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Abstract: In the present work, a peculiar property of hash-based signatures allowing detection of their forgery event
is explored. This property relies on the fact that a successful forgery of a hash-based signature most likely
results in a collision with respect to the employed hash function, while the demonstration of this collision
could serve as convincing evidence of the forgery. Here we prove that with properly adjusted parameters
Lamport and Winternitz one-time signatures schemes could exhibit a forgery detection availability property.
This property is of significant importance in the framework of the crypto-agility paradigm since the considered
forgery detection serves as an alarm that the employed cryptographic hash function becomes insecure to use
and the corresponding scheme has to be replaced.

1 INTRODUCTION AND
PROBLEM STATEMENT

Today, cryptography is an essential tool for protecting
the information of various kinds. A particular task
that is important for modern society is to verify the
authenticity of messages and documents effectively.
For this purpose, one can use so-called digital signa-
tures. An elegant scheme for digital signatures is to
employ one-way functions, which are one of the most
important concepts for public-key cryptography. A
crucial property of public-key cryptography based on
one-way functions is that it provides a computation-
ally simple algorithm for legitimate users (e.g., for
key distribution or signing a document), whereas the
problem for malicious agents is extremely computa-
tionally expensive. It should be noted that the very
existence of one-way functions is still an open con-
jecture. Thus, the security of corresponding public-
key cryptography tools is based on unproven assump-
tions about the computational facilities of malicious
parties.

Assumptions on the security status of crypto-
graphic tools may change with time. For example,
breaking the RSA cryptographic scheme is at least as
hard as factoring large integers (Rivest et al., 1978).
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This task is believed to be extremely hard for classi-
cal computers, but it appeared to be solved in poly-
nomial time with the use of a large-scale quantum
computer using Shor’s algorithm (Shor, 1997). A full-
scale quantum computer that is capable of launching
Shor’s algorithm for realistic RSA key sizes in a rea-
sonable time is not yet created. At the same time,
there are no identified fundamental obstacles that pre-
vent from development of quantum computers of a
required scale. Thus, prudent risk management re-
quires defending against the possibility that attacks
with quantum computers will be successful.

A solution for the threat of creating quantum com-
puters is the development of a new type of crypto-
graphic tools that strive to remain secure even under
the assumption that the malicious agent has a large-
scale quantum computer. This class of quantum-safe
tools consists of two distinct methods (Wallden and
Kashefi, 2019). The first is to replace public-key cryp-
tography with quantum key distribution, which is a
hardware solution based on transmitting information
using individual quantum objects. The main advan-
tage of this approach is that the security relies not
on any computational assumptions, but on the laws of
quantum physics (Gisin et al., 2002). However, quan-
tum key distribution technologies today face a num-
ber of important challenges such as secret key rate,
distance, cost, and practical security (Diamanti et al.,
2016).

Another way to guarantee the security of com-
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munications is to use so-called post-quantum (also
known as quantum-resistant) algorithms, which use a
specific class of one-way functions that are believed
to be hard to invert both using classical and quan-
tum computers (Bernstein and Lange, 2017). The
main criticism of post-quantum cryptography is the
fact that they are again based on computational as-
sumptions so that there is no strict proof that they are
long-term secure.

In our work, we consider a scenario, where an
adversary finds a way to violate basic mathematical
assumptions underlying the security of a particular
cryptographic primitive. Thus, the adversary becomes
able to perform successful attacks on information pro-
cessing systems, which employ the vulnerable crypto-
graphic primitive in their workflow. At the same time,
it is in the interests of the adversary that the particu-
lar cryptographic primitive be in use as long as possi-
ble since its replacement with another one eliminates
an obtained advantage. Thus, the preferable strategy
of an attacker is to hide the fact that the underlying
cryptographic primitive has been broken. It can be re-
alized by performing attacks in such a way that their
success could be explained by some other factors (e.g.
user negligence, hardware faults, and etc.), but not the
underlying cryptographic primitive. An illustrative
example of such a strategy is hiding the information
about the successes of the Enigma system cryptoanal-
ysis during World War II.

