
A Formal Approach Combining Event-B and PDDL for Planning
Problems

Sabrine Ammar1 and Mohamed Tahar Bhiri2
1MIRACL, Faculty of Economics and Management of Sfax, Sfax, Tunisia

2MIRACL, Faculty of Science of Sfax, Sfax, Tunisia

Keywords: Code Generation, Correct by Construction, Event-B, PDDL, Formal Modelling, Refinement Strategy.

Abstract: In artificial intelligence, the goal of automatic planning is to structure actions in the form of a plan to achieve
an expressed goal. The PDDL (Planning Domain Definition Language) was designed to allow the common
representation of planning problems during ICAPS (International Conference on Automated Planning and
Scheduling) competitions. PDDL has many verification and validation tools allowing the description,
resolution and validation of planning problems. But they only allow the reliability of PDDL descriptions a
posteriori. In this article, we recommend a rigorous approach coupling Event-B and PDDL favoring obtaining
PDDL descriptions deemed correct, a priori, from an ultimate Event-B model. The formal Event-B method
allows us to obtain, by successive refinements with mathematical proofs, correct by construction formal
models of planning problems. A refinement strategy appropriate to planning problems is, then, proposed. The
ultimate Event-B model, correct by construction, is automatically translated into PDDL using our MDE
Event-B2PDDL tool. The obtained PDDL description is submitted to efficient planners for generation of
correct and efficient plan-solutions.

1 INTRODUCTION

The automatic planning community has developed a
formal de-facto standard Planning Domain Definition
Language (PDDL) (McDermott et. al. 1998) to
formally describe planning problems. In addition, this
community has developed solvers able to calculate
solutions to PDDL-formalized planning problems. In
addition, validation tools were developed for
verifying whether a given plan-solution can be
derived from a PDDL description. In general, PDDL
descriptions are difficult to write, read, and evolve.
Moreover, the tools associated with the PDDL
language, namely planners and validators; do not
allow a rigorous a priori analysis of the PDDL
descriptions. In fact, these tools are used a posteriori
after establishing PDDL descriptions.

In this work, we advocate the opening of the
automatic planning community on the formal
methods community through Event-B (Abrial, 2010).
To achieve this, we suggest a transformation from
Event-B to PDDL. This promotes the development of
planning problems correct by construction. The
ultimate Event-B model, derived from a chain of
refinements with mathematical proofs, is translated

into PDDL in order to generate quality plans through
various planners supporting PDDL.

This article extends our previous short paper
presented in (Ammar and Bhiri, 2018). In fact, we
detail in particular the strategy of refinement with
mathematical proofs recommended for a class of
planning problems. Such a class has state change
operators with complex preconditions: a logical
formula comprising several operands and operators.
In addition, a sub-section (Discussion) is added in the
“Proposed refinement strategy” section in order to
discuss the compatibility of the proposed refinement
strategy for the development of certain planning
problems with respect to what is recommended by the
Event-B method. In addition, the “Related works”
section is added to place our work in relation to
existing works. Finally, the conclusion is enriched by
new research lines pointed out.

This article contains seven sections and one
conclusion. The second section presents and
evaluates the PDDL language. The third section
provides a general overview of modeling in Event-B
method. The fourth section proposes an Event-B and
PDDL coupling approach. The fifth section provides
a refinement strategy for formal modeling of Event-B
planning problems. The sixth section describes our

Ammar, S. and Bhiri, M.
A Formal Approach Combining Event-B and PDDL for Planning Problems.
DOI: 10.5220/0010577102610268
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 261-268
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

261

MDE Event-B2PDDL tool. Finally, the seventh
section is devoted to related works. The conclusion
draws up the balance sheet of this article and proposes
the possible extensions of this work.

2 THE PDDL LANGUAGE

A planning problem formalized using PDDL has two
separate parts: domain and problem. The domain
construction makes it possible to describe all the
common aspects in a class of problems known as
generic domain.. A domain described in PDDL
includes types, constants, predicates, numeric
functions and actions.

