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Abstract: While there have been approaches for integrating security policies into operating systems (OSs) for more than
two decades, applications often use objects of higher abstraction requiring individual security policies with
application-specific semantics. Due to insufficient OS support, current approaches for enforcing application-
level policies typically lead to large and complex trusted computing bases rendering tamperproofness and
correctness difficult to achieve. To mitigate this problem, we propose the application-level policy enforcement
architecture APPSPEAR and a C++ framework for its implementation. The configurable framework enables
developers to balance enforcement rigor and costs imposed by different implementation alternatives and to easily
tailor an APPSPEAR implementation to individual application requirements. We argue that hardware-based
trusted execution environments offer an optimal balance between effectiveness and efficiency of policy protec-
tion and enforcement. This claim is substantiated by a practical evaluation based on a medical record system.

1 INTRODUCTION

The rigorous and correct enforcement of application-
specific security goals in today’s complex software
systems is far from being an easy task. In order to pro-
tect the confidentiality and integrity of security-critical
resources (e. g. customer information or accounting
information), such systems increasingly rely on a se-
curity policy: an automatically enforced set of rules
that control evaluating, granting, and revoking access
privileges, control tracing, classifying, and confining
potential flows of information, or control isolating do-
mains of users and resources.

For almost two decades the idea has been pursued
to integrate security policies directly into operating
systems (OSs) (Watson, 2013). The control of opera-
tions on OS objects (resources described by abstrac-
tions such as files, processes, sockets, etc.) is made
possible by the extension of standard OSs by manda-
tory access control (AC) and information flow control
mechanisms (Loscocco and Smalley, 2001; Smalley
and Craig, 2013; Sze et al., 2014).

At application level, for instance, enterprise re-
source planning systems typically use role-based AC
policies that reflect a company’s organizational struc-
ture (Alam et al., 2011; Bhatti et al., 2005), workflow
management systems use information flow policies
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(Crampton et al., 2016; Wang and Li, 2010), database
systems use label-based AC policies to control access
to relations and views (Oracle, 2018; IBM, 2016), (so-
cial) information systems use relationship-based AC
policies on user data (Rizvi et al., 2015; Fong, 2011),
and Big Data and IoT platforms rely on attribute-based
AC policies (Gupta et al., 2018; Bezawada et al., 2018).
Compared to OSs, the objects used by applications
are typically subject of security policies on a higher,
application-specific abstraction level. This requires
policy rules with application-specific semantics which
typically differ significantly from those at OS level and
which are also specific for each individual application.

Contemporary OSs do not adequately support
application-specific security policies. For this reason,
developers often integrate security policies directly
into applications which results in large and heteroge-
neous trusted computing base (TCB) implementations.
Due to the close integration of security-relevant func-
tionality and application logic, the identification of an
application’s TCB perimeter is hard if not impossible,
rendering correctness properties difficult to achieve.

To enable precisely defined application TCBs as
well as a rigorous and trusted enforcement of individ-
ual application security policies, this paper argues for
an alternative approach. First, the foundation is laid
by strictly separating security-relevant functionality
from (potentially untrusted) application logic. Second,
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this separation is implemented by an isolation mech-
anism. Adjusting the strength of isolation and the
costs for crossing isolation boundaries, the approach
is open for different isolation mechanisms ranging
from language-based (e. g. type-safe programming lan-
guages and compilers) and OS-based mechanisms (e. g.
virtual address spaces via processes) to trusted execu-
tion technologies (e. g. Intel SGX) (Shu et al., 2016).

In particular, SGX provides trusted execution en-
vironments (TEEs), so-called enclaves, which isolate
security-sensitive parts of application code and data
from the OS kernel, hypervisor, BIOS, and other ap-
plications using a hardware-protected memory region
(Intel Corporation, 2021). While this significantly re-
duces the size of application TCB implementations,
crossing isolation boundaries typically imposes high
costs compared to conventional isolation mechanisms
(Weisse et al., 2017). Therefore, we examine its suit-
ability for our approach.

Specifically, we make the following contributions.
(1.) We introduce APPSPEAR – an application-level
security policy enforcement architecture providing a
functional framework for implementing the reference
monitor principles (Anderson, 1972) (§ 2). (2.) Bal-
ancing rigor of policy enforcement (effectiveness) and
isolation/communication costs (efficiency), we discuss
implementation alternatives for APPSPEAR as well as
the consequences of using different isolation mecha-
nisms (§ 3.1). We have cast this spectrum of implemen-
tation alternatives into a developer framework, which
highlights the developer support provided. Moreover,
we describe our experiences with the integration of
APPSPEAR into the medical record system OpenMRS
using the developer framework (§ 3.2). (3.) We present
an evaluation of the APPSPEAR framework based
on our implementation showing the practical runtime
costs imposed by the different implementation alterna-
tives (§ 4).

2 ARCHITECTURE DESIGN

This section introduces APPSPEAR. Its purpose is
to provide a functional framework for the rigorous
enforcement of application-specific security policies.
In the following, we first discuss fundamental security
policy and architecture design principles (§ 2.1). Based
on those, we describe our architecture, including its
components, their tasks, and interrelationships (§ 2.2).

2.1 Requirements and Design Principles

Application-specific Security Policies. Security poli-
cies are usually well-tailored to their respective appli-

cation domain. While policy rules differ semantically
among different classes of policies, namely AC, in-
formation flow, and noninterference, they all aim at
guarantees towards security properties.