Broadly speaking, the question we address in the
present work is as follows: Is it possible to supply a
new generation of post-quantum cryptographic algo-
rithms with some kind of alarm indicating that they
are broken? We argue that the answer to this ques-
tion is partially positive, and the property, which we
refer to as a forgery detection availability, can be real-
ized by properly designed hash-based signatures. The
intuitive idea behind this property is that a forgery
of a hash-based signature most likely results in find-
ing a collision with respect to the underlying crypto-
graphic hash function (see Fig. 1), and so the demon-
stration of this collision can serve as convincing evi-
dence of the forgery and corresponding vulnerability
of the employed cryptographic hash function. We re-
fer to the mathematical scheme for the evidence of
the forgery event as a proof-of-forgery concept. We
also would like to emphasize the fact that some of
widespread hash functions have been compromised
after their publication (Dobbertin, 1998; Black et al.,
2006; Stevens et al., 2017), therefore the considered
problem is more than just of academic interest.

In the present work, we illustrate the forgery de-
tection availability property for Lamport (Buchmann
et al., 2009; Lamport, ) and Winternitz (Buchmann

Space of images

Space of pre-images
of finite length

original
preimage

reconstructed
preimage H

Figure 1: Demonstration of the idea behind proving the fact
of the hash-based signature forgery. In order to forge the
signature, an adversary finds a valid preimage for a given
image of a cryptographic hash function. If the size of the
preimages space is large enough then the preimage obtained
adversary is most likely different from the legitimate user’s
one. Disclosing the colliding preimage could serve as evi-
dence that a particular hash function is vulnerable.

et al., 2009) one-time signatures schemes. First, we
consider the Lamport scheme, which is paradigmat-
ically important: It is the first and the simplest al-
gorithm among hash-based schemes. However, the
Lamport scheme is not widely used in practice. Then
we analyze the Winternitz scheme, particularly the
variant presented in Ref. (Hülsing, 2013), which can
be considered as a generalization of the Lamport
scheme that introduced a size-performance trade-off.
Variations of the Winternitz scheme are used as build-
ing blocks in a number of modern hash-based sig-
natures, such as LMS (McGrew and Curcio, 2016),
XMSS (Huelsing et al., 2018), SPHINCS (Bernstein
et al., 2016) and its improved modifications (Bern-
stein et al., 2017; Aumasson and Endignoux, 2017),
as well as applications such as IOTA distributed
ledger (IOT, ).

The paper is organized as follows. In Sec. 2, we
give a short introduction to the scope of hash-based
signatures. In Sec. 3, we provide a general scheme of
detecting signature forgery event and define a prop-
erty of the ε-forgery detection availability (ε-FDA).
In Sec. 4, we consider the ε-FDA property for the
generalized Lamport one-time signature (L-OTS). In
Sec. 5, we consider the ε-FDA property for the Win-
ternitz one-time signature (W-OTS+). We summarize
the results of our work in Sec. 6.

2 HASH-BASED SIGNATURES

Hash-based digital signatures (Bernstein and Lange,
2017; Bernstein et al., 2009) are one of the post-
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quantum alternatives for currently deployed signature
schemes, which have gained a significant deal of in-
terest. The attractiveness of hash-based signatures is
mostly due to low requirements to construct a secure
scheme. Typically, a cryptographic random or pseu-
dorandom number generator is needed, and a func-
tion with some or all of preimage, second-preimage,
and collision resistance properties, perhaps, in their
multi-target variety (Bernstein et al., 2017; Hülsing
et al., 2016; Buchmann et al., 2009). Some schemes
for hash-based signatures require a random oracle as-
sumption (Koblitz and Menezes, 2015) to precisely
compute their bit security level (Katz, 2016).

Up to date known quantum attacks based on
Grover’s algorithm (Grover, 1996) are capable to find
a preimage and a collision with time growing sub-
exponentially with a length of hash function out-
put (Boyer et al., 1999; Brassard et al., 1998). Specif-
ically, it is proven that in the best-case scenario
Grover’s algorithm gives a quadratic speed-up in a
search problem (Grover, 1996). While this area is a
subject of ongoing research and debates (Bernstein,
2009; Banegas and Bernstein, 2018; Chailloux et al.,
2017), hash-based signatures are considered resilient
against quantum computer attacks. Meanwhile, the
overall performance of hash-based digital signatures
makes them suitable for the practical use, and several
algorithms have been proposed for standardization by
NIST (SPHINCS+ (Bernstein et al., 2017), Gravity-
SPHINCS (Aumasson and Endignoux, 2017)) and
IETF (LMS (McGrew and Curcio, 2016), XMSS
(Huelsing et al., 2018)).

We note that the hash-based digital signature
scheme can be instantiated with any suitable crypto-
graphic hash function. In practice, standardized hash
functions, such as SHA, are used for this purpose
since they are presumed to satisfy all the necessary re-
quirements. The availability of changing a core cryp-
tographic primitive without a change in the function-
ality of the whole information security system fits a
paradigm of crypto-agility, which is the basic princi-
ple of modern security systems development with the
built-in possibility of component replacement.

