
formatting error in character position 30.

The rules of the codrep competition are quite
simple. The program has to take as input a source
code file and output a descending ranking of the
characters offsets, according to the probabilities that
are calculated and estimate their likelihood of
containing a formatting error. The final ranking of
the characters is compared with the actual character
that contains the formatting error and the evaluation
metric is calculated.

The evaluation metric used by codrep to evaluate
the performance of a system in identifying the
formatting error position is the Mean Reciprocal
Rank (MRR). The reciprocal rank for one prediction
is calculated using the inverse of the rank in an
ordered list the correct answer is found for a given
file q. The MRR is the average value of the
reciprocal ranks for every file q in the set of the total
evaluation files Q. The following equation depicts
the calculation of the MRR, in a set of files Q to be
predicted, where rankq is the position of the correct
answer in the ordered list of predictions and |Q| is
the number of files used in the evaluation:

MRR =
1
|Q| ∑q∈Q

1
rankq

(5)

The MRR is always a value in the interval [0, 1],
where an MRR value of 1 is the best possible score
and depicts that the first prediction in the ordered list
is the correct position of the formatting error, while
an MRR value of 0 means that the correct position
was not found. Table 4 depicts the MRR obtained
using our approach only with the generative model,
only with the outlier detection model and with both
the models combined. The n-grams we selected to
use were 7-grams and 10-grams.

Table 4: MRRs of LSTM and SVM models.

Model MRR
LSTM 0.70
7-gram SVM 0.63
7-gram SVM & LSTM 0.78
10-gram SVM 0.57
10-gram SVM & LSTM 0.85

According to the MRR values depicted in Table
4, the combined model, consisted of both the LSTM
and the 10-gram SVM yields the best results. These
values are well above the ones from random guessing
the position of the formatting error. Santos et al.
(Santos et al., 2018) calculated that, for a file of 100
lines and 10 tokens per line, the random guessing
would achieve an MRR of 0.002.

It should be noted at this point that we selected not
to compare the MRR values of our approach with the
results coming from the actual Codrep competition4,
as the rules of the competition were not quite strict

4https://github.com/KTH/codrep-2019

Towards Automatically Generating a Personalized Code Formatting Mechanism

97

Figure 6: The precision, recall and f-measure metrics for various k and threshold values.

and the participants were allowed to use any possible
technique to identify the formatting errors, e.g. using
regular expressions, while a training set containing a
lot of similar formatting errors was given to them a
priori.

However, the MRR is a quite strict and
conservative metric and its values can be
significantly reduced just by some bad predictions.
Indeed, in a case where the correct answer is ranked
first 50% of cases and second the other 50%, the
MRR value would be just 0.75, despite the fact that
this model would probably be considered acceptable.
In order to cope with the strictness of the MRR
metric, we also calculated the histograms of the
position in the ordered list the correct answer was
found. Figure 4 illustrates these histograms. The
height of each bar displays the number of files for
which the correct prediction was found on that
position.

The results from Table 4 and Figure 4 show that
the correct prediction, i.e. the identification of the
formatting error within the source code, is the first
one for the most of the times. The combination of the
two models, LSTM and SVM, clearly improved the
results, while the selection of 10-grams over 7-grams
had also a positive impact.

Moreover, in an attempt to further examine the
performance of our approach in identifying
formatting errors and deviations from the globally
used code styling, we evaluated our system in the
following scenario. From the sorted list of tokens,
along with their probabilities of being a formatting
error, only the first k tokens are returned to the user,
as long as their probability of being a formatting
error is above a predefined threshold. For these
tokens, we examine whether the actual formatting
error is included and, based on that, we calculate the
metrics precision@k, recall@k and f-measure@k.
Figure 6 illustrates these metrics calculated for the
best two of the previous models (the combination of

7-gram SVM and LSTM and the combination of
10-gram SVM and LSTM) and using various
thresholds in the range 0.90−1.0 and values 1,5 and
10 for k.