As one of the most prominent policy classes in
practice, we focus on AC policies. Furthermore, to
support a broad range of different model abstractions
(e. g. roles, labels, contexts, risks, relationships, or
attributes in general (Ferraiolo et al., 2007; Biswas
et al., 2016; Shebaro et al., 2014; Ni et al., 2010; Fong,
2011; Jin et al., 2012)), we consider an AC policy from
the perspective of the enforcement mechanisms as a
black box of rules. These rules authorize any opera-
tion op ∈ OP (e. g. read from or append to electronic
patient record (EPR) objects) related to a vector of
entities e = (ei)

n
i=1 ∈ En (e. g. application users, EPRs

or documents). The interface of an AC policy P can be
defined as a semantically neutral AC function (ACF)
fP : En×OP→ {true, false}. For example within an
EPR management system, appending new checkup
results to a patient’s EPR could then by requested by
fP(〈Alice,EPRBob〉,append).

In recent years, research rendered a number of
modeling schemes for context-aware AC policies that
model adaptive authorization decisions based on phys-
ical or logical features, represented by local context
variables. Values of such variables may be either com-
puted, e. g. time, date, and resource usage, or perceived
by sensors, e. g. temperature, geolocation, and NFC
device proximity (Hsu and Ray, 2016; Shebaro et al.,
2014). By considering a vector of context values v =
(v j)

m
j=1 ∈V m (e. g. time or geolocation) additionally to

fP, the interface of a context-aware AC policy P′ can
be defined by an ACF fP′ : En×V m×OP→ {true,
false}. These context values may be input for a risk
evaluation metric (as typically used in risk-based AC
models) which may calculate a numerical value (Ni
et al., 2010). In the simplest case, this value is com-
pared with a risk-threshold to assess the risk as either
acceptable (permitting the original access request) or
unacceptable (denying the original request).

Reference Monitor Principles. In general, security
policies are part of a system’s TCB. Subsequently, we
consider a TCB from a functional perspective as the
set of all functions that are necessary and sufficient for
implementing a system’s security properties. The part
of a software architecture that implements the TCB
forms the security architecture.

For more than four decades, the reference monitor
principles (Anderson, 1972) have provided fundamen-
tal guidelines for the design and implementation of
security architectures. These principles include three
rules requiring a security architecture core (referred to
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as reference monitor) that is (1.) inevitably involved
in any security-related interaction (RM 1, total media-
tion), (2.) protected from unauthorized manipulation
(RM 2, tamperproofness), and (3.) as small and sim-
ple as possible in terms of functional complexity and
amount of code (RM 3, verifiability).

According to RM 1, it must be guaranteed that
any actions on security-relevant objects are inevitably
controlled by the policy. In case of security-policy-
controlled OSs, this is achieved by calling the policy
within the OS kernel services (e. g. process manage-
ment, filesystem, or I/O subsystem) before the actual
execution of any action (e. g. fork, read, or send) on
an OS object (i. e. a resource described by abstractions
such as processes, files, or sockets) (Smalley et al.,
2001). At the application level, RM 1 can be achieved
by the separation of any functions relevant to the policy
enforcement and the application object management,
on the one hand, from functions solely responsible
for the application logic, on the other hand. Conse-
quently, any security-relevant object and any function
for accessing such an object belong to the TCB. If an
application object is accessed by an application logic
function, an immediate entry into the TCB takes place.
Accordingly, by calling the security policy before any
security-relevant object access within the TCB bound-
aries, the policy cannot be bypassed.

Moreover, the precise delineation of the TCB paves
the way for protecting the integrity of an application

security policy from unauthorized manipulation (cf.
RM 2). The functional separation is implemented by
isolation mechanisms (Shu et al., 2016), which, de-
pending on the assumed attacker model and the degree
of tamperproofness required, range from language-
based isolation (e. g. policy execution in a class in-
stance separated by type-safety-checking compilers) to
OS-based isolation (e. g. policy execution in a separate
virtual address space) and virtualization techniques
(e. g. policy execution in a virtual machine), as well as
hardware-based isolation (e. g. policy execution in an
SGX enclave) to total physical separation (e. g. policy
execution on a dedicated server).

By adapting RM 3, it generally holds that the
smaller a TCB’s functional perimeter and the lower
its complexity, the better a TCB can be analyzed re-
garding correctness properties. A precise functional
perimeter reduces TCB size and complexity because
the functions solely associated with the application
logic are no longer part of the TCB. Furthermore, to
facilitate the verifiability of certain parts of the TCB,
in particular security policies, w. r. t. model proper-
ties, such as dynamic state reachability in dynamic AC
models (Stoller et al., 2011; Tripunitara and Li, 2013;
Schlegel and Amthor, 2020; Schlegel and Amthor,
2021), an additional separation within the TCB bound-
aries of policy-specific from policy-independent TCB
functions should be anchored within the architecture.
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Figure 1: Functional architecture for mutually independent policy enforcement on application layer (APPSPEAR) and OS layer
(SELinux/Flask).
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2.2 APPSPEAR Design

An important representative of security architectures
that implements the reference monitor principles is
the Flask security architecture (Spencer et al., 1999).
Motivated by enabling the flexible interchangeability
of security policies, the policy logic, referred to as
policy decision point (PDP), is separated from the pol-
icy enforcement, distributed over policy enforcement
points (PEPs). This key idea has been adopted by
SELinux (Loscocco and Smalley, 2001), extending
the Linux kernel by mandatory AC, and followed by
a wide range of OSs (Watson, 2013). The SELinux
architecture comprises PEPs located in the OS kernel
services (referred to as object managers) and a singu-
lar PDP (referred to as security server) providing an
OS security policy runtime environment (see Fig. 1).