3 PROVING THE FACT OF A
FORGERY

Here we present a general framework for the investi-
gation of the proof-of-forgery concept. We start our
consideration by introducing a generic deterministic
digital signature scheme.

Definition 1 (Deterministic Digital Signature

Scheme). A deterministic digital signature scheme
(DDSS) S = (Kg,Sign,Vf) is a triple of algorithms
that allows performing the following tasks:

• S.Kg(1n)→ (sk,pk) is a probabilistic key genera-
tion algorithm that outputs a secret key sk, aimed
at signing messages, and a public key pk, aimed at
checking signatures validity, on input of a security
parameter 1n.

• S.Sign(sk,M) → σ is a deterministic algorithm
that outputs a signature σ under secret key sk for
a message M.

• S.Vf(pk,σ,M)→ v is a verification algorithm that
outputs v = 1 if the signature σ of the signed mes-
sage M is correct under the public key pk, and
v = 0 otherwise.

We note that the deterministic property of the DDSS
is defined by the fact that for a given pair (sk,M) the
algorithm S.Sign(sk,M) always generates the same
output.

The standard security requirement for digital sig-
nature schemes is their existential unforgeability un-
der chosen message attack (EU-CMA). The chosen
message attack setting allows the adversary to choose
a set of messages that a legitimate user has to sign.
Then the existential unforgeability property means
that the adversary should not be able to construct
any valid message-signature pair (M?,σ?), where the
message M? is not previously signed by a legitimate
secret key holder. In the present work, we limit our-
selves to the case of one-time signatures, so the ad-
versary is allowed to obtain a signature for a single
message only. The generalization to the many-time
signature schemes is left for future research.

In the present work, we consider a stronger secu-
rity requirement known as strong unforgeability un-
der chosen message attack (SU-CMA). A DDSS is
said to be SU-CMA if it is EU-CMA, and given sig-
nature σ on some message M, the adversary cannot
even produce a new signature σ∗ 6= σ on the message
M. We note that SU-CMA schemes are used for con-
structing chosen-ciphertext secure systems and group
signatures (Boneh et al., 2006; Steinfeld and Wang,
2007). The security is usually proven under the as-
sumption that the adversary is not able to solve some
classes of mathematical problems, such as integer fac-
torization, discrete logarithm problem, or inverting a
cryptographic hash function. Here we consider the
case where this assumption is not fulfilled.

Let us discuss the following scenario involving
three parties: An honest legitimate signer S , an hon-
est receiver R , and an adversary A . At the be-
ginning (step 0) we assume that S possesses a pair
(sk,pk)← S.Kg, while R and A have a public key
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pk of S , and they have no any information about the
corresponding secret key sk (see Table 1).

At step 1 A forces S to sign a message M of
A’s choice. In the result, A obtains a valid message-
signature pair (M,σ). At this step, R may or may not
know about the fact of signing M by S .

Then at step 2 A performs an existential forgery
by producing a new message-signature pair (M?,σ?)
with M? 6= M. Below we introduce a formal defini-
tion of the signature forgery and specify two different
cases.

Definition 2 (Signature Forgery and Its Types) . A
signature σ? is called a forged signature of the mes-
sage M? under the public key pk and the signature
scheme S if S.Vf(pk,σ?,M?)→ 1, where the message
M? has not been signed by the legitimate sender pos-
sessing secret key sk corresponding to pk. The follow-
ing two cases are possible.

• A pair (M?,σ?) is called a forgery of type I if
the signature σ? has been previously generated by
the legitimate user a signature for some message
other than M?. That is, there is a message M with
S.Sign(sk,M)→ σ? previously signed by a legiti-
mate user.

• A pair (M?,σ?) is called a forgery of type II if the
signature σ? has not been previously generated by
the legitimate user. That is, there has not been a
message with signature σ?, signed by the legiti-
mate user.

The type I forgery can take place if the signature algo-
rithm S.Sign calculates a digest of an input message
and then computes a signature of the corresponding
digest. In this case, the adversary A may find a col-
lision of the digest function, and then force the legit-
imate user to sign a first colliding message by using
it as M, and automatically obtain a valid signature for
the second colliding message (use it as M?).

