
Modern Code Reviews: Preliminary Results of an Analysis of the State of
the Art with Respect to the Role Played by Human Factors

Aygul Malikova a and Giancarlo Succi b

Innopolis University, Innopolis, Russia

Keywords: Modern Code Review, Social Interactions, Problems, Quality.

Abstract: Modern Code Reviewing has shown to be an effective mechanism to identify bugs in the code; however,
given their intrinsic subjectivity, they can be significantly affected by human factors such as interpersonal
relationships. This paper focuses on exploring such issues, with specific attention to social iterations and
personal factors. Future work includes experimental evaluations to verify the research hypothesis related to
improving the quality of the process under the study.

1 INTRODUCTION

Code reviews have been a common software engi-
neering practice for the last four decades (Fagan,
1999). An improved version of it, Modern Code Re-
views (MCR), has been proven particularly effective
(Bacchelli, 2013), and it is the subject of this work.

The effects of MCR have been variously ex-
plored in the research, with experiments also done in
large software companies, such as Microsoft (Bac-
chelli, 2013; Bosu et al., 2017; Rigby, 2013),
Google (Sadowski et al., 2018; Rigby, 2013),
Mozilla (Kononenko et al., 2016), and in Open
Source projects (Rigby, 2013).

In such works, a significant number of prob-
lems are highlighting. For example, misunderstand-
ings, distance, social interactions, and customization
among developers (Bacchelli, 2013; Sadowski et al.,
2018). And these kinds of people issues is the area
of the present research. Specifically, considering how
social interactions and human factors can lead to not
objective and misleading reviews.

Previous research focused mainly on the problems
of the modern code review and their consequences,
while the possible solutions to these issues are not
well-studied. In this regard, the our study aims not
only at investigating social problems in MCR de-
scribed above, but it also aims at providing possible
ways to prevent them and improve the overall qual-
ity of Modern Code Review. To this end, our key re-

a https://orcid.org/0000-0002-8757-5282
b https://orcid.org/0000-0001-8847-0186

search questions are:
1. How do social interactions affect the code review-

ing process?

2. How to prevent the artefacts induced by social in-
teractions and to improve the quality of Modern
Code Review?
For this study, we are going to apply various re-

search techniques:
• Systematic literature review for studying the

previous related works and systematize the find-
ings (Siddaway et al., 2019), including

• Forward and backward snowballing for the
search process of papers (Wohlin, 2014);

• Qualitative research approach for collecting the
data from the interviews (Bolderston, 2012);
As a methodology, we chose face-to-face semi-

structural interviews with developers of different
companies to investigate the topic and gather the
statistics. The goal behind conducting the survey was
to:

• understand how social interactions affect the code
reviewing process ,

• define a strategy to prevent the artifacts induced
by social and negative interactions and to improve
the quality of Modern Code Review .

This work is structured as follows. Section 2
presents the background and related works review.
Section 3 describes the Systematic Literature Review
and section 4 an arguable opinion about the non-
technical Modern Code Reviews issues. Description

Malikova, A. and Succi, G.
Modern Code Reviews: Preliminary Results of an Analysis of the State of the Art with Respect to the Role Played by Human Factors.
DOI: 10.5220/0010576302530260
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 253-260
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253



of future work presented in Section 5. And finally,
the conclusion is placed in 6.

2 BACKGROUND

2.1 Modern Code Review

Modern Code review (MCR) is a multistage process
where developers evaluate source code written by oth-
ers to enhance the software quality (Fatima et al.,
2019). The term MCR appeared recently in 2013
and represents the lightweight variant of Fagan’s code
(Bacchelli, 2013). Other distinguishing features of
MCR from other types of review processes are tool-
based approach and asynchrony (Bacchelli, 2013).
Applying tool-based review assumes adapting some
instrument for bringing structure to the process of re-
viewing patches and supporting the logistics of re-
view (Sadowski et al., 2018). There many different
tools which are used by OSS and industrial projects,
for example, CodeFlow (used by Microsoft), Ger-
rit (Google’s Chromium and OSS projects), Review-
Board (VMware), Phabricator (Facebook), and others
(Sadowski et al., 2018). Asynchrony allows partici-
pants to conduct code review independently of time
and space (Stein et al., 1997).