From the results illustrated above, we can
conclude that the 10-gram SVM along with the
LSTM performs better with a precision value of 0.9,
a recall value of 1.0 and an f-measure value of 0.95
for k = 10 and threshold = 0.95. A system with the
aforementioned parameters could correctly identify
deviations from the globally used formatting and
provide useful suggestions to the developer about
possible fixes.

4.2 Application of Formatting Error
Detection in Practice

In order to further assess the effectiveness of our
approach in providing actual and useful
recommendations that can be used in practice during
the development process, we applied our
methodology in certain use-cases, in which we aspire
to identify the applicability of the formatting error
detection system in practice. Thus, we randomly
selected some small Java files from the most popular
open-source GitHub repositories, in which our
methodology would be applied to.

Figure 7a presents the initial source code of the
first file to be evaluated by our system. In this
occasion a formatting error is detected in line 8 and
concerns the extra use of a new-line character (the
character before the red circle). It is obvious that the
insertion of just one new character can complicate
and possibly reduce the overall code readability and
comprehensibility, as there is no correct indentation.

Our system identifies the formatting error
position in the first place of the sorted predictions
and returns this prediction to the developer, in an
attempt to fix this error and improve the readability

ICSOFT 2021 - 16th International Conference on Software Technologies

98

1 package com.developmentontheedge.sql.model;
2
3 public class SqlQuery
4 {
5 public static AstStart parse(String

query)
6 {
7 return parse(query,

DefaultParserContext.getInstance
());

8 }
9

10 public static AstStart parse(String
query, ParserContext context)

11 {
12 SqlParser parser = new SqlParser();
13 parser.setContext(context);
14 parser.parse(query);
15 return parser.getStartNode();
16 }
17 }

(a) Initial version of file

1 package com.developmentontheedge.sql.model;
2
3 public class SqlQuery
4 {
5 public static AstStart parse(String

query)
6 {
7 return parse(query,

DefaultParserContext.getInstance
());

8 }
9

10 public static AstStart parse(String
query, ParserContext context)

11 {
12 SqlParser parser = new SqlParser();
13 parser.setContext(context);
14 parser.parse(query);
15 return parser.getStartNode();
16 }
17 }

(b) Final version of file
Figure 7: First use case.

1 package com.developmentontheedge.sql.model;
2
3 public class PredefinedFunction

implements Function
4 {
5 private final int maxNumberOfParams;
6
7 /**
8 * Returns the biggest possible

number of required parameters,
or -1 if any number of

9 * parameters is allowed.
10 */
11 @Override
12 public int maxNumberOfParams()
13 {
14 return maxNumberOfParams;
15 }
16 }

(a) Initial version of file

1 package com.developmentontheedge.sql.model;
2
3 public class PredefinedFunction

implements Function
4 {
5 private final int maxNumberOfParams;
6
7 /**
8 * Returns the biggest possible

number of required parameters,
or -1 if any number of

9 * parameters is allowed.
10 */
11 @Override
12 public int maxNumberOfParams()
13 {
14 return maxNumberOfParams;
15 }
16 }

(b) Final version of file
Figure 8: Second use case.

of the file. Indeed, the final version of the file, which
is displayed in Figure 7b, where the developer has
taken into account the system’s prediction, is easier
for the developers to understand, as the correct
indentation can be a valuable guidance towards the
code flow comprehension.

Figure 8a illustrates a different example, in
which, in the initial source code of the file, the
formatting error is detected in line 12 and concerns
the extra use of a tab character (depicted in the
Figure). Again, the insertion of just one new

character alters the way a developer can read the
code and understand its content.

Our approach detects the formatting error and
ranks it first among the set of all possible positions
and returns this suggestion to the developer, in order
for the formatting error to be fixed. Once again, the
final version of the file, that is displayed in Figure 8b,
is easier for the developers to comprehend, as the
reading procedure follows a natural flow.