An example of type II forgery is the reconstruc-
tion of the sk from pk using an efficient algorithm (in
analogy to the use of Shor’s algorithm on a quantum
computer for the RSA scheme). We note that in our
consideration it is assumed that the only way for the
adversary A to forge the signature for M? is to em-
ploy advanced mathematical algorithms and/or unex-
pectedly powerful computational resources. In other
words, we do not consider any side-channel attacks
or other forms of secret key “stealing”, such as social
engineering and others.

Coming back to the considered scenario, at the
step 2, A sends a pair (M?,σ?) to R claiming that M?

was originally signed by S . If the signature is success-
fully forged by the adversary A , then this could be the
end of the story.

However, we suggest accomplishing this scenario
by the following next steps. At the step 3, R sends a
message (M?,σ?) directly to S in order to request an
additional confirmation. Then S observes a valid sig-
nature σ? of the corresponding message M?, which
was not generated by him. The concrete issue we
address in the present work is whether S is able to
prove the fact of a forgery event. Here we formally
introduce a proof-of-forgery concept, which is mathe-
matical evidence that someone cheats with signatures
by employing computational resources or advanced
mathematical algorithms.

Definition 3 (Proof-of-Forgery of Type I). A set E =
(pk,σ?,M,M?) is called a proof-of-forgery of type I
(PoF-I) for a DDSS S if for M 6= M? there is a valid
signature σ? for these two messages, i.e. the following
relations hold:

S.Vf(pk,σ?,M?)→ 1, S.Vf(pk,σ?,M)→ 1. (1)

Obviously, if the adversary A performs the type I
forgery, then S is able to prove this fact by demon-
strating M to R at step 4. Thus, S and R have the
complete PoF-I set E = (pk,σ?,M,M?), and they are
sure that someone has an ability to break SUF-CMA
property (Brendel et al., 2020), which is typically
beyond the consideration in standard computational
hardness assumptions. Moreover, they can use the set
E to prove the fact of the forgery event to any third
party since E contains a public key pk. We also note
that it is possible to prove the fact of a forgery of type
I for any DDSS. The situation in the PoF-II case is
more complicated.

Definition 4 (Proof-of-Forgery of Type II) . A set
E = (pk, σ̃?,σ?,M?) is called a proof-of-forgery of
type II (PoF-II) for a DDSS S if for a message M?

there are distinct valid signatures σ̃? 6= σ?, i.e. the
following relations hold:

S.Vf(pk, σ̃?,M?)→ 1, S.Vf(pk,σ?,M?)→ 1.

The ability of the adversary A to perform a forgery of
type II depends on a particular deterministic signature
scheme S. Suppose that A has succeeded in obtaining
sk from pk (e.g. by using Shor’s algorithm and RSA-
like scheme), then it is impossible for S to convince
R that (M?,σ?) was not generated by S . However, if
the adversary A has succeeded in obtaining a valid,
but different secret key sk′ 6= sk, then the legitimate
sender S is able to construct the corresponding PoF-II
set by calculating Sign(sk,M?)→ σ̃? with σ̃? 6= σ?.

As we show below this scenario is the case for
properly designed hash-based signatures. We con-
sider particular examples of Lamport and Winternitz
one-time signatures schemes. We show that under
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Table 1: Message-signature pairs and keys available to involved parties on each step of the scenario, where the adversary
A makes a successful CMA obtaining a signature σ for some message M, and forges a signature σ? for some new message
M? 6= M under the public key pk of the signer S . However, the signer S is able to construct the corresponding proof-of-forgery
message E in order to convince the receiver R that the forgery event happened. Square brackets correspond to the optional
message-signature transmission.

Signer S Adversary A Receiver R
Step 0 sk, pk pk pk

Step 1 sk, pk, (M,σ) pk, (M,σ) pk, [(M,σ)]
Step 2 sk, pk, (M,σ) pk, (M,σ), (M?,σ?) pk, [(M,σ)], (M?,σ?)

Step 3 sk, pk, (M,σ), (M?,σ?) pk, (M,σ), (M?,σ?) pk, [(M,σ)], (M?,σ?)

Step 4 sk, pk, (M,σ), (M?,σ?), E pk, (M,σ), (M?,σ?), [E] pk, [(M,σ)], (M?,σ?), E

favourable circumstances S ’s signature σ̃? of the cor-
responding message M? is different from A’s signa-
ture σ?, and S can send it as part of PoF-II to R at step
4. Thus, the PoF-II set is successfully constructed, so
legitimate parties are aware of the break of the used
DDSS.

Here, we introduce a definition of an adversary
who successfully forged, which allows proving their
forgery.