The software development process involves indi-
vidual or collaborative work on it. Its vital part, MCR,
requires at least two people: the author and the re-
viewer. In some companies, it requires more than one
reviewer, for example, VMware involves two inde-
pendent reviewers (Rigby and Germán, 2005) and
Microsoft required an average four people (Rigby,
2013). The flow of process consists of several steps,
which are general for many different companies,
such as creating, previewing, commenting, address-
ing feedback, and approving (Sadowski et al., 2018).

2.2 Rationale for Performing MCR

One of the most compelling reasons for perform-
ing MCR is to prevent developers from inappropri-
ately “protect” the code that they develop (Bacchelli,
2013). “Protecting” means organizing the process to
prevent none apart from them can modify or even
use, in the most extreme cases, such as their code.
In addition, review also amounts giving insight about
the code to other developers, sharing the information
across the team, supporting them, and improving the
overall process and quality of code (Bacchelli, 2013).

We have then decided to perform an empirical
study on the matter (Vernazza et al., 2000; Succi et al.,

2001a; Succi et al., 2001b; Musı́lek et al., 2002; Sil-
litti et al., 2004; Scotto et al., 2004; Pedrycz and
Succi, 2005; Ronchetti et al., 2006; Scotto et al.,
2006; Moser et al., 2008b; Moser et al., 2008a; Rossi
et al., 2010; Pedrycz et al., 2011; Pedrycz et al., 2012;
Sillitti et al., 2012; Corral et al., 2015). A detailed
empirical study conducted at Google evidenced that
from the perspective of developers, the main reasons
for doing MCR are education (teaching or learning),
maintaining the organization norms, establishing the
boundaries around source code, and finally, preven-
tion of bugs, defects, and other quality issues (Sad-
owski et al., 2018).

2.3 Issues in Modern Code Reviews

There are several issues that developers face during
modern code reviews. Understanding the code and
the reasons for changing it is considered as the main
problem and one of the hardest to solve (Bacchelli,
2013). From an interview with twelve Google de-
velopers, breakdowns concerning aspects of the pro-
cess were identified, which are social interactions,
distance, review subject, context, and customization.
The social interactions will be explained in more de-
tails in the next paragraphs. The distance can be
treated as a physically or between different teams or
different roles. Review subject comes from a lack of
understanding of the code. Context problem means
misunderstanding of reasons for changing the code.
Finally, the customization is a problem of various re-
quirements of different companies (Sadowski et al.,
2018).

Since a human is a social being and while getting
in touch with other ones the communication occurs,
thereby the positive and negative effects can appear
in the results of working together, in this case, during
the peer review. Social influences include the trust re-
lationship between the author (Zhang et al., 2020),
interaction among the MCR workforce (history of in-
teractions, its volume, the sequence, mode, and so on)
(Bosu et al., 2017; Fatima et al., 2019), relationships
between the group members (Bosu et al., 2017) and
the impression of the individual author or reviewer
(Bosu et al., 2017; Fatima et al., 2019). Other non-
technical issues influencing the code review process
are the personnel factors, which are the team fac-
tors, team interaction, and reviewer response (Fatima
et al., 2019). Finally, the individual factors including
skill, characteristics, emotions, knowledge and expe-
rience, historical factors, psychological safety, work
style, and individual biasness (Fatima et al., 2019).
This work is based on examining the social aspects.

The problems that arise from social communica-

ICSOFT 2021 - 16th International Conference on Software Technologies

254



tions between developers and affect the code review-
ing process are common in different kind of team:
distributed and co-located (Bosu et al., 2017). But
it is worth considering that with increasing the team
size, the social networks become less close (Crow-
ston and Howison, 2003). Moreover, the researchers
found that a few individuals have a large number of
interactions, while most have only a few (Crowston
and Howison, 2003). The surveys to identify the ef-
fects of social factors were conducted with OSS and
Microsoft teams. The results showed that constructs
such as trust, perception of expertise, reliability and
friendship have a large impact on code review pro-
cesses (Bosu et al., 2017).