Comparing Flask’s/SELinux’ objective of rigorous
and flexible policy enforcement on OS level with ours
for the application level, we argue to adapt these princi-
ples. The general idea is to instantiate Flask/SELinux-
alike architecture components for each policy-con-
trolled application which complement the architecture
(and policy) at the kernel level. This idea is illustrated
in Fig. 1. Moreover, we consider state of the art in
the enforcement of context-/attribute-based AC poli-
cies as represented by the Policy Machine (Ferraiolo
et al., 2015) and its successor, Next-Generation Access
Control (NGAC) (Ferraiolo et al., 2016).1

Trusted Object Managers. In order to implement
our architecture at the application level according to
the discussed design principles, in general, a separation
between security-relevant functionality and security-
irrelevant application logic is required. Trusted ob-
ject managers (TOMs) are architecture components to
rigorously isolate trusted and non-trusted application
parts and comprise all functions which are required for
establishing authenticity, integrity, and confidentiality
of application objects.

Consequently, a TOM provides an encapsulated
object access interface for actions such as reading or
modifying security-relevant application objects (e. g.
patient record objects or customer record objects).
This interface is implemented by local or remote pro-
cedures, functions, or methods. Inspired by object-
oriented software design, a generic TOM provides a
generic object abstraction and abstract basic functions
for its management, such as create, read, write, and de-
stroy. For a concrete application, type-specific TOMs
have to be derived from that generic TOM, which im-
plement the abstract object and functions according

1Since we focus on policy enforcement, we omit a policy
administration point as an entry point for administration.

to the type of object. Hence, a separate TOM is im-
plemented for each object type analogous to the OS
kernel services acting OS object managers.

When an application requests to perform a particu-
lar action on a TOM-managed object, the correspond-
ing application security policy is immediately involved
through the interface between a TOM and the trusted
policy server (TPS). In this way, (1.) any security-rele-
vant subject-object interaction is inevitably controlled
by the policy and (2.) decisions can be enforced tam-
perproof, because the TOMs are part of the TCB and,
thus, are isolated from the untrusted application logic.
Finally, depending on the granted or denied access, the
corresponding output of the object access is returned
to the calling application logic function.

For many applications, it is practically inevitable to
use OS objects in addition to the application-specific
ones. Actions on OS objects are controlled by the
OS security policy, if present. Scattering application
policy rules on both OS and application layers would
contradict the TCB properties we aim for. Further-
more, if there is no OS policy present, such accesses
would not be controlled at all. To maintain the respon-
sibility of application policies and to not require an OS
policy for each object type an application uses, a sim-
ple wrapper for OS objects in form of a separate TOM
is established. To reduce development effort, these
may be reused (or generated automatically) based on
a reference implementation. These TOMs may also be
used by other TOMs to control accesses to OS objects
and system calls at the application level.

In order to ensure the authenticity of application
objects appearing as policy entities, TOMs are respon-
sible for managing entity identifications (comparable
with SELinux security identifiers) and for assigning
them correctly as well as irrevocably to their imple-
mentations as runtime or persistent application objects
such that they can be clearly identified at any time.

If we isolate architectural components from each
other according to the design principles discussed in
§ 2.1, the communication between these components
requires the crossing of isolation boundaries, which
in turn causes certain costs depending on the type
of isolation (e. g. IPC when isolating via virtual ad-
dress spaces). To reduce those costs, for instance for
the communication of TOMs and the TPS, a caching
mechanism may be used for policy decisions, simi-
lar to the SELinux access vector cache. However, it
should be noted in particular that when implementing
a stateful application policy, it may be necessary to
explicitly manage cache consistency by invalidating
cached access decisions which may become invalid
due to policy state changes.
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Trusted Policy Server. The TPS represents
APPSPEAR’s PDP. Its main task is to provide a policy
runtime environment including data structures that
represent any policy abstractions and components.
Because of the wide range of different modeling
schemes for application policies, it is not reasonable
to limit the TPS to specific implementations. In
contrast, providing the TPS with a wide range of
model implementations would lead to a universal
range of functions, which counteracts the principle of
a small TCB perimeter.

Here, the approach is to support exclusively the
present policy and to provide only functions necessary
for that policy. Therefore, a policy implementation is
specifically tailored to its application while maintain-
ing the interfaces for TOM-to-TPS and TPS-to-TOM
communication. To reduce the implementation effort,
developer support is provided in the form of TPS li-
braries implementing the data structures and function-
ality of frequently used security models. Beyond that,
we aim to extend developer support even further: By
providing a convenient policy specification language
(Amthor and Schlegel, 2020) and a compiler to gen-
erate policy-specific TPSs, the effort is reduced to the
specification of policy rules.