As an example, Listing 1 from (Bibai, 2010)
describes the domain of the sliding puzzle game in
PDDL. The domain of the sliding puzzle game has
two types: position and tile. In PDDL, a type does not
have a structure and is designated by a name. The
predicates at (having two parameters ?tile of type tile
and ?position of type position), neighbor and empty
allowing to formalize the concept of state of a sliding
puzzle game problem. The move action is the only
state change operator relating to the sliding puzzle
game domain. In PDDL, an action can have
parameters typed (parameters clause) and defined by
a Pre/Post specification: precondition and effect
clauses. An action can be applied in a state if and only
if all preconditions are satisfied in this state. The
effect of a PDDL action is defined by the additions
and withdrawals of atoms in the current state.
(define (domain n-sliding-puzzle)
(:types position tile)
(:predicates
(at ?tile - tile ?position - position)
(neighbor ?p1 - position ?p2 -position)
(empty ?position - position))
(:action move
 :parameters (?tile - tile ?from ?to – position)
 :precondition (and (neighbor ?from
 ?to) (at ?tile ?from)(empty ?to))
 :effect (and(at ?tile ?to)(empty ?from
 (not (at ?tile ?from))(not (empty
 ?to)))))

Listing 1: State of the application.

The problem construction makes it possible to
formalize a problem belonging to the domain
described by the domain construction. A problem
includes the domain of this problem, typed objects
(objects), an initial state (init) and a goal state
(goal). For example, the Sliding Puzzle game
containing 8 tiles is provided by Listing 2.

(define (problem n-sliding-puzzle-pbl)
(:domain n-sliding-puzzle)
(:objects
 p_1_1 p_1_2 p_1_3 p_2_1 p_2_2 p_2_3
 p_3_1 p_3_2p_3_3 – position
 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 –tile)
(:init (empty p_1_2)
(at t_4 p_1_1)(at t_8 p_1_3)
(at t_6 p_2_1)(at t_3 p_2_2)
(at t_2 p_2_3)(at t_1 p_3_1)
(at t_5 p_3_2)(at t_7 p_3_3)
(neighbor p_1_1 p_1_2)(neighbor p_1_2
p_1_1)(neighbor p_1_2 p_1_3)(neighbor
p_1_3 p_1_2)(neighbor p_2_1 p_2_2)
(neighbor p_2_2 p_2_1)(neighbor p_2_2
p_2_3)(neighbor p_2_3 p_2_2)(neighbor
p_3_1 p_3_2)(neighbor p_3_2 p_3_1)
(neighbor p_3_2 p_3_3)(neighbor p_3_3
p_3_2)(neighbor p_1_1 p_2_1)(neighbor
p_2_1 p_1_1)(neighbor p_1_2 p_2_2)
(neighbor p_2_2 p_1_2)(neighbor p_1_3
p_2_3)(neighbor p_2_3 p_1_3)(neighbor
p_2_1 p_3_1)(neighbor p_3_1 p_2_1)
(neighbor p_2_2 p_3_2)(neighbor p_3_2
p_2_2)(neighbor p_2_3 p_3_3)(neighbor
p_3_3 p_2_3))
(:goal (and (at t_1 p_1_1)
(at t_2 p_1_2)(at t_3 p_1_3)
(at t_4 p_2_1) (at t_5 p_2_2)
(at t_6 p_2_3) (at t_7 p_3_1)
(at t_8 p_3_2))))

Listing 2: Sliding puzzle game with 8 tiles.

A planning problem described using PDDL is
solved by a software item called planner. A planner
combines exploration and logic. In fact, it can be seen
either as a program that calculates a solution called
plan-solution or as a program that demonstrates the
existence of a solution. For example, the Sliding
Puzzle game planning problem described by both
Listings 1 and 2 submitted to the LPG planner
(Gerevini, Saetti and Serina, 2003) provides a plan-
solution comprising 52 actions. Listing 3 illustrates
an extract of this plan solution.

0: (move t_8 p_1_3 p_1_2)
1: (move t_2 p_2_3 p_1_3)
2: (move t_3 p_2_2 p_2_3)
3: (move t_8 p_1_2 p_2_2)
4: (move t_2 p_1_3 p_1_2)

Listing 3: Plan-solution extract associated with the 8-tile
problem of the Sliding Puzzle game.