3 SYSTEMATIC LITERATURE
REVIEW

As mentioned, we have been performed a Systematic
Literature Review (SLR) for gathering a comprehen-
sive understanding of the state of the art (Kitchen-
ham, 2004). SLR aims to address the problems of
conflicting findings by identifying, critically evaluat-
ing, and integrating the sources of all relevant, high-
quality individual studies (Siddaway et al., 2019). In
our SLR we have followed the steps coming from the
original work of Kitchenham, 2004 (Table 1). In the
remaining of this section we will detail such steps.

Table 1: Systematic literature review process (Brereton
et al., 2007).

Phase 1.
Plan Review

1. Specify Research Ques-
tions
2. Develop Review Protocol
3. Validate Review Protocol

Phase 2.
Conduct
Review

4. Identify Relevant Re-
search

5. Select Primary Studies
6. Assess Study Quality
7. Extract Required Data
8. Synthesise Data

Phase 3.
Document
Review

9. Write Review Report

10. Validate Report

3.1 Developing the Review Protocol

The development of the review protocol is a signifi-
cant part of performing a systematic literature review,
and it aims to minimize possible inconsistencies in the

analysis of existing work, detailing in advance how
the systematic review is to be conducted (Brereton
et al., 2007). Table 2 shows the steps of this phase.

Table 2: Process to develop review protocol (Galster et al.,
2014).

Step 1 Define search strategy
Step 2 Define inclusion + exclusion

criteria
Step 3 Define research process
Step 4 Define quality criteria
Step 5 Design data extraction form
Step 6 Define data analysis + pre-

sentation

3.2 Search Strategy

The search for the necessary literature took place in
two ways: automatic by the research string and snow-
balling. For setting the research string, the keywords
and their alternative have to be defined.

The keywords are modern code review, social in-
teractions, problems, quality.

Table 3: Keywords.

Modern
Code
Review

Social
Interac-
tions

Problems Quality

Modern
Code In-
spection,
Contem-
porary
Code
Review

Group
Interac-
tions,
Human
Factors

Challenges,
Issues

Capacity

The search string is the following:
((”Modern code review” OR ”Modern Code In-

spection” OR ”Contemporary Code Review”) AND
((”Social Interactions” OR ”Group Interactions” OR
”Human Factors”) AND (”Problems” OR ”Chal-
lenges” OR ”Issues”)) AND (”Quality” OR ”Capac-
ity”))

Table 4 presents the results of the automatic search
by the research string.

Table 4: Results of automatic search.

Database Number of
found works

IEEE XPlore Digital Library 10
ACM Digital Library 14
Google Scholar 214

The snowballing technique has been used to ex-
tend the search for the reviewing literature. Snow-

Modern Code Reviews: Preliminary Results of an Analysis of the State of the Art with Respect to the Role Played by Human Factors

255



balling implies using the reference list of a pa-
per or the citations to the studies to identify addi-
tional sources (Wohlin, 2014). The start set of pa-
pers are found by defined search strings and inclu-
sion/exclusion criteria specified in the next section.
This work includes both backward and forward snow-
balling, which are two techniques of the snowballing
approach. Detailed steps of each method are de-
scribed later in this chapter.

Our inclusion (I) and exclusion (E) criteria are:
• I.1 The year of publication of works related to

MCR is not earlier than 2013 since this year the
term and concept of Modern Code Review ap-
peared

• I.2 The year of other publications that is not re-
lated to MCR are not limited

• I.3 The work is related to modern code review
topic

• I.4 The number of citations is not less than ten
since this topic has a narrow scope but at the same
time already has many articles

• I.5 The language in which the work is written in
English

• E.1 The source is outdated

• E.2 The work is not related to one of the research
questions

• E.3 The article has a few citations

• E.4 The language of the work is not English

3.3 Quality Check

The crucial part of the systematic literature review is
evaluating the found articles by the quality check. The
checklist for assessing is presented in Table 5.