Finally, to deal with application and system fail-
ures, crashes, or reboots, the TPS comprises functions
for the persistent and secure storage of the policy’s
state. Depending on the required guarantees, different
strategies (e. g. logging diffs, complete state backups,
etc.) are applied at different points in time (e. g. fixed
times, after each state change, etc.).

Trusted Event Processor. The trusted event proces-
sor (TEP) is an optional add-on to provide context-
based security policies information about the physical
and logical context of a system according to their in-
terface (cf. fP′ , § 2.1). The TEP may be implemented
based on asynchronous triggers instead of function
calls, which may originate from local hard- and soft-
ware components, e. g. GPS, clock, or temperature sen-
sors, typically implemented by an OS interrupt mecha-
nism. Any access decision of the TPS may also trigger
an event that is needed for logging and auditing.

3 ARCHITECTURE
IMPLEMENTATION

APPSPEAR provides a functional framework for im-
plementing the reference monitor principles at the ap-
plication layer. The flexibility of APPSPEAR enables
the separation of its architecture components and their

implementation by means of isolation mechanisms in
a variety of ways. § 3.1 discusses multiple architecture
instantiation alternatives and their individual charac-
teristics regarding application TCB size. Each variant
has, on the one hand, a certain degree of possible rigor
in terms of TCB isolation (effectiveness) and, on the
other hand, certain costs in terms of required resources
and communication effort for crossing isolation bound-
aries (efficiency). To implement these instantiation
alternatives, a selection of isolation mechanisms and
developer support provided by a configurable devel-
oper framework are discussed. § 3.2 then describes a
practical case study integrating APPSPEAR into the
electronic medical record system OpenMRS.

3.1 Balancing Effectiveness and
Efficiency

Architecture Instantiation. APPSPEAR’s design
provides different alternatives for instantiating and im-
plementing its components. Fig. 2 shows reasonable
variants illustrating boundaries at which the architec-
ture components may be isolated from one another.
Since the TEP realizes parts of the implementation of
context-based security policies (e. g. risk analysis and
estimation), TPS and TEP are explicitly not isolated
from each other.

If a large application TCB comprising the po-
tentially untrusted application logic as well as all
APPSPEAR components (see Fig. 2a), then the im-
plementation is both in terms of strictness and costs
at the level of application-integrated security policies.
From a qualitative point of view, APPSPEAR enables
a structured software engineering of applications to be
equipped with individual security policies.

Beyond this simple low-cost but low-quality imple-
mentation, APPSPEAR supports several alternatives
with greater effectiveness. Taking advantage of the
functional encapsulation of the TPS and the TEP, the
security policy and its runtime environment can be im-
plemented isolated from the rest of the application (see
Fig. 2b). This paves the way for a tamperproof – natu-
rally depending on the strength of the used isolation
mechanism – and analyzable policy implementation.
In quantitative terms, compared with the previous al-
ternative, the application TCB comprises still the same
set of functions, but here, the policy integrity is pro-
tected by more effective isolation.

A further qualitative improvement of the effective-
ness is achieved by also isolating the TOMs as part
of the application TCB from the untrusted applica-
tion (see Fig. 2c). The isolation boundary between
the TOMs and the TPS/TEP is moved between the
untrusted application logic and the TOMs. This re-
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sults in a smaller application TCB perimeter because
only security-relevant functions are part of the TCB.
From a conceptual perspective, the costs are compara-
ble to the second variant (see Fig. 2b) due to a single
isolation border and an equally frequent crossing of
the TCB boundary. Nevertheless, the software engi-
neering effort that is required for existing software
architectures to create the technical prerequisites, i. e.
a well-defined interface between untrusted application
logic and TOMs, is also relevant when considering the
isolation of TOMs. Since many applications typically
use a database system and access stored object data,
there is often already a functionally separated object
management as intended by TOMs, which puts the
costs into perspective at this point.

The example of an application utilizing a database
already shows that due to the size and complexity of
today’s application TCBs and, consequently, the high
verification effort, not the entire TCB can always be
proven to be correctly implemented using conventional
methods. Analogous to the principle of separate server
processes in microkernel-based OSs, the TPS can be
isolated as an essential part of the TCB from the rest of
the TCB (see Fig. 2d) for security and robustness rea-
sons (e. g. preventing unintended changes to the policy
data structures due to reference errors). Thus, correct-
ness properties of the security policy can be analyzed
easier by formal models and methods (e. g. security
properties such as right proliferation (safety) in dy-
namic AC models). This qualitative improvement also
implies additional costs, since isolation mechanisms
are used at two borders and these have to be overcome
in a controlled manner for each policy request.

Isolation Mechanisms. In order to get beyond the
weak security guarantees of application-integrated se-
curity policies (cf. Fig. 2a), harder measures are nec-
essary. Based on the classification of isolation mech-
anisms in (Shu et al., 2016), we select and discuss
the implementation of APPSPEAR (cf. Fig. 2b – 2d)
by means of two mechanisms that go beyond purely
software-based, intra-application-enforced isolation.