PDDL offers interesting ways to represent
planning problems. In fact, PDDL supports various
representations such as propositional representations,
first order logic and both numeric and temporal. This
makes it possible to describe the states and actions of

ICSOFT 2021 - 16th International Conference on Software Technologies

262

a planning problem. The tools associated with the
PDDL language are: planners and validators. Unlike
a planner who performs a plan-solution production
activity, a validator (Howey, Long and Fox, 2004)
performs a verification activity. From the functional
point of view, a validator accepts as input: a PDDL
description (domain and problem file) and one or
more plan-solution files and gives a verdict as an
output. 'YES' means that the plan-solution can be
obtained from the subject PDDL description.
However, 'NO' means a failure. Validators can be
used in a profitable way to appreciate PDDL domains
by adopting the functional test. In addition, validators
allow double verification by checking the plan-
solutions generated by various planners. Finally, a
validator can be used as a tool to objectively compare
the abilities of various planners. The dynamic
analysis tools associated with PDDL, namely
planners and validators, are insufficient for the
verification and validation of PDDL descriptions. In
fact, complex PDDL descriptions involving actions
with elaborated preconditions and post conditions are
subject to errors that are hard to detect a priori. In
fact, the dynamic analysis tools associated with
PDDL makes it possible to detect errors a posteriori
by means of a test activity.

3 MODELING IN EVENT-B

An Event-B model can contain contexts (construction
CONTEXT) only, machines (construction
MACHINE) only or both. Contexts are modeling
static properties of the model. Machines (construction
MACHINE) are modeling the dynamic behavior of
the system. A machine may refine and see another
one or more contexts. The state of the machine is
defined by variables introduced by the VARIABLES
clause. The invariance properties related to these
variables are grouped together in the INVARIANT
clause. They are considered as predicates in the sense
of Event-B as described by its logico-set language.
An Event-B machine is grouping events that affect its
state. An event consists of two parts: a “guard” that
defines the condition according to it the event may or
may not be triggered, and an "action" called event
body permitting the evolution of state variables. An
event may have parameters called local parameters.
The Event-B language offers a simple action
language to describe the processing (event body):
simple assignment (:=), non-deterministic set
assignment (:∈), non-deterministic assignment
governed by a predicate (:|), parallel assignment (||),
and skip that does nothing.

4 FROM EVENT-B TO PDDL

We advocate a rigorous approach combining Event-
B and PDDL for automatic planning. Event-B is
used for formal modeling by successive refinements
with mathematical proofs of planning problems. The
refinement of data supported by Event-B can be
used in a profitable way in order to refine the notion
of state of a planning problem step-by-step. In
addition, the one-to-many refinement provided by
Event-B is very useful for determining the state
change operators of a planning problem. Finally, the
possibility of reinforcing the guard of an Event
supported by Event-B during a refinement step is
very useful to incrementally identify the
applicability conditions of a state change operator of
a planning problem. Proof tools associated with
Event-B (generator of proof obligations and
provers) guarantee in particular the verification of
the coherence of a planning problem described by
Event-B. The ProB (Leuschel and Butler, 2003) tool
that accepts Event-B offers the possibility of
checking the dynamics of a planning problem. The
use of Event-B coupled to ProB allows to obtain
Event-B model correct by construction (thanks to
the Event-B theory) and valid (thanks to ProB)
describing a planning problem. Then we have to
translate this Event-B model into a PDDL. To
achieve this, several refinement steps are required in
order to have a model described by an Event-B
subset: the data are described by the language of the
first-order predicates of Event-B (the theory of sets
is discarded because it is not translatable to PDDL)
and the processing are described only through
deterministic action (:=).

5 PROPOSED REFINEMENT
STRATEGY

Following numerous Event-B modeling of various
planning problems, we have established a refinement
strategy that could be reused for modeling various
planning problems with Event-B in several areas. In
fact, all planning problems can be formalized by the
concept of state space: initial state, goal states,
intermediate states and state change operators. Based
on all of its common aspects of planning problems,
we propose the refinement strategy that includes the
steps as outlined and justified below. The purpose of
this problem is to transfer three cannibals and three
missionaries from one side of a river to another via a
boat. The requirement of this problem is that the

A Formal Approach Combining Event-B and PDDL for Planning Problems

263

number of missionaries must always be greater than
or equal to the number of cannibals.

