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Abstract: In artificial intelligence, the goal of automatic planning is to structure actions in the form of a plan to achieve 
an expressed goal. The PDDL (Planning Domain Definition Language) was designed to allow the common 
representation of planning problems during ICAPS (International Conference on Automated Planning and 
Scheduling) competitions. PDDL has many verification and validation tools allowing the description, 
resolution and validation of planning problems. But they only allow the reliability of PDDL descriptions a 
posteriori. In this article, we recommend a rigorous approach coupling Event-B and PDDL favoring obtaining 
PDDL descriptions deemed correct, a priori, from an ultimate Event-B model. The formal Event-B method 
allows us to obtain, by successive refinements with mathematical proofs, correct by construction formal 
models of planning problems. A refinement strategy appropriate to planning problems is, then, proposed. The 
ultimate Event-B model, correct by construction, is automatically translated into PDDL using our MDE 
Event-B2PDDL tool. The obtained PDDL description is submitted to efficient planners for generation of 
correct and efficient plan-solutions. 

1 INTRODUCTION 

The automatic planning community has developed a 
formal de-facto standard Planning Domain Definition 
Language (PDDL) (McDermott et. al. 1998) to 
formally describe planning problems. In addition, this 
community has developed solvers  able to calculate 
solutions to PDDL-formalized planning problems. In 
addition, validation tools were developed for 
verifying whether a given plan-solution can be 
derived from a PDDL description. In general, PDDL 
descriptions are difficult to write, read, and evolve. 
Moreover, the tools associated with the PDDL 
language, namely planners and validators; do not 
allow a rigorous a priori analysis of the PDDL 
descriptions. In fact, these tools are used a posteriori 
after establishing PDDL descriptions. 

In this work, we advocate the opening of the 
automatic planning community on the formal 
methods community through Event-B (Abrial, 2010). 
To achieve this, we suggest a transformation from 
Event-B to PDDL. This promotes the development of 
planning problems correct by construction. The 
ultimate Event-B model, derived from a chain of 
refinements with mathematical proofs, is translated 

into PDDL in order to generate quality plans through 
various planners supporting PDDL. 

This article extends our previous short paper 
presented in (Ammar and Bhiri, 2018). In fact, we 
detail in particular the strategy of refinement with 
mathematical proofs recommended for a class of 
planning problems. Such a class has state change 
operators with complex preconditions: a logical 
formula comprising several operands and operators. 
In addition, a sub-section (Discussion) is added in the 
“Proposed refinement strategy” section in order to 
discuss the compatibility of the proposed refinement 
strategy for the development of certain planning 
problems with respect to what is recommended by the 
Event-B method. In addition, the “Related works” 
section is added to place our work in relation to 
existing works. Finally, the conclusion is enriched by 
new research lines pointed out. 

This article contains seven sections and one 
conclusion. The second section presents and 
evaluates the PDDL language. The third section 
provides a general overview of modeling in Event-B 
method. The fourth section proposes an Event-B and 
PDDL coupling approach. The fifth section provides 
a refinement strategy for formal modeling of Event-B 
planning problems. The sixth section describes our 
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MDE Event-B2PDDL tool. Finally, the seventh 
section is devoted to related works. The conclusion 
draws up the balance sheet of this article and proposes 
the possible extensions of this work. 

2 THE PDDL LANGUAGE 

A planning problem formalized using PDDL has two 
separate parts: domain and problem. The domain 
construction makes it possible to describe all the 
common aspects in a class of problems known as 
generic domain.. A domain described in PDDL 
includes types, constants, predicates, numeric 
functions and actions. 