At the OS level, the virtual memory management
provides one of the most fundamental isolation mecha-
nisms. Each process has its own private virtual address
space so that the memory of executed programs is
isolated. This allows not only to allocate memory
resources as optimally as possible according to pro-
cesses’ needs, but also to avoid the propagation of
errors, faults, and failures to other processes or the
entire system. Furthermore, even if a process is com-
promised, the adversary cannot breach the security of
other processes without extensive efforts. By isolat-
ing the APPSPEAR components from the potentially
untrusted application logic and each other using vir-
tual address spaces via processes as in Fig. 2b – 2d,
vulnerabilities of the untrusted application part can
no longer affect the trusted parts. To enable commu-
nication across process boundaries, communication
mechanisms controlled by the OS are necessary, such
as local domain sockets, messages queues, pipes etc.

Beyond that, Intel SGX enables applications to
protect private code and data from privileged system
software such as the OS kernel, hypervisor, and BIOS
as well as other applications. To achieve this, SGX
uses protected TEEs called enclaves. An enclave is a
protected area within an application process’s address
space. To meet integrity and confidentiality require-
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Figure 2: APPSPEAR instantiations with different separation/isolation of the architecture components.
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ments, protected application code is loaded into an
enclave after measuring using hardware-based attesta-
tion, and enclave data is automatically encrypted when
leaving the CPU package into memory. Consequently,
this design significantly reduces the TCB to only code
executed inside the enclave (as well as the CPU, which
in the end must always be trusted).

Since enclave memory cannot be read directly from
outside of an enclave, data, which needs to be passed
between trusted and untrusted application parts, has to
be copied explicitly from and to an enclave. The SGX
SDK provides mechanisms to create corresponding
bridge functions, ecalls, which dispatch enclave en-
try calls to corresponding functions inside the enclave
defining an enclave’s interface. Corresponding func-
tions that reside in the untrusted application part are
called ocalls and invoked inside the enclave to request
services outside of the enclave (e. g. system calls).

Software Framework and Developer Support.
The implementation of APPSPEAR is supported by a
software developer framework. As discussed, trusted
execution mechanisms provide a promising basis for
the trusted enforcement of application security poli-
cies. Specifically, we include support for Intel SGX
due to its popularity and availability in current Intel
CPUs. Since the official SDK is only available in
C++, we implemented the framework in C++ as well.
Our APPSPEAR developer framework comprises the
following features: (1.) transparent and flexibly config-
urable isolation according to the APPSPEAR instantia-
tion variants and the selection of isolation mechanisms
discussed,2 (2.) transparent and flexibly configurable
communication via proxy objects, (3.) transparent re-
duction of communication effort via in-proxy caching.

The key idea for implementing these features lies
in an RPC/RMI-alike communication model: Any
communication between the components of a policy-
controlled application is handled via pairs of proxy
objects, similar to stubs known from RPC/RMI im-
plementations. Those proxies act as intermediaries
representing the callee on the caller side and the caller
on the callee side. Consequently, any communication
handled by these proxies is be performed transparently,
so that the consideration of isolation-mechanism-spe-
cific needs is not required to be considered by devel-
opers, such as the serialization of application-specific
data structures and accordingly their deserialization.
In addition, techniques for securing communication,
such as encryption, hashing, or integrity certificates,
and reducing communication effort, such as caching

2Note that the framework implementation is conceptually
not limited to this selection and can be easily extended.

of access requests and corresponding decisions, are
transparently integrated into proxies.

The developer framework provides a set of re-
quester/responder proxy pair implementations, one
for each APPSPEAR component taking the specific
characteristics of each isolation and corresponding
communication mechanism into account:

• language/compiler-based isolation and communi-
cation via local procedure/function/method calls,

• process-based isolation and IPC-based communi-
cation via local domain sockets3, and

• TEE-based isolation via SGX enclaves and
boundary-crossing communication (ecalls/ocalls).

For implementing the APPSPEAR components, base
classes provide basic functionality (according to § 2.2
and abstract member objects for proxy-based commu-
nication. Concrete implementations are derived from
those base classes where their instantiation also config-
ures the particular isolation and communication mech-
anisms to be used, which is usually done at compile
time. Alternatively, to be able to compare different
implementation variants (e. g. for testing purposes),
the configuration can be done flexibly at runtime.

In order to reduce communication effort and mul-
tiple processing of the same inputs, caching mecha-
nisms can be used. In principle, caching is possible
for (1.) application-logic-to-TOM communication, and
(2.) TOM-to-TPS communication.4 Since the applica-
tion logic is assumed to be untrusted, caching of TOM
calls and results on the application logic side coun-
teracts our goals for rigorous and trustworthy policy
enforcement. Nevertheless as argued in § 3.1, many
applications use databases to store application objects
such that DBMS caches can achieve an overhead re-
duction when retrieving application object data.

Caching of TPS requests and decisions on the TOM
side avoids multiple identical requests (if the policy
has not changed compared to the initial request) and
reduces the runtime overhead to the level of local func-
tion/method calls – especially for implementation vari-
ants with stricter TPS/TEP isolation (see Fig. 2b and
2d). To also keep access times to cache entries as low
as possible, the cache is implemented using a container
organized based on a hash table. If, in the case of a
stateful policy, the execution of an operation results
in the modification of the policy state (Schlegel and

3Sockets were chosen based on the out-of-the box com-
promise of flexibility (in terms of message content/size),
performance, simplicity, and availability in commodity OSs.

4Communication between the TPS and the TEP is asyn-
chronous based on callbacks or periodic updates (see § 2.2).
Since received context values are temporarily stored anyway,
a separate cache is not useful here.
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Amthor, 2020; Schlegel and Amthor, 2021), it may be
necessary to invalidate corresponding cache entries.