Step 1: Initial Abstract Model. The initial abstract
model of a planning problem includes elements
related to the notion of state, the initial state, and the
goal states. These elements are formalized
respectfully in Event-B by typed variables. They have
invariant properties, INITIALISATION event and an
event called goal having a guard to see if the current
state is a goal state. The goal event does nothing (skip
action). For example, Listing 4 models the notion
state, the initial state, and the goal states of the
problem of three cannibals and three missionaries. In
addition, the initial abstract model of a planning
problem shall involve an overly abstract and non-
deterministic modeling of the notion of state change
operator. This is made possible by the
ANTICIPATED status. Listing 5 provides the state
change operator related to the problem of three
cannibals and three missionaries.
VARIABLES
nbc_shore1,nbc_shore2,nbm_shore1,nbm_shore2
INVARIANTS
 inv1: nbc_shore1∈0..3
 inv2: nbc_shore2∈0..3
 inv3: nbm_shore1∈0..3
 inv4: nbm_shore2∈0..3
INITIALISATION=
 nbc_shore1,nbc_shore2,nbm_shore1,
 nbm_shore2:=3,0,3,0
goal =
 WHEN
 grd1: nbc_shore1=0
 grd2: nbc_shore2=3
 grd3: nbm_shore1=0
 grd4: nbm_shore2=3
 THEN
 Skip
END

Listing 4: State, Initial state and Goals states.

cross = STATUS anticipated
 act1: nbc_shore1:∈0..3
 act2: nbc_shore2:∈0..3
 act3: nbm_shore1:∈0..3
 act4: nbm_shore2:∈0..3

END

Listing 5: Non-deterministic specification of the event
cross.

Step 2: Determination of Actions by Successive
Refinements. This step includes several successive
refinements permitting, ultimately, to get an Event-B
model with state change operators having

deterministic behaviors. Each operator contains a
guard modeling the operator‘s applicability condition
and its action. Refinement techniques supported by
Event-B as an event decomposition (one to many) and
the reinforcing guards are very useful for
implementing this step. For example, Listing 6 shows
how to refine the abstract operator to introduce two
types of operators. The state change operators are
modeled by events in Event-B whose guards indicate
the conditions of application of these operators and
the actions that are modeling the changes of state:
transition from one state to another in state spaces. To
list all of the state change operators related to
application, we recommend using parameterized non-
deterministic events. For example, Listing 7 shows
the refinement of the event cross_shore1_shore2 by
introducing two local parameters c and m. The first is
modeling the transfer of cannibals and the second is
modeling the transfer of missionaries.
VARIABLES
nbc_shore1,nbc_shore2,nbm_shore1,
nbm_shore2,boat
INVARIANTS
 inv1: boat∈BOAT
cross_shore1_shore2 =
 REFFINE cross

WHEN
 grd1: boat=left
THEN
 act1: nbc_shore1:∈0..3
 act2: nbc_shore2:∈0..3
 act3: nbm_shore1:∈0..3
 act4: nbm_shore2:∈0..3
 act5: boat:=right

END
cross_shore2_shore1 =

REFFINE cross
WHEN
 grd1:boat=right
THEN
 act1: nbc_shore1:∈0..3
 act2: nbc_shore2:∈0..3
 act3: nbm_shore1:∈0..3
 act4: nbm_shore2:∈0..3
 act5: boat:=left
END

Listing 6: Introduction of two types of state change
operators.

cross_shore1_shore2 =
 REFFINE cross_shore1_shore2
 ANY
 m
 c
 WHEN
 grd1: m∈0..2

ICSOFT 2021 - 16th International Conference on Software Technologies

264

 grd2: c∈0..2
 grd3: m+c∈1..2
 grd4: c≤nbc_shore1
 grd5: m≤nbm_shore1
 grd6: boat=left
 THEN
 act1: nbc_shore1:=nbc_shore1- c
 act2: nbm_shore1:=nbm_shore1- m
 act3: nbc_shore2:=nbc_shore2+c
 act4: nbm_shore2:=nbm_shore2+m
 act5: boat:=right
END

Listing 7: Introduction of parameters.