3.4 Data Extraction

The data extraction forms must be designed to col-
lect all the information needed to address the review
questions and the study quality criteria (Kitchenham,
2004). Table 6 shows the data collection forms and
Table 7 contains the final studies included in the final
review.

4 PRELIMINARY OF THE
RESULTS

After the review of the literature on the topic of non-
technical problems, it is possible to note intermediate
results on the posed research questions.

Table 5: Quality assessment checks (Ali et al., 2010).

Q1 Is there a rationale for why the
study was undertaken?

Q2 Is there an adequate description of
the context (e.g. industry,laboratory
setting, products used, etc.) in
which the research was carried out?

Q3 Has the researcher explained how
the study sample (participants or
cases) were identified and selected,
and what was the justification for
such selection?

Q4 Does the study provide description
and justification of the data analysis
approaches?

Q5 Are limitations of the study dis-
cussed explicitly?

Table 6: Data collection forms (Galster et al., 2014) (Fatima
et al., 2019).

Data attribute Research
Question

F1 Title
F2 Author(s)
F3 Year
F4 Paper Category (Confer-

ence / Report / Workshop
/ Journal)

F5 Keywords
F6 Social and human factors

stated
RQ1

F7 Methods for improving
MCR

RQ2

RQ1: Social Interactions and the Code Reviews.
Several studies have been conducted on how social
relationships between members of software teams can
influence the review process. It cannot be denied that
teamwork always involves social interaction and com-
munication. The software development team is no
exception. The process of checking someone else’s
code is one of the methods of communication when
one person communicates with another through the
code. As in real life, communication can be differ-
ent - calm, irritable, funny, etc. But unlike regular
communication, the code review carries several con-
sequences, such as fixing the code, skipping critical
errors. These factors directly affect the quality of the
product. Based on this logic, as well as studies that
also showed the relationship between human factors
and the quality of the code review, we can conclude
that interpersonal relationships affect the code review.

ICSOFT 2021 - 16th International Conference on Software Technologies

256



Table 7: List of reviewed studies.

Title Author(s) Year Category
1 Individual, Social and Personnel

Factors Influencing Modern Code
Review Process

N. Fatima, S. Nazir,
S. Chuprat

2019 Conference

2 Expectations, Outcomes, and Chal-
lenges of Modern Code Review

A. Bacchelli, C. Bird 2013 Conference

3 Modern code review: A case study
at google

C. Sadowski, E.
Söderberg, L.
Church, M. Sipko,
A. Bacchell

2018 Conference

4 Convergent software peer review
practices

P. C. Rigby 2013 Conference

5 Process aspects and social dynam-
ics of contemporary code review:
Insights from open source develop-
ment and industrial practice at mi-
crosoft

A. Bosu, J. C. Carver,
C. Bird, J. Orbeck, C.
Chockley

2016 Conference

6 A case study of distributed, asyn-
chronous software inspection

M. Stein, J. Riedl,
S. J. Harner, V.
Mashayekhi

1997 Conference

7 A preliminary examination of code
review processes in open source
projects

P. C. Rigby and D.
Germán

2005 Journal Article

8 On the shoulders of giants: A new
dataset for pull-based development
research

X. Zhang, A. Ras-
togi, Y. Yu

2020 Conference

9 The social structure of open source
software development teams

K. Crowston and J.
Howison,

2003 Article

RQ2: Prevention of Negative Impact of Non Tech-
nical Issues on Modern Code Reviews. The topic
of social problems and their impacts are well re-
searched. However, there is a literature gap on pre-
venting them and on possible ways to improve the
quality of the review. It follows that this work should
be more focused on possible ways to solve social
problems in teams.

It seems impossible to avoid interpersonal prob-
lems in a process where people are present. But from
the first interviews with the developers, we learned
that there are still possible options. The first one is
to involve several team members in the code review.
Another possible solution is to develop a list of crite-
ria by which to check the code inside the team. There
are also other options, but we will have to study their
effectiveness in more detail in our future work.