As an example, Listing 1 from (Bibai, 2010) 
describes the domain of the sliding puzzle game in 
PDDL. The domain of the sliding puzzle game has 
two types: position and tile. In PDDL, a type does not 
have a structure and is designated by a name. The 
predicates at (having two parameters ?tile of type tile 
and ?position of type position), neighbor and empty 
allowing to formalize the concept of state of a sliding 
puzzle game problem. The move action is the only 
state change operator relating to the sliding puzzle 
game domain. In PDDL, an action can have 
parameters typed (parameters clause) and defined by 
a Pre/Post specification: precondition and effect 
clauses. An action can be applied in a state if and only 
if all preconditions are satisfied in this state. The 
effect of a PDDL action is defined by the additions 
and withdrawals of atoms in the current state. 
(define (domain n-sliding-puzzle) 
(:types position tile) 
(:predicates 
(at ?tile - tile ?position - position) 
(neighbor ?p1 - position ?p2 -position) 
(empty ?position - position)) 
(:action move 
 :parameters (?tile - tile ?from ?to – position) 
 :precondition (and (neighbor ?from   
  ?to) (at ?tile ?from)(empty ?to)) 
 :effect (and(at ?tile ?to)(empty ?from   
  (not (at ?tile ?from))(not (empty   
   ?to))))) 

Listing 1: State of the application. 

The problem construction makes it possible to 
formalize a problem belonging to the domain 
described by the domain construction. A problem 
includes the domain of this problem, typed objects 
(objects), an initial state (init) and a goal state 
(goal). For example, the Sliding Puzzle game 
containing 8 tiles is provided by Listing 2. 

(define (problem n-sliding-puzzle-pbl)  
(:domain n-sliding-puzzle)  
(:objects 
 p_1_1 p_1_2 p_1_3 p_2_1 p_2_2 p_2_3  
 p_3_1 p_3_2p_3_3 – position 
 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 –tile)  
(:init (empty p_1_2) 
(at t_4 p_1_1)(at t_8 p_1_3)  
(at t_6 p_2_1)(at t_3 p_2_2)  
(at t_2 p_2_3)(at t_1 p_3_1)  
(at t_5 p_3_2)(at t_7 p_3_3)  
(neighbor p_1_1 p_1_2)(neighbor p_1_2 
p_1_1)(neighbor p_1_2 p_1_3)(neighbor 
p_1_3 p_1_2)(neighbor p_2_1 p_2_2) 
(neighbor p_2_2 p_2_1)(neighbor p_2_2 
p_2_3)(neighbor p_2_3 p_2_2)(neighbor 
p_3_1 p_3_2)(neighbor p_3_2 p_3_1) 
(neighbor p_3_2 p_3_3)(neighbor p_3_3 
p_3_2)(neighbor p_1_1 p_2_1)(neighbor 
p_2_1 p_1_1)(neighbor p_1_2 p_2_2) 
(neighbor p_2_2 p_1_2)(neighbor p_1_3 
p_2_3)(neighbor p_2_3 p_1_3)(neighbor 
p_2_1 p_3_1)(neighbor p_3_1 p_2_1) 
(neighbor p_2_2 p_3_2)(neighbor p_3_2 
p_2_2)(neighbor p_2_3 p_3_3)(neighbor 
p_3_3 p_2_3))  
(:goal (and (at t_1 p_1_1) 
(at t_2 p_1_2)(at t_3 p_1_3) 
(at t_4 p_2_1) (at t_5 p_2_2) 
(at t_6 p_2_3) (at t_7 p_3_1) 
(at t_8 p_3_2)))) 

Listing 2: Sliding puzzle game with 8 tiles. 

A planning problem described using PDDL is 
solved by a software item called planner. A planner 
combines exploration and logic. In fact, it can be seen 
either as a program that calculates a solution called 
plan-solution or as a program that demonstrates the 
existence of a solution. For example, the Sliding 
Puzzle game planning problem described by both 
Listings 1 and 2 submitted to the LPG planner 
(Gerevini, Saetti and Serina, 2003) provides a plan-
solution comprising 52 actions. Listing 3 illustrates 
an extract of this plan solution. 