Step 3: Determination of Parameters by
Successive Refinements. This step aims to remove
the non-determinism related to the parameters
introduced in the clause ANY of each states change
operator. Eventually, we obtain events without
parameters. Technically in this step, the “one to
many” refinement technique and the WITH clause are
used in a profitable way. The problem of three
cannibals and three missionaries has 10 state change
operators with deterministic actions and no
parameters (see Listing 8).

cross_one_cannibal_shore1_shore2 =
 REFFINE cross_shore1_shore2
 WHEN
 grd1: boat=left
 grd2: 1≤nbc_shore1
 WITH
 c: c=1
 m: m=0
 THEN
 act1: nbc_shore1:=nbc_shore1-1
 act2: boat:=right
END

Listing 8: State change operator without parameters.

Step 4: Reinforcing Applicability Conditions. This
step consists in reinforcing applicability conditions of
the state change operators (WHERE clause)
introduced in the previous step. The ultimate model
from this step must have well-defined state change
operators. Technically, this step introduces new
invariant properties (reinforcement of the invariant)
and guards (reinforcement of guards). For example,
the problem of three cannibals and three missionaries
shall make it inaccessible for the states where the
number of cannibals is greater than that of
missionaries (see Listing 9).
INVARIANTS
inv:nbm_shore1≠0⇒nbm_shore1≥nbc_shore1
inv2:3−nbm_shore1≠0⇒3−nbm_shore1≥
 3−nbc_shore1
cross_one_cannibal_shore1_shore2 =

REFFINE cross_one_cannibal_shore1_shore2
 WHEN
 grd1: boat=left
 grd2: 1≤nbc_shore1
 grd3: (3−nbm_shore1=0)∨(3−nbm_shore1≥
 3–nbc_shore1+1)
 WITH
 c: c=1
 m: m=0
 THEN
 act1: nbc_shore1:=nbc_shore1-1
 act2: boat:=right
END

Listing 9: Applicability conditions of
cross_one_cannibal_shore1_shore2.

Step 5: Data Concretization. The purpose of this
step is to eventually provide an Event-B model
translatable into PDDL. All Event-B set constructions
must be realized using the Event-B predicative
constructions. To achieve this, data refinement is used
via Event-B gluing invariant. Note in passing that this
step is not applicable to the problem of three
cannibals and three missionaries. Recently, we have
successfully applied this step on the MICONIC
domain (Haslum et. al. 2019).

Step 6: Translating a Reduced Event-B into
PDDL. The reduced Event-B model from Step 4 is
translated using our Event-B2PDDL tool introduced
later. Listing 9 gives an extract of the ultimate Event-
B model translatable into PDDL. Listing 10 provides
an excerpt from the translation of the problem of three
cannibals and three missionaries into PDDL.
(:types SHORE CANNIBAL MISSIONARY)
(:constants left right - SHORE)
(:predicates (boat ?x - SHORE)
(pos_cann ?x - CANNIBAL ?y - SHORE)
(pos_miss ?x -MISSIONARY ?y -SHORE)
(diffc ?x ?y - CANNIBAL)
(diffm ?x ?y - MISSIONARY))
(:functions nbc_shore1) (nbm_shore1))
(:action cross_one_cannibal_shore1_shore2
:parameters (?cc - CANNIBAL)
:precondition (and (boat left)(<= 1
(nbc_shore1))(or (= (- 3 (nbm_shore1))
0)(>= (- 3 (nbm_shore1))(+ (- 3
(nbc_shore1)) 1)))(pos_cann ?cc left))
:effect (and (boat right)(not(boat
left))(decrease (nbc_shore1)1)(pos_cann
?cc right)(not (pos_cann ?cc left))))

Listing 10: PDDL translation excerpt.

5.1 Discussion

In this section we take a look at the development of

A Formal Approach Combining Event-B and PDDL for Planning Problems

265

our refinement strategy applied to the problem of three
missionaries and three cannibals as a planning
problem. Invariant properties other than typing
properties are not introduced into the initial abstract
model. In fact, the state change operator: cross is
defined in a non-deterministic way. The determination
of the state operator: cross is carried out progressively
by introducing constraints linking the variables which
forms the state of the machine and decomposes it. Such
constraints define the invariant properties to be
preserved by the state change operators.