3.2 Case Study: OpenMRS

This section describes a case study in which we apply
the APPSPEAR framework to an existing database-
backed application. The studied subject is OpenMRS,
an electronic medical record (EMR) and medical infor-
mation management system (OpenMRS Inc., 2021a).
OpenMRS is an optimal representative for a policy-
controlled application since the AC policy is part of its
architecture and directly visible in the source code.

Software and Security Architecture. OpenMRS
aims at being adaptable to resource-constrained en-
vironments such as healthcare facilities of low-income
countries (Wolfe et al., 2006). This motivation is re-
flected in the web application architecture consisting
of three logical layers: (1.) the UI layer, providing
the user interface with input and query forms, (2.) the
service layer, implementing the basic functionality,
data model interaction, and a corresponding API, and
(3.) the database layer, realizing the data model.

A tightly integrated role-based AC (RBAC) policy
is responsible for controlling accesses to application
objects such as EMRs or medication plans. The pol-
icy semantics are similar to the RBAC model family
(Ferraiolo et al., 2007): a logged-in user’s accesses to
objects are regulated according to her assigned and ac-
tivated roles (e. g. physician or nurse), to which certain
permissions for actions are assigned (e. g. read/modify
EMR or create/delete patient).

RBAC policy and enforcement are implemented
through an AOP mechanism (AuthorizationAdvice)
that wraps each service layer method call with a policy
call, and custom Java annotations (“@Authorized”)
which initiate checking the privileges of the currently
authenticated user. Since required permissions are di-
rectly attached to each service layer method, the policy
is hard-coded and distributed over 635 points (Open-
MRS core version 2.3.1). This renders the policy as
well as its underlying model static, contradicting the
goal of simple adaptability and flexible configurabil-
ity. Beyond that, policy decision and enforcement
functionality are isolated from application logic only
via language-based mechanisms and, thus, misses the
opportunity of using stronger isolation.

Applying the APPSPEAR Framework. While
OpenMRS is implemented in Java, the official SGX
SDK and the APPSPEAR developer framework are
implemented in C++. Therefore, for the scope of this
study, we decided to prototype OpenMRS in C++.

While the basic software architecture is the same,
few functional differences exist. On the UI layer, we
have implemented a minimal command line interface
for requesting service layer functionality. On the ser-
vice layer, we have implemented a selection of core
services for data model interaction: the (system) user
service (login, activate/deactivate role, logout), the
person service (create/delete person object, get/set ad-
dress), and the patient (EMR) service (create/delete
patient object, get/set patient diagnosis), each derived
in an OOP manner from an abstract service class. On
the database layer, SQLite (Hipp et al., 2020) is used
as relational DBMS because of its ability to fully store
a database in-memory enabling its trusted execution
within an SGX enclave. We modified SQLite version
3.32.3 for in-enclave execution by wrapping system
calls through trampoline functions that temporarily
exit an enclave (ocalls) or, where possible, by an SGX-
compatible variant provided by the SDK.

Each service forms a TOM and manages its own
objects (users, patients, EMRs, etc.) stored in the
database and provides corresponding operations on
them (generally such as create/destroy object and read/
modify object attribute). When using the communica-
tion proxies provided by the developer framework, op-
erations on TOM-managed objects called within the UI
layer are transparently forwarded to the proxy counter-
part of the respective TOM; depending on the isolation
mechanism used, either via function/method calls, lo-
cal domain socket send/receive (IPC) or SGX enclave
calls. An analogous pattern applied for the TOM-to-
TPS communication initiates requests to the RBAC
policy regarding access permission or denial for each
TOM operation to be executed. The TPS realizes the
security policy by means of either a database or, lead-
ing to a smaller TCB, model-tailored data structures.

4 EVALUATION

The evaluation addresses the practical feasibility of the
application-level policy enforcement approach. We
compare the different architecture instantiation alter-
natives in terms of their runtime performance. Each
alternative is implemented by configuring our devel-
oper framework to use each of the following isolation
mechanisms: (1.) language/compiler-based isolation
serving as a baseline, (2.) process-based isolation as
a basic OS-level mechanism, and (3.) SGX/enclave-
based isolation as a widely available trusted execution
mechanism. Subsequently, § 4.1 describes the evalua-
tion method and § 4.2 discusses the results.
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4.1 Evaluation Methodology

Test Cases. We study two test cases: A basic appli-
cation with an always-allow AC policy highlights the
baseline for the runtime to be considered for isolation
and communication in each architecture implemen-
tation variant (baseline microbenchmark). The ap-
plication only comprises a single synthetic operation
passing an operation identifier (required to determine
the minimum costs). The prototypical reimplementa-
tion of OpenMRS comprising an RBAC policy (see
§ 3.2 for details) serves as a real-world use case. In
particular, the layered software architecture and the
usage of a database are representative for a multitude
of applications and yields an impression of potential
costs also relevant for other scenarios. The database
provided by the OpenMRS community comprises an
anonymized data set of 5,000 patients and 500,000
observations (OpenMRS Inc., 2021b).