5 FUTURE WORK

Qualitative research is an procedure that involves col-
lecting and analyzing the data (e.g., images, sounds,

words, and numbers) (Rossman and Rallis, 2003).
Such a strategy employs different philosophical as-
sumptions; strategies of inquiry; and methods of
data collection, analysis, and interpretation (Creswell,
2009). Its purpose is to learn about some facet of
the social world by understanding concepts, opinions,
or experiences (Rossman and Rallis, 2003). Quali-
tative research has different specific approaches such
as grounded theory, case study, ethnography, phe-
nomenology, and narrative research. For this work,
the grounded theory is most suitable since it helps
to study the process of human interaction and gen-
erate theories to explain human behavior (Bolderston,
2012).

There are different data collection methods that
might be used withing qualitative research approach.
One of them is an interview. As was mentioned in the
previous chapter, many studies use interviews to learn
more about software processes, and in particular code
reviews (Bacchelli, 2013) (Bosu et al., 2017) (Rigby,
2013) (Sadowski et al., 2018) (Kononenko et al.,
2016). We also decided to survey with professional
developers to collect the data regarding the attitude to

Modern Code Reviews: Preliminary Results of an Analysis of the State of the Art with Respect to the Role Played by Human Factors

257



Modern Code Review of developers among varying
teams and their opinion regarding the objectivity and
human factors influencing the review.

The survey consists of several steps, including the
preparation phase, execution, and analyzing the re-
sults

Survey Design. During the preparation, the inter-
view protocol is set up. A protocol usually includes

• Instructions for the interviewer

• Date, place, interviewer, interviewee

• The questions

• Pilot tests

• A final thank-you statement (Creswell, 2009)

Participant Selection. The target group is develop-
ers from the software teams. We suggested to in-
volve participants from the heterogeneous teams so
that their work processes may differ from each other.
It makes it possible to study the opinion of various
categories of developers.

To ensure valid results, is was decided to follow
the criteria of one of the previous studies (Bosu 2016).
The restriction is to survey developers with sufficient
experience. Namely, to interview only those devel-
opers who had participated in at least 30 code review
requests (Bosu et al., 2017). In connection with the
specifics of our research, the study of interpersonal re-
lationships, it was also decided take into account the
amount of time during which the survey participant
works in the current team. We have set the minimum
working time to the six months.

Data Collection. The execution phase requires ad-
herence to the established protocol during the prepa-
ration phase. The participants will be asked individu-
ally by the established format. The set of questions is
the same for all interviewees. But questions may vary
according to the semi-structured format to understand
and learn more about the participant’s opinion.

Data Analysis. Data analysis consists of several
consecutive steps such as collecting open-ended data,
based on asking general questions, and analysing
the information provided by participants (Creswell,
2009).

The results are analyzed in the following order:

• Transcribing interview by organizing and prepar-
ing the data for analysis

• Read all the data

• Code the data by classifying the data by words.
Coding is the procedure of organizing material
into text segments before making sense of infor-
mation (Rossman and Rallis, 2003).

• Generate a description of the setting or people and
categories or themes for analysis by codes

• Represent the description and themes
• Produce qualitative research of the results

(Creswell, 2009)
The results of conducted interviews will help us

to understand the processes and problems of the code
reviewers. Also, we will take into consideration the
possible solutions that participants may suggest for
their specific team. Depending on the outcomes, it
will be possible to conclude the initially set research
questions.

6 CONCLUSION

This paper presented the position regarding the non-
technical issues in the software code reviewing pro-
cess. It contains the observations from related re-
searches, the preliminary evaluations, and the pro-
posal. The selected methodology to use is the sys-
tematic literature review and the interview. Future
work requires data collection and analysis using pro-
posed approaches. Moreover, it would be interesting
to explore further the effect of MCR in Open Source
(Paulson et al., 2004; Kovács et al., 2004; Petrinja
et al., 2010; Fitzgerald et al., 2011; Rossi et al.,
2012; Di Bella et al., 2013) and in Agile environ-
ments (Maurer et al., 1999; Kivi et al., 2000; Succi
et al., 2002; Coman et al., 2014; Janes and Succi,
2014), and when different programming approach are
in place, such as mobile (Corral et al., 2011; Corral
et al., 2013; Corral et al., 2014) or functional/logic
(Marino and Succi, 1989; Valerio et al., 1997; Sillitti
et al., 2002; Clark et al., 2004).