Definition 5 (ε-Forgery Fetection Availability). ε-
forgery detection availability (ε-FDA) for a one-time
DDSS S is defined by the following experiment.
Experiment. ExpFDA

S,n (A)

(sk,pk)← S.Kg(1n)

(M?,σ?)← ASign(sk,·)

Let (M,σ) be the query-answer pair of Sign(sk, ·).

Return 1 iff S.Sign(sk,M?) → σ?,
S.Vf(pk,σ?,M?)→ 1, and M? 6= M.
Then the DSS scheme S has ε-FDA if there is no
adversary A that succeeds with probability ≥ ε.

Remark 1. In our consideration, we implicitly as-
sume that the parties are able to communicate with
each other via authentic channels, e.g. when R sends
a request to S at step 3. One can see that in order
to enable the detection of the forgery event, the au-
thenticity of the channel should be provided with some
different primitives rather than employed signatures.
For example, one can use message authentication
codes (MACs), which can be based on information-
theoretical secure algorithms and symmetric keys.

Remark 2. In the considered scheme honest users
only become aware of the fact of forgery event. How-
ever, the scheme does not allow determining who ex-
actly in this scenario has such powerful computa-
tional capabilities. Indeed, S is not sure whether the
signature σ? is forged by R or by A . That is why it is
advisable for S also to send evidence E to A as well.
At the same time, R is not sure, who is the original

sk0

H

pk0n bits

n + δ bits sk1

H

pk1

Figure 2: Basic principle of the public key construction in
the (n,δ)-L-OTS scheme.

author of σ?. It is a possible case that S has forged
its own signature (say, obtained two messages M and
M? with a same signature σ = σ?), and sent a mes-
sage M to A , who then just forwarded it R . It may
be in the interest of a malicious S to reveal M? at the
right moment and claim that it was a forgery.

4 ε-FDA FOR LAMPORT
SIGNATURES

Here we start with a description of a general-
ized Lamport single bit one-time DDSS. Consider a
cryptographic hash function H : {0,1}∗ → {0,1}n.
The (n,δ)-Lamport one-time signature ((n,δ)-L-OTS)
scheme for single bit message M ∈ {0,1} has the fol-
lowing construction.
Key Pair Generation Algorithm: ((sk,pk)← (n,δ)-L-
OTS.Kg). The algorithm generates secret and public

keys in a form (sk0,sk1) and (pk0,pk1), with ski
$←

{0,1}n+δ and pki := H(ski) (see Fig. 2). Here and

after $← stands for uniformly random sampling from
a given set.
Signature Algorithm: (σ ← (n,δ)-L-
OTS.Sign(sk,M)). The algorithm outputs half
of the secret key as a signature: σ := skM .
Verification Algorithm: (v ← (n,δ)-L-
OTS.Vf(pk,σ,M))). The algorithm outputs v := 1, if
H(s) = pkM , and its output is 0 otherwise.

The security of the (n,δ)-L-OTS scheme is based
on the fact that in order to forge a signature for a bit
M it is required to invert the used one-way function H
for a part of the public key pkM , that is traditionally
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assumed to be computationally infeasible.
In our work, we particularly stress the importance

of inequality between space sizes of secret keys and
public keys. Specifically, we demonstrate that for suf-
ficiently large δ even if an adversary finds a correct
preimage sk?M , such that H(sk?M) = pkM , the obtained
value is different from the original skM used for calcu-
lating pkM by the legitimate user. Then the signature
of an honest user is different from a forged signature,
and so the forgery event can be revealed.

Before turning to the main theorem, we prove the
following Lemma.
Lemma 1 . Consider a function f : {0,1}n+δ →
{0,1}n with n� 1 and δ ≥ 0 taken at random from
the set all functions from {0,1}n+δ to {0,1}n. Let
y0 = f (x0) for x0 taken uniformly at random from
{0,1}n+δ. Define a set

Inv(y0) := {x ∈ {0,1}n+δ| f (x) = y0} (2)
of all preimages of y0 under f . Consider a randomly

taken preimage X $← Inv(y0). Then the probability to
obtain the original preimage X = x0 has the following
lower and upper bounds:
a) Pr(X = x0)> exp(−2δ);
b) Pr(X = x0)< 5.22×2−δ.