The ultimate Event-B model includes
semantically well-defined state change operators
(events): applicability condition and effect. The
properties that transcend these operators are
factorized in the invariant of the ultimate model. The
proof obligations discharged from the ultimate model
are ensuring its static correction with respect to the
invariant properties. The dynamics of the ultimate
model is formally verified with the ProB toolbox:
animation and model-checking. Both
INITIALISATION and goal events modeling the
initial state and the logical condition of the goal states
in a planning problem remain unchanged during the
application of the refinement strategy. We can see
that the number of events is increasing as we apply
our refinement strategy: it goes from 3 to 13.

6 THE EVENT-B2PDDL TOOL

Our Event-B2PDDL tool takes as input a reduced
Event-B model that is translatable into PDDL and
gives as output a PDDL description acceptable to
planners. Event-B2PDDL is based on simple intuitive
rules allowing the systematic translation of Event-B
elements to PDDL elements. Event-B2PDDL is made
according to MDE technology.

6.1 Event-B to PDDL Transformation
Rules

The PDDL description coming from the Event-
B2PDDL tool has two domain and problem
constructions (see section Event-B overview). Thus,
in (Fourati, Bhiri and Robbana 2016), we have
respectively established rules allowing the translation
of Event-B elements related to the planning domain
and the planning problem. The translation rules for
Event-B elements related to the planning domain
concern: translation of abstract sets (see Table 1),
constants (see table 2), Boolean constants or variables
(see Table 3), Boolean functions (see Table 4), events

Table 1: Schemes of translations of abstract set.

Event-B PDDL
SETS

TYPE1
 TYPE2

 …
TYPEn

 (:types
 type1
type2

…
typen)

Table 2: Schemes of translations of constants.

Event-B PDDL
CONSTANTS

cst1, cst2, …, cstn
AXIOMS

axm1:partition(TYPE,{cst1},{cst2},
…, {cstn})

 (:constants
cst1 cst2 …

cstn -TYPE)

Table 3: Schemes of translations of Boolean constants or
variables.

Event-B PDDL
CONSTANTS

 cst
AXIOMS

axm1: cst∈BOOL

 (:predicates
(cst)
(var)

)
VARIABLES

var
INVARIANTS

inv1: var∈BOOL

Table 4: Schemes of translations of Boolean functions.

Event-B PDDL
VARIABLES

fnc
INVARIANTS

inv_fnc: fnc∈TYPE1 × TYPE2
× . . . × TYPEn → BOOL

 (:predicates
 (fnc ?var1 - TYPE1

?var2 - TYPE2 ...
?varn - TYPEn)

)

Table 5: Schemes of translations of Event-B Events.

Event-B PDDL
evt_name =

STATUS ordinary
ANY
var1
var2
…

WHERE
grd1: var1∈TYPE1
grd2: var2∈TYPE2

…
grdn: <GDn>

grdn1: <GDn1>

THEN
 act1: <ACT1>
act2: <ACT2>

END

 (:action <evt_name>
 :parameters (?var1 -

 TYPE1 ?var2 - TYPE2
...)

:precondition (and
(<GDn>)
(<GDn1>)

.....)
 :effect (and (<ACT1>)

 (<ACT2>)
.....)

)
)

ICSOFT 2021 - 16th International Conference on Software Technologies

266

(see Table 5) and formulas (see Table 6). The
translation rules of Event-B elements related to the
planning problem are about translation of constants
linked to the sets defined by enumeration (see Table
7), translation of axioms of initialization (see Table 8)
and translation of both INITIALISATION and
GOAL events (see Table 9 and Table 10).

Table 6: Schemes of translation of Event-B formulas
retained in PDDL.

Event-B PDDL
P ∧ Q (and P Q)
P ∨ Q (or P Q)
P ⇒ Q (imply P Q)

¬P (not P) ∀z.P⇒ Q (forall (?z) (imply P Q)) ∃z.P∧ Q (exists (?z) (and P Q))
E = F (= E F)
E ≠ F (not (= E F))

b:=TRUE (b)
b:=FALSE (not(b))

f(x):=TRUE (f ?x)
f(x):=FALSE (not (f ?x))

f:=f<+{ x|->TRUE, y|-
>FALSE}

(and (f ?x) (not (f ?y)))

Table 7: Schemes of translations of constants.