0: (move t_8 p_1_3 p_1_2)  
1: (move t_2 p_2_3 p_1_3)  
2: (move t_3 p_2_2 p_2_3)  
3: (move t_8 p_1_2 p_2_2)  
4: (move t_2 p_1_3 p_1_2) 

Listing 3: Plan-solution extract associated with the 8-tile 
problem of the Sliding Puzzle game. 

PDDL offers interesting ways to represent 
planning problems. In fact, PDDL supports various 
representations such as propositional representations, 
first order logic and both numeric and temporal. This 
makes it possible to describe the states and actions of 
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a planning problem. The tools associated with the 
PDDL language are: planners and validators. Unlike 
a planner who performs a plan-solution production 
activity, a validator (Howey, Long and Fox, 2004) 
performs a verification activity. From the functional 
point of view, a validator accepts as input: a PDDL 
description (domain and problem file) and one or 
more plan-solution files and gives a verdict as an 
output. 'YES' means that the plan-solution can be 
obtained from the subject PDDL description. 
However, 'NO' means a failure. Validators can be 
used in a profitable way to appreciate PDDL domains 
by adopting the functional test. In addition, validators 
allow double verification by checking the plan-
solutions generated by various planners. Finally, a 
validator can be used as a tool to objectively compare 
the abilities of various planners. The dynamic 
analysis tools associated with PDDL, namely 
planners and validators, are insufficient for the 
verification and validation of PDDL descriptions. In 
fact, complex PDDL descriptions involving actions 
with elaborated preconditions and post conditions are 
subject to errors that are hard to detect a priori. In 
fact, the dynamic analysis tools associated with 
PDDL makes it possible to detect errors a posteriori 
by means of a test activity. 

3 MODELING IN EVENT-B 

An Event-B model can contain contexts (construction 
CONTEXT) only, machines (construction 
MACHINE) only or both. Contexts are modeling 
static properties of the model. Machines (construction 
MACHINE) are modeling the dynamic behavior of 
the system. A machine may refine and see another 
one or more contexts. The state of the machine is 
defined by variables introduced by the VARIABLES 
clause. The invariance properties related to these 
variables are grouped together in the INVARIANT 
clause. They are considered as predicates in the sense 
of Event-B as described by its logico-set language. 
An Event-B machine is grouping events that affect its 
state. An event consists of two parts: a “guard” that 
defines the condition according to it the event may or 
may not be triggered, and an "action" called event 
body permitting the evolution of state variables. An 
event may have parameters called local parameters. 
The Event-B language offers a simple action 
language to describe the processing (event body): 
simple assignment ( :=), non-deterministic set 
assignment (:∈), non-deterministic assignment 
governed by a predicate ( :|), parallel assignment (||), 
and skip that does nothing. 

4 FROM EVENT-B TO PDDL 

We advocate a rigorous approach combining Event-
B and PDDL for automatic planning. Event-B is 
used for formal modeling by successive refinements 
with mathematical proofs of planning problems. The 
refinement of data supported by Event-B can be 
used in a profitable way in order to refine the notion 
of state of a planning problem step-by-step. In 
addition, the one-to-many refinement provided by 
Event-B is very useful for determining the state 
change operators of a planning problem. Finally, the 
possibility of reinforcing the guard of an Event 
supported by Event-B during a refinement step is 
very useful to incrementally identify the 
applicability conditions of a state change operator of 
a planning problem. Proof tools associated with 
Event-B (generator of proof obligations and 
provers) guarantee in particular the verification of 
the coherence of a planning problem described by 
Event-B. The ProB (Leuschel and Butler, 2003) tool 
that accepts Event-B offers the possibility of 
checking the dynamics of a planning problem. The 
use of Event-B coupled to ProB allows to obtain 
Event-B model correct by construction (thanks to 
the Event-B theory) and valid (thanks to ProB) 
describing a planning problem. Then we have to 
translate this Event-B model into a PDDL. To 
achieve this, several refinement steps are required in 
order to have a model described by an Event-B 
subset: the data are described by the language of the 
first-order predicates of Event-B (the theory of sets 
is discarded because it is not translatable to PDDL) 
and the processing are described only through 
deterministic action ( :=). 