Proof. Let N := |Inv(y0)| be a number of preimages
of y0 under f . Due to the random choice of f , it is
given by N = 1+ N̂ , where N̂ is a random variable
having binomial distribution Bin(2−n,2n+δ− 1) with
the success probability 2−n and number of trials equal
to 2n+δ−1. Then the corresponding probability that a
randomly chosen element X from Inv(y0) is equal to
x0 is as follows:

Pr(X = x0) =
2n+δ−1

∑
N=1

1
N

Pr(N = N). (3)

In order to obtain the lower bound for Pr(X = x0), we
consider only the first term in Eq. (3) and arrive at the
following inequality:

Pr(X = x0)> Pr(N = 1) =
(
1−2−n)2n+δ−1

'
(
1−2−n)2n+δ

' exp(−2δ), (4)

where we use the fact that (1−2−n)2n ' exp(−1) for
n� 1. This proves part a) of Lemma 1.

In order to obtain the upper bound for Pr(X = x0),
we split the sum in Eq. (3) into following two parts:

Pr(X = x0) =
N0

∑
N=1

1
N

Pr(N = N)+

2m−1

∑
N=N0+1

1
N

Pr(N = N) (5)

where N0 := k2δ ≥ 1 for some k ∈ (0,1). The first part
can be bounded as follows:

N0

∑
N=1

1
N

Pr(N = N)≤ Pr(N ≤ N0)

≤ (2n+δ−N0)2−n

(2δ−N0)2

<
2−δ

(k−1)2 ,

(6)

where we use a bound for the cumulative binomial
distribution function (Feller, 1968). For the second
part we consider the following bound:

2m−1

∑
N=N0+1

1
N

Pr(N = N)<
1

N0

2m−1

∑
N=N0+1

Pr(N = N)

<
1

N0
=

2−δ

k
.

(7)

By combining Eq. (6) with Eq. (7) and setting k :=
0.36, which corresponds to a minimum of Pr(X = x0),
we obtain Pr(X = x0)< 5.22×2−δ. This proves part
b) of Lemma 1.

Remark 3. The bound for commutative binomial dis-
tribution employed in (6) is rather rough, however, it
is quite convenient for the purposes of further discus-
sion. Tighter bound can be obtained, e.g. using the
technique from Ref. (Zubkov and Serov, 2013).

Next we assume that the number of (n + δ)-bit

preimages for H(x) with x $←{0,1}n+δ behaves in the
same way as for a random function from {0,1}n+δ to
{0,1}n. The main result on the FDA property of the
(n,δ)-L-OTS scheme can be formulated as follows:

Theorem 1 . (n,δ)-L-OTS scheme has ε-FDA with
ε < 5.22×2−δ.

Proof. Consider an adversary who successfully
forged a signature σ? for message M?. From the con-
struction of the signature scheme we have H(σ?) =
pkM? . According to part b) of Lemma 1, the probabil-
ity that the obtained value σ? coincides with the orig-
inal value skM? is bounded by 5.22× 2−δ. It follows
from the fact that skM? is generated uniformly ran-
domly from the set {0,1}n+δ. Therefore, with proba-
bility at least 1−5.22×2−δ the legitimate user’s sig-
nature skM? ← (n,δ)-L-OTS.Sign(sk,M?) is different
from the adversary’s signature σ? and the presence of
the forgery event is then proven.

Remark 4 . We note that it is extremely important to
employ true randomness in the Kg algorithm in or-
der to provide the independence between the results
of the adversary and the original value of sk. For this
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purpose, one can use, for example, certified quantum
random number generators.

Remark 5. We see that ε-FDA property appears only
for high enough values of δ. Meanwhile it follows
from part a) of Lemma 1 that for a common case of
δ = 0 the probability for the adversary to obtain the
original value sk1 is at least exp(−1)≈ 0.368 that is
non-negligible.

5 ε-FDA FOR THE WINTERNITZ
SIGNATURE SCHEME

Here we consider an extension of L-OTS scheme
which allows signing messages of L-bit length. We
base our approach on a generalization of the Winter-
nitz one-time signature (W-OTS) scheme presented in
Ref. (Hülsing, 2013), known as W-OTS+, and used in
XMSS (Hülsing et al., 2016), SPHINCS (Bernstein
et al., 2016) and SPHINCS+ (Bernstein et al., 2017).
We note that W-OTS+ is SU-CMA scheme (Hülsing,
2013). We refer our scheme (n,δ,L,ν)-W-OTS+ and
construct it as follows.