ACKNOWLEDGMENTS

We thank Innopolis University for generously funding
this research.

REFERENCES
Ali, M. S., Ali Babar, M., Chen, L., and Stol, K.-J.

(2010). A systematic review of comparative evidence
of aspect-oriented programming. Information and
Software Technology, 52:871–887.

ICSOFT 2021 - 16th International Conference on Software Technologies

258



Bacchelli, A. (2013). Expectations, outcomes, and chal-
lenges of modern code review.

Bolderston, A. (2012). Conducting a research interview.
Journal of Medical Imaging and Radiation Sciences,
43:66–76.

Bosu, A., Carver, J. C., Bird, C., Orbeck, J., and Chock-
ley, C. (2017). Process aspects and social dynam-
ics of contemporary code review: Insights from open
source development and industrial practice at mi-
crosoft. IEEE Transactions on Software Engineering,
43(1):56–75.

Brereton, P., Kitchenham, B., Budgen, D., Turner, M., and
Khalil, M. (2007). Lessons from applying the sys-
tematic literature review process within the software
engineering domain. j syst softw. Journal of Systems
and Software, 80:571–583.

Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predon-
zani, P., Sillitti, A., Succi, G., and Vernazza, T. (2004).
Selecting components in large cots repositories. Jour-
nal of Systems and Software, 73(2):323–331.

Coman, I. D., Robillard, P. N., Sillitti, A., and Succi,
G. (2014). Cooperation, collaboration and pair-
programming: Field studies on backup behavior.
Journal of Systems and Software, 91:124–134.

Corral, L., Georgiev, A. B., Sillitti, A., and Succi, G. (2013).
A method for characterizing energy consumption in
Android smartphones. In Green and Sustainable Soft-
ware (GREENS 2013), 2nd International Workshop
on, pages 38–45. IEEE.

Corral, L., Georgiev, A. B., Sillitti, A., and Succi, G. (2014).
Can execution time describe accurately the energy
consumption of mobile apps? An experiment in An-
droid. In Proceedings of the 3rd International Work-
shop on Green and Sustainable Software, pages 31–
37. ACM.

Corral, L., Sillitti, A., and Succi, G. (2015). Software As-
surance Practices for Mobile Applications. Comput-
ing, 97(10):1001–1022.

Corral, L., Sillitti, A., Succi, G., Garibbo, A., and Ramella,
P. (2011). Evolution of Mobile Software Development
from Platform-Specific to Web-Based Multiplatform
Paradigm. In Proceedings of the 10th SIGPLAN Sym-
posium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, Onward! 2011,
pages 181–183, New York, NY, USA. ACM.

Creswell, J. (2009). Research Design: Qualitative, Quanti-
tative, and Mixed-Method Approaches.

Crowston, K. and Howison, J. (2003). The social structure
of open source software development teams.

Di Bella, E., Sillitti, A., and Succi, G. (2013). A multivari-
ate classification of open source developers. Informa-
tion Sciences, 221:72–83.

Fagan, M. E. (1999). Design and code inspections to reduce
errors in program development. IBM Syst. J., 38:258–
287.

Fatima, N., Nazir, S., and Chuprat, S. (2019). Individual,
social and personnel factors influencing modern code
review process. In 2019 IEEE Conference on Open
Systems (ICOS), pages 40–45.

Fitzgerald, B., Kesan, J. P., Russo, B., Shaikh, M., and
Succi, G. (2011). Adopting open source software: A
practical guide. The MIT Press, Cambridge, MA.

Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avge-
riou, P. (2014). Variability in software systems—a
systematic literature review. IEEE Transactions on
Software Engineering, 40(3):282–306.