5 PROPOSED REFINEMENT 
STRATEGY 

Following numerous Event-B modeling of various 
planning problems, we have established a refinement 
strategy that could be reused for modeling various 
planning problems with Event-B in several areas. In 
fact, all planning problems can be formalized by the 
concept of state space: initial state, goal states, 
intermediate states and state change operators. Based 
on all of its common aspects of planning problems, 
we propose the refinement strategy that includes the 
steps as outlined and justified below. The purpose of 
this problem is to transfer three cannibals and three 
missionaries from one side of a river to another via a 
boat. The requirement of this problem is that the 
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number of missionaries must always be greater than 
or equal to the number of cannibals. 

Step 1: Initial Abstract Model. The initial abstract 
model of a planning problem includes elements 
related to the notion of state, the initial state, and the 
goal states. These elements are formalized 
respectfully in Event-B by typed variables. They have 
invariant properties, INITIALISATION event and an 
event called goal having a guard to see if the current 
state is a goal state. The goal event does nothing (skip 
action). For example, Listing 4 models the notion 
state, the initial state, and the goal states of the 
problem of three cannibals and three missionaries. In 
addition, the initial abstract model of a planning 
problem shall involve an overly abstract and non-
deterministic modeling of the notion of state change 
operator. This is made possible by the 
ANTICIPATED status. Listing 5 provides the state 
change operator related to the problem of three 
cannibals and three missionaries. 
VARIABLES 
nbc_shore1,nbc_shore2,nbm_shore1,nbm_shore2  
INVARIANTS  
  inv1: nbc_shore1∈0..3  
  inv2: nbc_shore2∈0..3  
  inv3: nbm_shore1∈0..3  
  inv4: nbm_shore2∈0..3  
INITIALISATION= 
  nbc_shore1,nbc_shore2,nbm_shore1, 
  nbm_shore2:=3,0,3,0  
goal =  
  WHEN  
    grd1: nbc_shore1=0  
    grd2: nbc_shore2=3  
    grd3: nbm_shore1=0  
    grd4: nbm_shore2=3  
  THEN  
    Skip 
END 

Listing 4: State, Initial state and Goals states. 

cross = STATUS anticipated 
  act1: nbc_shore1:∈0..3  
  act2: nbc_shore2:∈0..3  
  act3: nbm_shore1:∈0..3  
  act4: nbm_shore2:∈0..3  

END 

Listing 5: Non-deterministic specification of the event 
cross. 

Step 2: Determination of Actions by Successive 
Refinements. This step includes several successive 
refinements permitting, ultimately, to get an Event-B 
model with state change operators having 

deterministic behaviors. Each operator contains a 
guard modeling the operator‘s applicability condition 
and its action. Refinement techniques supported by 
Event-B as an event decomposition (one to many) and 
the reinforcing guards are very useful for 
implementing this step. For example, Listing 6 shows 
how to refine the abstract operator to introduce two 
types of operators. The state change operators are 
modeled by events in Event-B whose guards indicate 
the conditions of application of these operators and 
the actions that are modeling the changes of state: 
transition from one state to another in state spaces. To 
list all of the state change operators related to 
application, we recommend using parameterized non-
deterministic events. For example, Listing 7 shows 
the refinement of the event cross_shore1_shore2 by 
introducing two local parameters c and m. The first is 
modeling the transfer of cannibals and the second is 
modeling the transfer of missionaries. 
VARIABLES 
nbc_shore1,nbc_shore2,nbm_shore1, 
nbm_shore2,boat  
INVARIANTS  
  inv1: boat∈BOAT 
cross_shore1_shore2 =  
  REFFINE cross  