Let us introduce the parameter ν ∈ {1,2, . . .}
defining blocks length in which a message is split
during a signing algorithm, where we assume that
L is a multiple of ν. Let us introduce the follow-
ing auxiliary values: w := 2ν, l1 := dL/νe, l2 :=
blog2(l1(w−1))/νc+1, l := l1 + l2. Then we con-
sider a family of one-way functions:

f (i)r : {0,1}n+δ(w−i)→{0,1}n+δ(w−i−1), (8)

where i ∈ {1, . . . ,w−1} and a parameter r belongs to
some domain D . The employ of this parameter can
correspond to XORing the result of some hash func-
tion family with a random bit-mask, as it considered
in Ref. (Hülsing, 2013)). We assume that f (i)r sat-
isfies the random oracle assumption for a uniformly
randomly chosen r from D .

We then introduce a chain function F(i)
r , which we

define recursively in the following way:

F(0)
r (x) = x,

F(i)
r (x) = f (i)r (F(i−1)

r (x)) for i ∈ {1, . . . ,w−1}.
(9)

The algorithms of (n,δ,L,ν)-W-OTS+ scheme are the
following:
Key Pair Generation Algorithm: ((sk,pk) ←
(n,δ,L,ν)-W-OTS+.Kg). First the algo-
rithm generates a secret key in the following

form: sk := (r,sk1,sk2, . . . ,skl), with ski
$←

{0,1}n+δ(w−1) and r $← D (see Fig. 3). Then a

f (w-1)

pk1

r

f (1)
r

...

sk1 ...

f (w-1)

pkl

r

f (1)
r

...

skl

n bits

n + δ bits

n + (w - 1) δ bits

n + (w - 2) δ bits

Figure 3: Basic principle of the public key construction in
the (n,δ,L,ν)-W-OTS+ scheme.

public key composed of the randomizing parameter
r and results of the chain function employed to
ski as follows: pk := (r,pk1,pk2, . . . ,pkl) with
pki := F(w−1)

r (ski).
Signature Algorithm: (σ ← (n,δ,L,ν)-W-
OTS+.Sign(sk,M)). First the algorithm com-
putes base w representation of M by splitting
it into ν-bit blocks (M = (m1, . . . ,ml1), where
mi ∈ {0, . . . ,w − 1}). We call it a message
part. Then the algorithm computes a checksum
C := ∑

l1
i=1(w− 1− mi) and its base w representa-

tion C = (c1, . . . ,cl2). We call it a checksum part.
Define an extended string B = (b1, . . .bl) := M‖C
as the concatenation of message and checksum
parts. Finally, the signature is generated as follows:
σ := (σ1,σ2, . . . ,σl) with σi := F(bi)

r (ski).
Verification Algorithm: (v ← (n,δ,L,ν)-W-
OTS+.Vf(pk,σ,M))). The idea of the algorithm
is to reconstruct a public key from a given signature
σ and then to check whether it coincides with the
original public key pk. First, the algorithm computes
a base w string B = (B1, . . . ,Bl) in the same way as
in the signature algorithm (see above). Then for each
part of the signature σi the algorithm computes the
remaining part of the chain as follows:

pkcheck
i := f (w−1)

r ◦ . . .◦ f (bi+1)
r (σi), (10)

where ◦ stands for the standard functions composi-
tion. If pkcheck

i = pki for all i ∈ {1, . . . , l}, then the
algorithm outputs v := 1, otherwise v := 0.

The main result on the FDA property of the
(n,δ,L,ν)-W-OTS+ scheme can be formulated as fol-
lows:

Theorem 2 . The (n,δ,L,ν)-W-OTS+ scheme has the
ε-FDA property with ε < 5.22×2−δ.

Proof. Consider a scenario of successful CMA on
the (n,δ,L,ν)-W-OTS+ scheme, in which an adver-
sary first forces a legitimate user with public key
pk = (r,pk1, . . . ,pkl) to provide him a signature σ =
(σ1, . . . ,σl) for some message M, and then generate
a valid signature σ? = (σ?

1, . . . ,σ
?
l ) for some mes-

sage M? 6= M. Let (m1, . . . ,ml1) and (m?
1, . . . ,m

?
l1
)
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...

skj

σj*

...

σj

pkj

...

n bits

n + (w - 1) δ bits

n + (w - bj - 1) δ bits*

n + (w - bj - 1) δ bits

Figure 4: Illustration of the principle of PoF-II construction
for the (n,δ,L,ν)-W-OTS+ scheme.

be the w-base representations of M and M? corre-
spondingly. Consider extended w-base strings B =
(b0

1, . . . ,b
0
l ) and B? = (b?1, . . . ,b

?
l ) generated by adding

checksum parts. It easy to see that for any distinct M
and M? there exists at least one position j ∈ {1, . . . , l}
such that b?j < b j. Indeed, even if for all positions
i ∈ {1, . . . , l1} it happened that m?

i > mi, from the def-
inition of checksum it follows that there exists a po-
sition j ∈ {l1 +1, . . . , l2} in checksum parts such that
b?j < b j.