Event-B PDDL
CONSTANTS

 cst1, cst2, …, cstn
AXIOMS

axm1:partition(TYPE,{cst1},{cst2},
…, {cstn})

 (:objects
cst1 cst2 …
cstn - TYPE

)

Table 8: Schemes of translations of Axioms of
Initialization.

Event-B PDDL
axm1:fnc1:=((TYPE1×TYPE2×
…×TYPEn)×{FALSE})<+({cst1
›→cst2›→...cstn, …}×{TRUE})

(:init
(fnc1 cst1 cst2...

cstn)
...)

Table 9: Schemes of translations of the event
INITIALISATION.

Event-B PDDL
INITIALISATION=
STATUS ordinary

act1:fnc2:=((TYPE1×TYPE2×
. . .×TYPEn)×{FALSE})<+(

{cst1›→cst2›→...
cstn,…}×{TRUE})...

END

(:init
(fnc2 cst1 cst2 ...

cstn)
...
)

Table 10: Schemes of translations of the event GOAL.

Event-B PDDL
GOAL =

STATUS ordinary
WHEN

grd1:fnc2=fnc2<+
{cst1›→cst2›→...›→cstn

›→TRUE, ...}
...

THEN
 skip
END

 (:goal (and
(fnc2 cst1 cst2 ... cstn)

...
)
)

7 RELATED WORKS

There exist several “Integrated Development
Environments” supporting PDDL (Magnaguagno et.
al. 2017; Strobel and Kirsch, 2014; Muise and
Lipovetzky 2020). Such environments offer
functionalities allowing the editing of PDDL
descriptions, lexico-syntactic verification of PDDL
text, generation of plans-solution and visualization of
states space associated with the planning problem.
This last functionality allows, among other things, to
provide information to the user, related to the
"execution" of PDDL actions. This allows the user to
detect errors related to the specification of a PDDL
action such as incorrect precondition, incorrect post
condition and incorrect precondition and post
condition. In addition, the visualization of the state
space makes it possible to make the behavior of the
PDDL planner explicit in order to find a plan solution.
This reduces the opacity of PDDL planners. In fact,
without visualization, these planners are used as black
boxes. In our opinion, this work supports the analysis
of PDDL descriptions a posteriori without correction
certification. From among Platforms covering the
design of planning domains and problems, we note
itSIMPLE (Vaquero et. al. 2009) and GIPO
(Simpson, Kitchin, and McCluskey, 2002). On one
hand, itSIMPLE platform uses UML (class and object
diagram, OCL constraint language, and time
diagram) to describe planning domains and problems.
In addition, this platform provides a tool for
transforming UML to PDDL. On the other hand,
GIPO platform uses Object-Centred-Language
(OCL) to describe planning domains and problems. It
provides a translation tool from OCL to PDDL. In
addition, it provides static and dynamic validation
capabilities for planning domains.

The work described in (West, Kitchin and
McCluskey, 2002) explores the use of formal model-
oriented methods based on successive refinements

A Formal Approach Combining Event-B and PDDL for Planning Problems

267

with mathematical proofs and supporting the
paradigm correct by construction. Such work is the
closest to our concerns but it does not lead to a PDDL
code generation. Moreover, it uses B which has a
notion of refinement less rich than that of Event-B.

8 CONCLUSIONS

PDDL is a declarative language. It offers quite
significant means for domain modeling areas and
planning problems. In addition, PDDL is endowed
with powerful software tools - called planners –
permitting the automatic generation of plan-solutions
from a PDDL description. But PDDL descriptions are
often difficult to write, read and evolve. Also, they are
subject to several types of errors: data typing,
initialization of static and dynamic predicates and
pre-condition / post-condition specification of action
schemes. To deal with these faults; in this work, we
proposed an Event-B to PDDL coupling approach.
The transition from Event-B to PDDL makes it
possible to model correct by construction and
efficient planning problems. Event-B ensures the
correct by construction of the states change operators.
Whereas PDDL ensures the effectiveness of the plan-
solutions obtained thanks to the planners associated
with PDDL. We proposed, in addition, a refinement
strategy which may be appropriate for a class of
planning problems whose actions have complex
preconditions. Technically, a complex precondition is
a big logical formula comprising atoms connected by
logical operators such as: not, and, or, imply, exists
and forall. The ultimate Event-B model from our
refinement strategy is translated into PDDL using our
MDE Event-B2PDDL tool.