WHEN  
  grd1: boat=left  
THEN  
  act1: nbc_shore1:∈0..3  
  act2: nbc_shore2:∈0..3  
  act3: nbm_shore1:∈0..3  
  act4: nbm_shore2:∈0..3  
  act5: boat:=right  

END  
cross_shore2_shore1 =  

REFFINE cross  
WHEN  
  grd1:boat=right  
THEN  
  act1: nbc_shore1:∈0..3  
  act2: nbc_shore2:∈0..3  
  act3: nbm_shore1:∈0..3  
  act4: nbm_shore2:∈0..3  
  act5: boat:=left  
END 

Listing 6: Introduction of two types of state change 
operators. 

cross_shore1_shore2 = 
  REFFINE cross_shore1_shore2  
  ANY  
    m  
    c  
  WHEN  
    grd1: m∈0..2  
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    grd2: c∈0..2  
    grd3: m+c∈1..2  
    grd4: c≤nbc_shore1  
    grd5: m≤nbm_shore1  
    grd6: boat=left  
  THEN  
    act1: nbc_shore1:=nbc_shore1- c  
    act2: nbm_shore1:=nbm_shore1- m  
    act3: nbc_shore2:=nbc_shore2+c  
    act4: nbm_shore2:=nbm_shore2+m  
    act5: boat:=right  
END 

Listing 7: Introduction of parameters. 

Step 3: Determination of Parameters by 
Successive Refinements. This step aims to remove 
the non-determinism related to the parameters 
introduced in the clause ANY of each states change 
operator. Eventually, we obtain events without 
parameters. Technically in this step, the “one to 
many” refinement technique and the WITH clause are 
used in a profitable way. The problem of three 
cannibals and three missionaries has 10 state change 
operators with deterministic actions and no 
parameters (see Listing 8). 

cross_one_cannibal_shore1_shore2 =  
  REFFINE cross_shore1_shore2  
  WHEN  
    grd1: boat=left  
    grd2: 1≤nbc_shore1  
  WITH  
    c: c=1  
    m: m=0  
  THEN  
    act1: nbc_shore1:=nbc_shore1-1  
    act2: boat:=right  
END 

Listing 8: State change operator without parameters. 

Step 4: Reinforcing Applicability Conditions. This 
step consists in reinforcing applicability conditions of 
the state change operators (WHERE clause) 
introduced in the previous step. The ultimate model 
from this step must have well-defined state change 
operators. Technically, this step introduces new 
invariant properties (reinforcement of the invariant) 
and guards (reinforcement of guards). For example, 
the problem of three cannibals and three missionaries 
shall make it inaccessible for the states where the 
number of cannibals is greater than that of 
missionaries (see Listing 9). 
INVARIANTS  
inv:nbm_shore1≠0⇒nbm_shore1≥nbc_shore1  
inv2:3−nbm_shore1≠0⇒3−nbm_shore1≥ 
     3−nbc_shore1  
cross_one_cannibal_shore1_shore2 =  

REFFINE cross_one_cannibal_shore1_shore2  
 WHEN  
 grd1: boat=left  
 grd2: 1≤nbc_shore1  
 grd3: (3−nbm_shore1=0)∨(3−nbm_shore1≥ 
        3–nbc_shore1+1)  
  WITH  
    c: c=1  
    m: m=0  
  THEN  
    act1: nbc_shore1:=nbc_shore1-1  
    act2: boat:=right  
END 

Listing 9: Applicability conditions of 
cross_one_cannibal_shore1_shore2. 

Step 5: Data Concretization. The purpose of this 
step is to eventually provide an Event-B model 
translatable into PDDL. All Event-B set constructions 
must be realized using the Event-B predicative 
constructions. To achieve this, data refinement is used 
via Event-B gluing invariant. Note in passing that this 
step is not applicable to the problem of three 
cannibals and three missionaries. Recently, we have 
successfully applied this step on the MICONIC 
domain (Haslum et. al. 2019). 