Despite these examples seem small and the fixes
seem insignificant, they can be quite important in

Towards Automatically Generating a Personalized Code Formatting Mechanism

99

large projects, in which different and various
developers participate with various coding styles.
Detecting and fixing these formatting errors could
noticeably improve readability and code
comprehensibility.

5 THREATS TO VALIDITY

Our approach towards identifying and detecting
formatting errors and formatting deviations from the
selected ground truth seems to achieve high internal
validity, as it was proved by the evaluation of our
system in the previous section.

When it comes to the external validity of our
approach, there are some limitations and threats that
need to be considered and span along the following
axes: 1) the selected use case and 2) the definition of
the ground truth along with the selection of the
training dataset. Our design choice to apply our
methodology on detecting formatting errors based on
the codrep competition is just one of the use cases
our system can be applied to. One threat to the
external validity of our approach lies on the
evaluation of our approach on different scenarios, i.e.
the generalization of our approach on a set of
different code stylings. However, the selected use
case is considered as the most common and
necessary one, while it does not differ significantly
from the other scenarios. Additionally, for the
creation of the ground truth, i.e. the set of files that
define the most used code styling, we made use of a
dataset created by Santos et al. (Santos et al., 2018),
mining the top 10,000 Java repositories from Github.
While more or different projects could be used for
the creation of our ground truth and the training of
our system on a selected formatting, our
methodology can be applied as-is using a different
benchmark or pristine dataset that can cover multiple
and different evaluation scenarios.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we proposed an automated formatting
error detection methodology, which is based on two
algorithms, LSTM and SVM, that aspire to model
the problem from different perspectives. One of the
basic contributions of our approach is that it does not
need to be pre-trained based on a dataset or based on
a set of predefined rules, that allow only minor
modifications, but it can learn the coding style used

in a project and detect deviations from it in a
completely unsupervised manner, without the need
of experts or prior domain knowledge. The
evaluation of our approach in two diverse axes
indicates that our system can effectively identify
formatting deviations from the coding style used as
ground truth and provide actionable and useful
recommendations to the developers, enhancing the
readability degree and ensuring the styling
consistency across the project.

While the use of globally adopted code styling in
the evaluation stage of our approach indicates that
our methodology could also be used as a common
formatter, the main contribution of our approach lies
on the unsupervised code styling consistency held
across a project or set of files. Should a team of
developers apply our methodology across a project,
every team member will be motivated to follow the
common code styling from the ground, improving
the maintenance and the evolution of the software.

Future work relies on several axes. Firstly, a
fixing mechanism could be built that, based on the
formatting error detection approach of this work,
would provide actual recommendations to the
developers about changes that could fix the error,
without changing the functionality of the code.
Additionally, a thorough evaluation mechanism
could be created that could qualitatively or
quantitively assess the performance of the complete
system in detecting and fixing formatting errors, as
well as the readability improvement achieved.
Moreover, we would suggest the creation of a tool or
plugin for a set of commonly used IDEs, that would
predict the formatting errors, while the developer is
typing, highlight these errors and suggest possible
fixes. Finally, we could alter the training dataset by
using projects with different characteristics and,
especially, small projects with developers that use
different formatting styles, in order to evaluate the
performance of our approach in a small code basis
with high formatting fluctuations.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Regional Development Fund of the European Union
and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH – CREATE –
INNOVATE (project code:T1EDK-04673).

ICSOFT 2021 - 16th International Conference on Software Technologies

100

REFERENCES

Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. (2014).
Learning natural coding conventions. In Proceedings
of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014,
page 281–293, New York, NY, USA. Association for
Computing Machinery.

Codrep (2019). Codrep 2019. https://github.com/KTH/
codrep-2019. Accessed: 2020-09-27.

GNU Project (2007). Indent - gnu project. https://www.
gnu.org/software/indent/. Accessed: 2020-09-27.

Hellendoorn, V. J. and Devanbu, P. (2017). Are deep
neural networks the best choice for modeling source
code? In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 763–773, New York, NY,
USA. Association for Computing Machinery.