Janes, A. and Succi, G. (2014). Lean Software Development
in Action. Springer, Heidelberg, Germany.

Kitchenham, B. (2004). Procedures for performing system-
atic reviews. Keele, UK, Keele Univ., 33.

Kivi, J., Haydon, D., Hayes, J., Schneider, R., and Succi,
G. (2000). Extreme programming: a university team
design experience. In 2000 Canadian Conference
on Electrical and Computer Engineering. Confer-
ence Proceedings. Navigating to a New Era (Cat.
No.00TH8492), volume 2, pages 816–820 vol.2.

Kononenko, O., Baysal, O., and Godfrey, M. (2016). Code
review quality: how developers see it. pages 1028–
1038.

Kovács, G. L., Drozdik, S., Zuliani, P., and Succi, G.
(2004). Open Source Software for the Public Ad-
ministration. In Proceedings of the 6th Interna-
tional Workshop on Computer Science and Informa-
tion Technologies.

Marino, G. and Succi, G. (1989). Data Structures for Par-
allel Execution of Functional Languages. In Pro-
ceedings of the Parallel Architectures and Languages
Europe, Volume II: Parallel Languages, PARLE ’89,
pages 346–356. Springer-Verlag.

Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S.,
and Dellen, B. (1999). Software Process Support over
the Internet. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages
642–645. ACM.

Moser, R., Pedrycz, W., and Succi, G. (2008a). A Compara-
tive Analysis of the Efficiency of Change Metrics and
Static Code Attributes for Defect Prediction. In Pro-
ceedings of the 30th International Conference on Soft-
ware Engineering, ICSE 2008, pages 181–190. ACM.

Moser, R., Pedrycz, W., and Succi, G. (2008b). Analysis of
the reliability of a subset of change metrics for defect
prediction. In Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software En-
gineering and Measurement, ESEM ’08, pages 309–
311. ACM.

Musı́lek, P., Pedrycz, W., Sun, N., and Succi, G. (2002).
On the Sensitivity of COCOMO II Software Cost Es-
timation Model. In Proceedings of the 8th Interna-
tional Symposium on Software Metrics, METRICS
’02, pages 13–20. IEEE Computer Society.

Paulson, J. W., Succi, G., and Eberlein, A. (2004). An em-
pirical study of open-source and closed-source soft-
ware products. IEEE Transactions on Software Engi-
neering, 30(4):246–256.

Pedrycz, W., Russo, B., and Succi, G. (2011). A model
of job satisfaction for collaborative development pro-
cesses. Journal of Systems and Software, 84(5):739–
752.

Modern Code Reviews: Preliminary Results of an Analysis of the State of the Art with Respect to the Role Played by Human Factors

259



Pedrycz, W., Russo, B., and Succi, G. (2012). Knowl-
edge Transfer in System Modeling and Its Realization
Through an Optimal Allocation of Information Gran-
ularity. Appl. Soft Comput., 12(8):1985–1995.

Pedrycz, W. and Succi, G. (2005). Genetic granular classi-
fiers in modeling software quality. Journal of Systems
and Software, 76(3):277–285.

Petrinja, E., Sillitti, A., and Succi, G. (2010). Compar-
ing OpenBRR, QSOS, and OMM assessment models.
In Open Source Software: New Horizons - Proceed-
ings of the 6th International IFIP WG 2.13 Confer-
ence on Open Source Systems, OSS 2010, pages 224–
238, Notre Dame, IN, USA. Springer, Heidelberg.

Rigby, P. (2013). Convergent software peer review prac-
tices.

Rigby, P. C. and Germán, D. (2005). A preliminary ex-
amination of code review processes in open source
projects.

Ronchetti, M., Succi, G., Pedrycz, W., and Russo, B.
(2006). Early estimation of software size in object-
oriented environments a case study in a cmm level 3
software firm. Information Sciences, 176(5):475–489.