Step 6: Translating a Reduced Event-B into 
PDDL. The reduced Event-B model from Step 4 is 
translated using our Event-B2PDDL tool introduced 
later. Listing 9 gives an extract of the ultimate Event-
B model translatable into PDDL. Listing 10 provides 
an excerpt from the translation of the problem of three 
cannibals and three missionaries into PDDL. 
(:types SHORE CANNIBAL MISSIONARY)  
(:constants left right - SHORE)  
(:predicates (boat ?x - SHORE) 
(pos_cann ?x - CANNIBAL ?y - SHORE) 
(pos_miss ?x -MISSIONARY ?y -SHORE) 
(diffc ?x ?y - CANNIBAL) 
(diffm ?x ?y - MISSIONARY))  
(:functions nbc_shore1) (nbm_shore1))  
(:action cross_one_cannibal_shore1_shore2  
:parameters (?cc - CANNIBAL)  
:precondition (and (boat left)(<= 1 
(nbc_shore1))(or (= (- 3 (nbm_shore1)) 
0)(>= (- 3 (nbm_shore1))(+ (- 3 
(nbc_shore1)) 1)))(pos_cann ?cc left))  
:effect (and (boat right)(not(boat 
left))(decrease (nbc_shore1)1)(pos_cann 
?cc right)(not (pos_cann ?cc left)))) 

Listing 10: PDDL translation excerpt. 

5.1 Discussion 

In this section we take a look at the development of 
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our refinement strategy applied to the problem of three 
missionaries and three cannibals as a planning 
problem. Invariant properties other than typing 
properties are not introduced into the initial abstract 
model. In fact, the state change operator: cross is 
defined in a non-deterministic way. The determination 
of the state operator: cross is carried out progressively 
by introducing constraints linking the variables which 
forms the state of the machine and decomposes it. Such 
constraints define the invariant properties to be 
preserved by the state change operators. 

The ultimate Event-B model includes 
semantically well-defined state change operators 
(events): applicability condition and effect. The 
properties that transcend these operators are 
factorized in the invariant of the ultimate model. The 
proof obligations discharged from the ultimate model 
are ensuring its static correction with respect to the 
invariant properties. The dynamics of the ultimate 
model is formally verified with the ProB toolbox: 
animation and model-checking. Both 
INITIALISATION and goal events modeling the 
initial state and the logical condition of the goal states 
in a planning problem remain unchanged during the 
application of the refinement strategy. We can see 
that the number of events is increasing as we apply 
our refinement strategy: it goes from 3 to 13. 

6 THE EVENT-B2PDDL TOOL 

Our Event-B2PDDL tool takes as input a reduced 
Event-B model that is translatable into PDDL and 
gives as output a PDDL description acceptable to 
planners. Event-B2PDDL is based on simple intuitive 
rules allowing the systematic translation of Event-B 
elements to PDDL elements. Event-B2PDDL is made 
according to MDE technology. 

6.1 Event-B to PDDL Transformation 
Rules 

The PDDL description coming from the Event-
B2PDDL tool has two domain and problem 
constructions (see section Event-B overview). Thus, 
in (Fourati, Bhiri and Robbana 2016), we have 
respectively established rules allowing the translation 
of Event-B elements related to the planning domain 
and the planning problem. The translation rules for 
Event-B elements related to the planning domain 
concern: translation of abstract sets (see Table 1), 
constants (see table 2), Boolean constants or variables 
(see Table 3), Boolean functions (see Table 4), events  
 

Table 1: Schemes of translations of abstract set. 

Event-B PDDL 
SETS 

TYPE1 
 TYPE2 

 … 
TYPEn

 (:types 
 type1 
type2 

… 
typen ) 

Table 2: Schemes of translations of constants. 

Event-B PDDL
CONSTANTS 

cst1, cst2, …, cstn 
AXIOMS 

axm1:partition(TYPE,{cst1},{cst2}, 
…, {cstn})

 (:constants 
cst1 cst2 … 

cstn -TYPE ) 

Table 3: Schemes of translations of Boolean constants or 
variables. 