Hindle, A., Godfrey, M. W., and Holt, R. C. (2008). From
indentation shapes to code structures. In 2008 Eighth
IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 111–120.

Hochreiter, S. and Schmidhuber, J. (1997). Lstm can solve
hard long time lag problems. In Mozer, M. C., Jordan,
M. I., and Petsche, T., editors, Advances in Neural
Information Processing Systems 9, pages 473–479.
MIT Press.

Kesler, T. E., Uram, R. B., Magareh-Abed, F., Fritzsche, A.,
Amport, C., and Dunsmore, H. (1984). The effect of
indentation on program comprehension. International
Journal of Man-Machine Studies, 21(5):415 – 428.

Lee, T., Lee, J.-B., and In, H. (2013). A study of different
coding styles affecting code readability. International
Journal of Software Engineering and Its Applications,
7:413–422.

Loriot, B., Madeiral, F., and Monperrus, M. (2019). Styler:
Learning formatting conventions to repair checkstyle
errors. CoRR, abs/1904.01754.

Markovtsev, V., Long, W., Mougard, H., Slavnov, K., and
Bulychev, E. (2019). Style-analyzer: Fixing code
style inconsistencies with interpretable unsupervised
algorithms. volume 2019-May, pages 468–478.

Miara, R. J., Musselman, J. A., Navarro, J. A., and
Shneiderman, B. (1983). Program indentation and
comprehensibility. Commun. ACM, 26(11):861–867.

Ogura, N., Matsumoto, S., Hata, H., and Kusumoto, S.
(2018). Bring your own coding style. In 2018 IEEE
25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 527–
531.

Parr, T. and Vinju, J. (2016). Towards a universal code
formatter through machine learning. In Proceedings
of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2016, page
137–151, New York, NY, USA. Association for
Computing Machinery.

Posnett, D., Hindle, A., and Devanbu, P. (2011). A
simpler model of software readability. In Proceedings
of the 8th Working Conference on Mining Software

Repositories, MSR ’11, page 73–82, New York, NY,
USA. Association for Computing Machinery.

Prabhu, R., Phutane, N., Dhar, S., and Doiphode, S.
(2017). Dynamic formatting of source code in editors.
In 2017 International Conference on Innovations in
Information, Embedded and Communication Systems
(ICIIECS), pages 1–6.

Prettier (2017). Prettier. https://prettier.io/. Accessed:
2020-09-27.

Santos, E. A., Campbell, J. C., Patel, D., Hindle, A.,
and Amaral, J. N. (2018). Syntax and sensibility:
Using language models to detect and correct syntax
errors. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 311–322.

Scalabrino, S., Linares-Vásquez, M., Poshyvanyk, D.,
and Oliveto, R. (2016). Improving code readability
models with textual features. In 2016 IEEE 24th
International Conference on Program Comprehension
(ICPC), pages 1–10.

Scalabrino, S., Linares-Vásquez, M., Oliveto, R., and
Poshyvanyk, D. (2018). A comprehensive model for
code readability. Journal of Software: Evolution and
Process, 30.

Seo, K.-K. (2007). An application of one-class support
vector machines in content-based image retrieval.
Expert Systems with Applications, 33(2):491 – 498.

Tysell Sundkvist, L. and Persson, E. (2017). Code
Styling and its Effects on Code Readability and
Interpretation. PhD thesis, KTH Royal Institute of
Technology.

Wang, X., Pollock, L., and Vijay-Shanker, K. (2011).
Automatic segmentation of method code into
meaningful blocks to improve readability. In 2011
18th Working Conference on Reverse Engineering,
pages 35–44.

White, M., Vendome, C., Linares-Vásquez, M., and
Poshyvanyk, D. (2015). Toward deep learning
software repositories. In Proceedings of the
12th Working Conference on Mining Software
Repositories, MSR ’15, page 334–345. IEEE Press.

Towards Automatically Generating a Personalized Code Formatting Mechanism

101