We run two types of benchmarks: four microbench-
marks show efforts for typical create, read, update, and
destroy (CRUD) operations, whereas a mixed mac-
robenchmark based on an OpenMRS workload ex-
tracted from logs (Chen et al., 2019) (called “Action”
there) puts the execution of individual operations into
a bigger context. Our adapted workload assumes the
following occurrences of patient service CRUD opera-
tions: 25 % of create patient, 38 % of read patient di-
agnosis, 12 % of update patient diagnosis, and 25 % of
delete patient. The individual operations appear mixed
over the entire execution. For comparability reasons,
the measured runtimes are divided by 100 (number of
executed operations within the macrobenchmark).

Since especially enclave-based isolation involves
high communication costs, we have also implemented
and evaluated two techniques for decreasing runtime
overhead: (1.) caching of policy decisions in TPS
proxies located in the TOMs (see § 3.1) and (2.) asyn-
chronous enclave calls (Weisse et al., 2017) which are
provided by the SGX SDK as switchless calls because
they do not involve costly enclave switches.

Metrics and Measurements. The runtimes are mea-
sured in CPU clock cycles by using the RDTSCP in-
struction. To avoid the typical behavior of “cold” CPU
caches, each measurement is preceded by a warm-
up phase of 1,000,000 iterations. To filter out po-
tential outliers, we perform 1,000,000 iterations for
each measurement and calculate medians. All mea-
surements were performed on desktop hardware with
an Intel Core i7-7700K CPU at 4.2 GHz and 32 GiB
DDR4 RAM at 2,400 MHz. The machine runs Ubuntu
18.04.4 LTS with Linux kernel 5.3.0 including mitiga-
tions for critical CPU vulnerabilities. We use the Intel

SGX driver, SDK, and platform software in version
2.7.1 (Intel Corporation, 2019). We compile using
GCC 9.2, SGX hardware mode, and SGX SDK Prere-
lease configuration known to have production enclave
performance (Johnson et al., 2016). The Enclave Page
Cache (EPC) size is set to the maximum of 128 MiB of
which ca. 93 MiB are usable. During all experiments,
we disable dynamic CPU frequency scaling, Turbo
Boost, and Hyper-Threading to avoid erratic runtime
behavior and reduce potential outliers, by adjusting
scheduling priorities and interrupt affinities.

4.2 Evaluation Results

Figs. 3a – 3d show the measurement results. The imple-
mentation variants (x-axis) are labeled according to the
type of isolation/communication between (1.) applica-
tion logic and TOMs, and (2.) TOMs and TPS/TEP. In
each subfigure, absolute runtimes are illustrated in the
upper part (unit 103 clock cycles on the left y-axis, unit
microseconds calculated for the Intel i7 CPU with 4.2
GHz on the right y-axis) and in the lower part the rela-
tive runtime overhead compared to the fully integrated,
intra-application implementation of APPSPEAR. The
error bars show 95 % confidence intervals.

First of all, Fig. 3a illustrates the results of the
baseline microbenchmarks showing the runtime of
each of the considered unoptimized APPSPEAR im-
plementations. Each variant requires at least a relative
runtime overhead of more than 2 orders of magni-
tude compared to the intra-application implementation
of APPSPEAR. Due to isolation and communication
effort occurring twice in the IPC/IPC and IPC/SGX
variants, the costs are also about twice as high com-
pared to the single process- and SGX-isolated variants
(ca. 30k cycles vs. ca. 55k/60k cycles).

Considering the CRUD microbenchmarks, in the
LPC/LPC implementation, the read operation requires
only about half of the runtime of create, update, and
destroy operations (ca. 10,5k cycles vs. 18,2k/21,5k/
25,8k cycles) because no changes to application ob-
jects stored in the database are made. Using process-
based isolation in the LPC/IPC, IPC/LPC, and IPC/IPC
implementation variants, the results are comparable
considering the costs for isolation and communication.
The LPC/IPC and IPC/LPC variants yield a similar
level of runtime overhead, while the IPC/IPC variant
has an increased amount of additional overhead due
to isolation using two separate processes which nev-
ertheless does not double the costs due to a compact
small-volume TOM-to-TPS communication.

While for the same reason, the SGX-based isola-
tion of the TPS/TEP (LPC/SGX variant) has a runtime
overhead comparable with the LPC/IPC variant, the
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SGX/LPC variant highlights that the joint isolation
of TOMs and TPS/TEP, and the resulting in-enclave
code execution can lead to a considerable additional
overhead beyond pure isolation/communication costs:
The approximately twice as high runtime effort results
from the execution of SQLite within the isolated en-
clave, since temporary enclave exits (ocalls) may occur
several times (see also § 3.2).

The hybrid IPC/SGX variant shows a middle way
solution in terms of rigor and costs compared to the
previously discussed variants: TOMs are separated
from the application logic by process-based isolation
and only the TPS/TEP is completely trusted through
isolation via SGX. Although the baseline overhead is
the highest in the field of comparison, the CRUD mi-
crobenchmark results rank between the IPC/IPC and

SGX/LPC variants because SQLite is executed in a
regular process. Moreover, the macrobenchmark re-
sults fit into the picture of results drawn so far. The
runtimes for the CUD operations in favor of the R oper-
ation are relativized in all APPSPEAR implementation
variants according to a real-world workload.

In order to reduce the runtime overhead (especially
caused by communication), we have implemented and
evaluated two techniques for runtime reduction, whose
impact we will now discuss: caching of policy requests
and decisions within TOMs (see Fig. 3b) as well as
SGX switchless calls (see Fig. 3c). The runtimes of
cache-optimized APPSPEAR implementations assume
caches already filled with corresponding entries (done
in measurement warm-up).