Event-B PDDL 
CONSTANTS 

 cst 
AXIOMS  

axm1: cst∈BOOL

 (:predicates 
(cst) 
(var) 

) 
VARIABLES 

var 
INVARIANTS 

inv1: var∈BOOL

Table 4: Schemes of translations of Boolean functions. 

Event-B PDDL 
VARIABLES 

fnc 
INVARIANTS 

inv_fnc: fnc∈TYPE1 × TYPE2 
× . . . × TYPEn → BOOL 

 (:predicates 
 (fnc ?var1 - TYPE1 

?var2 - TYPE2 ... 
?varn - TYPEn)  

) 

Table 5: Schemes of translations of Event-B Events. 

Event-B PDDL 
evt_name =  

STATUS ordinary 
ANY 
var1 
var2 
… 

WHERE 
grd1: var1∈TYPE1  
grd2: var2∈TYPE2 

…  
grdn: <GDn> 

grdn1: <GDn1> 
 .... 

THEN 
 act1: <ACT1> 
act2: <ACT2> 

 .... 
END

 ( :action <evt_name> 
    :parameters ( ?var1 - 

     TYPE1 ?var2 - TYPE2 
...) 

:precondition (and 
(<GDn>) 
(<GDn1>) 

.....) 
      :effect (and (<ACT1>) 

         (<ACT2>) 
.....) 

 ) 
) 
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(see Table 5) and formulas (see Table 6). The 
translation rules of Event-B elements related to the 
planning problem are about translation of constants 
linked to the sets defined by enumeration (see Table 
7), translation of axioms of initialization (see Table 8) 
and translation of both INITIALISATION and 
GOAL events (see Table 9 and Table 10). 

Table 6: Schemes of translation of Event-B formulas 
retained in PDDL. 

Event-B PDDL 
P ∧ Q (and P Q) 
P ∨ Q (or P Q) 
P ⇒ Q (imply P Q) 

¬P (not P) ∀z.P⇒ Q (forall ( ?z) (imply P Q)) ∃z.P∧ Q (exists ( ?z) (and P Q)) 
E = F (= E F)
E ≠ F (not (= E F))

b:=TRUE (b)  
b:=FALSE (not(b))

f(x):=TRUE (f ?x)  
f(x):=FALSE (not (f ?x))

f:=f<+{ x|->TRUE, y|-
>FALSE} 

(and (f ?x) (not (f ?y))) 

Table 7: Schemes of translations of constants. 

Event-B PDDL
CONSTANTS 

 cst1, cst2, …, cstn 
AXIOMS  

axm1:partition(TYPE,{cst1},{cst2}, 
…, {cstn}) 

 (:objects  
cst1 cst2 … 
cstn - TYPE 

) 

Table 8: Schemes of translations of Axioms of 
Initialization. 

Event-B PDDL
axm1:fnc1:=((TYPE1×TYPE2× 
…×TYPEn)×{FALSE})<+({cst1 
›→cst2›→...cstn, …}×{TRUE}) 

( :init 
(fnc1 cst1 cst2... 

cstn) 
...) 

Table 9: Schemes of translations of the event 
INITIALISATION. 

Event-B PDDL
INITIALISATION= 
STATUS ordinary 

act1:fnc2:=((TYPE1×TYPE2× 
. . .×TYPEn)×{FALSE})<+( 

{cst1›→cst2›→... 
cstn,…}×{TRUE})... 

END 

(:init 
(fnc2 cst1 cst2 ... 

cstn) 
... 
) 

 

Table 10: Schemes of translations of the event GOAL. 

Event-B PDDL 
GOAL = 

STATUS ordinary 
WHEN  

grd1:fnc2=fnc2<+ 
{cst1›→cst2›→...›→cstn  

›→TRUE, ...} 
... 