Since σ? is a valid signature for M? we have

f (w−1)
r ◦ . . .◦ f

(b?j+1)
r (σ?

j) = pk j. (11)

One can see that forgery event will be detected if the
jth part of the legitimate user’s signature of M? is dif-
ferent from the forged one (see also Fig. 4), so that:

σ̃
?
j := F

(b?j )
r (sk j) 6= σ

?
j . (12)

Consider two possible cases. The first is that the con-
dition (11) is fulfilled, but the following relation holds
true:

f
(b j)
r ◦ . . .◦ f

(b?j+1)
r (σ?

j) 6= σ j. (13)

In this case we obtain σ̃?
j 6= σ?

j with unit probability
since

σ j = f
(b j)
r ◦ . . .◦ f

(b?j+1)
r (σ̃?

j) 6= f
(b j)
r ◦ . . .◦ f

(b?j+1)
r (σ?

j).
(14)

In the second case we have the following identity:

f
(b j)
r ◦ . . .◦ f

(b?j+1)
r (σ?

j) = σ j, (15)

which automatically implies the fulfilment of
Eq. (11). Consider the function

F := f
(b j)
r ◦ . . .◦ f

(b?j+1)
r : {0,1}n∗+δ∆→{0,1}n∗ ,

(16)
where ∆ := b0

j −b?j ≥ 1 and n∗ := n+ δ(w−b?j −1).
This function satisfies random oracle assumptions,
since each of { f (k)r }

b j
k=b?j

do. The random oracle as-
sumption implies that the number of preimages of F is
the distributes in the same way as for random random

function. Moreover, due to the fact that the values of
ski are generated uniformly at random, the inputs for
F are also uniformly distributed over the correspond-
ing domains. So, according to part b) of Lemma 1, we
have the probability of the adversary to obtain σ?

j =

σ̃?
j is bounded by ε < 5.22×2−δ∆ ≤ 5.22×2−δ.

Remark 6 . One can see that the excess of the preim-
age space size over the image space size, given by δ,
is a crucial condition for the FDA property both for L-
OTS and W-OTS+ schemes. We also note that in the
case of the W-OTS+ scheme it is important to have
such excess for all the elements of the employed one-
way chain.

Remark 7. One can imagine a situation where an
attacker is able to compute sk?i 6= ski for some i ∈
{1, . . . , l}, such that F(w−1)(sk?i ) = pki. This means
that the chain collides somewhere on the way to pki.
As long as an attacker reveals forgeries only above
this collision, there is no way for the legitimate user
to present a different signature on the same message.
However, in line with our proof, the probability of
such a scenario is limited by ε.

In WOT S+ scheme consider an attacker who is
able to compute some value sk′i 6= ski, such that
f w−1(sk′i) = pki for one of the public-key chunks pki,
this means that the chain collides somewhere on the
way to pki. One can notice that as long as an attacker
reveals forgeries only above this collision, there is no
way for the legitimate user to present a different sig-
nature on the same message. But following our proof,
this situation is limited by ε.

6 CONCLUSION

In this work, we have considered the ε-FDA property
of DDSS that allows detecting a forgery event gen-
erated by advanced mathematical algorithms and/or
unexpectedly powerful computational resources. We
have shown that this property is fulfilled for properly-
designed hash-based signatures, in particular, for L-
OTS and W-OTS+ schemes with properly tuned pa-
rameters. As we have noted, the probability of the
successful demonstration of the DDSS forgery event
depends on an excess of preimage space sizes over
image space sizes and using true randomness in the
generation of secret keys in hash-based DDSS. The
important next step is to study this property for other
types of hash-based signatures.

Our observation is important in the view of the
crypto-agility paradigm. Indeed, the considered
forgery detection serves as an alarm that the employed
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cryptographic hash function has a critical vulnerabil-
ity and it has to be replaced. We note that a simi-
lar concept has been recently considered for detecting
brute-force attacks on cryptocurrency wallets in the
Bitcoin network (Kiktenko et al., 2019). Namely, it
was considered the alarm system that detects the case
of stealing coins by finding a secret-public key pair
for standard elliptic curve digital signature algorithm
(ECDSA) used in the Bitcoin system, such that a pub-
lic key hash of adversary equals a public key hash of
a legitimate user. This kind of alarm system can be
of particular importance in view of the development
of quantum computing technologies (Fedorov et al.,
2018).
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