Currently, we are working in two directions: The
first direction consists of the experimentation of the
refinement strategy proposed on various more or less
complex planning problems. Recently, we have
successfully applied our refinement strategy to the
MICONIC planning domain (Haslum et. al. 2019).
This domain describes the operation of an elevator in
a building. Passengers of various categories are
waiting on the different floors and the goal is to
transport each passenger to his/her floor of
destination. The second direction is about the
development of refinement schemes allowing the
translation of Event-B data into PDDL: from set
representations to predictive representations.
Eventually, such schemes could be automated by
adopting the technique of automatic refinement like
the BART tool (Requet, 2008) associated with the
formal method B.

REFERENCES

Abrial, J. R. (2010). Modeling in Event-B: Systems and
Software Engineering. Cambridge University Press.

Ammar, S., Bhiri, M. T. (2018). Automatic Planning: From
Event-B to PDDL. International Conference on. Model
and Data Engineering. Marrakesh. Morocco.

Bibai, J. (2010). Segmentation et Evolution pour la
Planification : Le Système DivideAndEvolve.
THALES Research and Technology France. Paris Sud
University, Paris XI.

Fourati, F., Bhiri, M. T., Robbana, R. (2016). Verification
and validation of PDDL descriptions using Event-B
formal method. International Conference on
Multimedia Computing and Systems, pp. 770-776.

Gerevini, A., Saetti, A., Serina, I. (2003). Planning through
Stochastic Local Search and Temporal Action Graphs
in lpg. J Artif Intell Res 20:239-290.

Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C.
(2019). An Introduction to the Planning Domain
Definition Language. In Synthesis Lectures on
Artificial Intelligence and Machine Learning.

Howey, R., Long, D., Fox, M. (2004). VAL: Automatic
Plan Validation, Continuous Effects and Mixed
Initiative Planning using PDDL. In Tools with Artificial
Intelligence, ICTAI. doi: 10.1109/ICTAI.2004.120.

Leuschel, M., Butler, M. (2003). ProB: A Model Checker
for B. In International Symposium of Formal Methods.

Magnaguagno, M. C., Pereira, R. F., More, M. D., and
Meneguzzi, F. (2017). WEB PLANNER: A Tool to
Develop Classical Planning Domains and Visualize
Heuristic State-Space Search. ICAPS 2017. User
Interfaces for Scheduling & Planning (UISP).

McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., Wilkins, D. (1998).
PDDL-The Planning Domain Definition Language.
Yale Center for Computational Vision and Control.
Technical Report CVC TR- 98-003/DCS TR-1165.
New Haven, CI, USA.

Muise, C., Lipovetzky, N. (2020). KEPS BOOK:
Planning.Domains. In book: Knowledge Engineering
Tools and Techniques for AI Planning, pp.91-105.

Requet, A. (2008). BART: A tool for Automatic
Refinement. In ABZ. doi: 10.1007/978-3-540-87603-
8_33

Simpson, R. M., Kitchin, D.E., McCluskey, T.L. (2002).
Planning Domain Definition Using GIPO. The
Knowledge Engineering Review 22(02): 117 – 134.

Strobel, V., Kirsch, A. (2014). Planning in the Wild:
Modeling Tools for PDDL. 37th German Conference
on Artificial Intelligence, Stuttgart. Germany.

Vaquero, T.S., Silva, J.R., Ferreira, M., Tonid, F., Beck, J.
c. (2009). From Requirements and Analysis to PDDL
in itSIMPLE3.0. In Proceedings of the 3rd International
Competition on, 2009.

West, M.M., Kitchin, D.E., McCluskey, T.L. (2002).
Validating Planning Domain Models using B-AMN. In:
PlanSIG 2002, 21st/22nd Nov 2002, Delft University of
Technology, Holland.

ICSOFT 2021 - 16th International Conference on Software Technologies

268