THEN 
 skip 
END

 (:goal (and 
(fnc2 cst1 cst2 ... cstn) 

... 
) 
) 

7 RELATED WORKS 

There exist several “Integrated Development 
Environments” supporting PDDL (Magnaguagno et. 
al. 2017; Strobel and Kirsch, 2014; Muise and 
Lipovetzky 2020). Such environments offer 
functionalities allowing the editing of PDDL 
descriptions, lexico-syntactic verification of PDDL 
text, generation of plans-solution and visualization of 
states space associated with the planning problem. 
This last functionality allows, among other things, to 
provide information to the user, related to the 
"execution" of PDDL actions. This allows the user to 
detect errors related to the specification of a PDDL 
action such as incorrect precondition, incorrect post 
condition and incorrect precondition and post 
condition. In addition, the visualization of the state 
space makes it possible to make the behavior of the 
PDDL planner explicit in order to find a plan solution. 
This reduces the opacity of PDDL planners. In fact, 
without visualization, these planners are used as black 
boxes. In our opinion, this work supports the analysis 
of PDDL descriptions a posteriori without correction 
certification. From among Platforms covering the 
design of planning domains and problems, we note 
itSIMPLE (Vaquero et. al. 2009) and GIPO 
(Simpson, Kitchin, and McCluskey, 2002). On one 
hand, itSIMPLE platform uses UML (class and object 
diagram, OCL constraint language, and time 
diagram) to describe planning domains and problems. 
In addition, this platform provides a tool for 
transforming UML to PDDL. On the other hand, 
GIPO platform uses Object-Centred-Language 
(OCL) to describe planning domains and problems. It 
provides a translation tool from OCL to PDDL. In 
addition, it provides static and dynamic validation 
capabilities for planning domains. 

The work described in (West, Kitchin and 
McCluskey, 2002) explores the use of formal model-
oriented methods based on successive refinements 
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with mathematical proofs and supporting the 
paradigm correct by construction. Such work is the 
closest to our concerns but it does not lead to a PDDL 
code generation. Moreover, it uses B which has a 
notion of refinement less rich than that of Event-B. 

8 CONCLUSIONS 

PDDL is a declarative language. It offers quite 
significant means for domain modeling areas and 
planning problems. In addition, PDDL is endowed 
with powerful software tools - called planners – 
permitting the automatic generation of plan-solutions 
from a PDDL description. But PDDL descriptions are 
often difficult to write, read and evolve. Also, they are 
subject to several types of errors: data typing, 
initialization of static and dynamic predicates and 
pre-condition / post-condition specification of action 
schemes. To deal with these faults; in this work, we 
proposed an Event-B to PDDL coupling approach. 
The transition from Event-B to PDDL makes it 
possible to model correct by construction and 
efficient planning problems. Event-B ensures the 
correct by construction of the states change operators. 
Whereas PDDL ensures the effectiveness of the plan-
solutions obtained thanks to the planners associated 
with PDDL. We proposed, in addition, a refinement 
strategy which may be appropriate for a class of 
planning problems whose actions have complex 
preconditions. Technically, a complex precondition is 
a big logical formula comprising atoms connected by 
logical operators such as: not, and, or, imply, exists 
and forall. The ultimate Event-B model from our 
refinement strategy is translated into PDDL using our 
MDE Event-B2PDDL tool. 

Currently, we are working in two directions: The 
first direction consists of the experimentation of the 
refinement strategy proposed on various more or less 
complex planning problems. Recently, we have 
successfully applied our refinement strategy to the 
MICONIC planning domain (Haslum et. al. 2019). 
This domain describes the operation of an elevator in 
a building.  Passengers of various categories are 
waiting on the different floors and the goal is to 
transport each passenger to his/her floor of 
destination. The second direction is about the 
development of refinement schemes allowing the 
translation of Event-B data into PDDL: from set 
representations to predictive representations. 
Eventually, such schemes could be automated by 
adopting the technique of automatic refinement like 
the BART tool (Requet, 2008) associated with the 
formal method B. 
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