It can be seen in Fig. 3b that especially those im-
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Figure 3: Benchmarking results: (a) standard/unoptimized implementations, (b) implementations optimized by caching,
(c) implementations optimized by switchless calls, (d) implementations optimized by caching and switchless calls.
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plementation variants that separate the TPS/TEP from
TOMs via process- or SGX-based isolation (LPC/IPC,
LPC/SGX, IPC/IPC, and IPC/SGX implementation
variants) benefit from this measure: A cache hit ef-
fectively results in a significant reduction of the run-
time overhead by eliminating IPC or enclave-boundary
crossing. For the LPC/IPC and LPC/SGX variants, the
runtime is reduced to the level of the intra-application
implementation (LPC/LPC variant) and for the IPC/
SGX and IPC/IPC variants to the cost level of IPC/
LPC. For all other implementation variants (IPC/LPC,
IPC/IPC, and SGX/LPC) querying the cache requires
a little more runtime.

Compared to the APPSPEAR standard implemen-
tations, switchless calls improve runtimes in all consid-
ered implementation variants which use enclave-based
isolation, i. e. LPC/SGX, IPC/SGX, and SGX/LPC
(see Fig. 3c). For the LPC/SGX and SGX/LPC vari-
ants, this approach leads to a reduction of the basic
runtime overhead by more than one order of magni-
tude, while for the IPC/SGX variant it is more than
half of the runtime. The results of the CRUD micro-
and macrobenchmarks also show a runtime reduction
on average by more than half for the LPC/SGX vari-
ant and by less than two-thirds for the other two IPC/
SGX and SGX/LPC variants. The results of all other
variants remain unchanged compared to Fig. 3a.

Finally, Fig. 3d shows the results of combining
the two previously discussed optimizations. Taking
into account both caching (assuming cache hits) and
switchless calls, the runtimes for TPS/TEP isolating
implementation variants via processes or SGX (LPC/
IPC and LPC/SGX) are reduced to the cost level of an
intra-application implementation (LPC/LPC variant).
Although the other implementation variants have 3 to
4 times higher runtimes, due to a much higher effort
for communication and isolation, they also allow for
much stronger isolation guarantees (see also § 3.1).
In particular, the trusted execution of all APPSPEAR
components within an enclave (SGX/LPC variant) is
now possible almost at the run-time level of process-
based isolation, putting the expected costs of using
SGX trusted execution technology for our application-
level policy enforcement approach into perspective.

5 RELATED WORK

This section summarized works related to our
application-level policy enforcement approach con-
sidering a precise TCB perimeter.

A step towards more precisely identifiable appli-
cation TCB perimeters is observable in SELinux with
user-space object managers (Loscocco and Smalley,

2001). The approach is based on auxiliary applica-
tion-level constructs for managing application objects
as SELinux policy objects and for supplementing the
system-wide policy with application policy rules based
on OS-specific policy semantics (Carter, 2007; Walsh,
2007). Although collecting and locating all policy
rules in the kernel’s policy runtime environment is ef-
fective in terms of policy protection and analyzability,
this approach causes an increase of each application
TCB by the OS policy as well as its runtime function-
ality and gives up any policy individuality.

An approach beyond is the SELinux Policy Server
Architecture (Tresys Technology, 2014; MacMillan
et al., 2006). With the goal of a clear separation
between OS-level and application-level policies, the
user-space security server (USSS) is placed at the ap-
plication level running all application-specific poli-
cies. Although the USSS fulfills a comparable role to
the APPSPEAR TPS, the USSS exists only once at
the application level and is not instantiated individu-
ally per application in contrast to APPSPEAR TPSs.
This approach leads to considerably larger application
TCBs and, additionally, has to deal with problems
known from multi- and meta-policy systems (Bonatti
et al., 2002). Due to unknown reasons, the project
was abandoned.

6 CONCLUSION

This paper tackles the problem of large and com-
plex TCBs of current approaches for application-level
security policy enforcement. We propose the secu-
rity architecture framework APPSPEAR: By isolating
APPSPEAR components from untrusted application
logic and by applying isolation between APPSPEAR
components using mechanisms on different hardware/
software levels, implementation variants enable a fine-
grained balancing of rigor regarding the reference
monitor principles as well as isolation/communication
costs, and thus, adjusting an APPSPEAR implementa-
tion to specific application requirements. The practical
evaluation shows that the expected runtime overhead
of using TEE/enclave-based isolation can be signif-
icantly reduced by using caching and asynchronous
enclave calls. While considerably reducing TCB im-
plementation size and complexity compared to con-
ventional mechanisms such as process-based isolation,
SGX enables trusted enforcement of application-level
policies in APPSPEAR implementations.

Ongoing work focuses on two main areas: (1.) We
are investigating approaches for increasing memory
safety of APPSPEAR implementations. The first step
is being taken by implementing our framework in Rust.
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(2.) We are extending developer support: By enabling
compiler-supported code generation of policy and pol-
icy runtime environments (TPSs) from policy repre-
sentations in domain-specific languages (Amthor and
Schlegel, 2020), we aim to embed our approach into
model-based security policy engineering workflows.
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