Rossi, B., Russo, B., and Succi, G. (2010). Modelling Fail-
ures Occurrences of Open Source Software with Reli-
ability Growth. In Open Source Software: New Hori-
zons - Proceedings of the 6th International IFIP WG
2.13 Conference on Open Source Systems, OSS 2010,
pages 268–280, Notre Dame, IN, USA. Springer, Hei-
delberg.

Rossi, B., Russo, B., and Succi, G. (2012). Adoption of
free/libre open source software in public organiza-
tions: factors of impact. Information Technology &
People, 25(2):156–187.

Rossman, G. and Rallis, S. (2003). Learning in the Field:
An Introduction to Qualitative Research.

Sadowski, C., Söderberg, E., Church, L., Sipko, M., and
Bacchelli, A. (2018). Modern code review: A case
study at google. In Proceedings of the 40th Inter-
national Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE-SEIP ’18, page
181–190, New York, NY, USA. Association for Com-
puting Machinery.

Scotto, M., Sillitti, A., Succi, G., and Vernazza, T. (2004). A
Relational Approach to Software Metrics. In Proceed-
ings of the 2004 ACM Symposium on Applied Comput-
ing, SAC ’04, pages 1536–1540. ACM.

Scotto, M., Sillitti, A., Succi, G., and Vernazza, T. (2006). A
non-invasive approach to product metrics collection.
Journal of Systems Architecture, 52(11):668–675.

Siddaway, A., Wood, A., and Hedges, L. (2019). How
to do a systematic review: A best practice guide
for conducting and reporting narrative reviews, meta-
analyses, and meta-syntheses. Annual Review of Psy-
chology, 70.

Sillitti, A., Janes, A., Succi, G., and Vernazza, T. (2004).
Measures for mobile users: an architecture. Journal
of Systems Architecture, 50(7):393–405.

Sillitti, A., Succi, G., and Vlasenko, J. (2012). Understand-
ing the Impact of Pair Programming on Developers

Attention: A Case Study on a Large Industrial Exper-
imentation. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages
1094–1101, Piscataway, NJ, USA. IEEE Press.

Sillitti, A., Vernazza, T., and Succi, G. (2002). Service
Oriented Programming: A New Paradigm of Software
Reuse. In Proceedings of the 7th International Con-
ference on Software Reuse, pages 269–280. Springer
Berlin Heidelberg.

Stein, M., Riedl, J., Harner, S. J., and Mashayekhi, V.
(1997). A case study of distributed, asynchronous
software inspection. Proceedings of the (19th) Inter-
national Conference on Software Engineering, pages
107–117.

Succi, G., Benedicenti, L., and Vernazza, T. (2001a). Anal-
ysis of the effects of software reuse on customer sat-
isfaction in an RPG environment. IEEE Transactions
on Software Engineering, 27(5):473–479.

Succi, G., Paulson, J., and Eberlein, A. (2001b). Prelim-
inary results from an empirical study on the growth
of open source and commercial software products. In
EDSER-3 Workshop, pages 14–15.

Succi, G., Pedrycz, W., Marchesi, M., and Williams, L.
(2002). Preliminary analysis of the effects of pair pro-
gramming on job satisfaction. In Proceedings of the
3rd International Conference on Extreme Program-
ming (XP), pages 212–215.

Valerio, A., Succi, G., and Fenaroli, M. (1997). Domain
analysis and framework-based software development.
SIGAPP Appl. Comput. Rev., 5(2):4–15.

Vernazza, T., Granatella, G., Succi, G., Benedicenti, L.,
and Mintchev, M. (2000). Defining Metrics for Soft-
ware Components. In Proceedings of the World Mul-
ticonference on Systemics, Cybernetics and Informat-
ics, volume XI, pages 16–23.

Wohlin, C. (2014). Guidelines for snowballing in system-
atic literature studies and a replication in software en-
gineering. ACM International Conference Proceeding
Series.

Zhang, X., Rastogi, A., and Yu, Y. (2020). On the shoul-
ders of giants: A new dataset for pull-based develop-
ment research. In Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories,
MSR ’20, page 543–547, New York, NY, USA. Asso-
ciation for Computing Machinery.

ICSOFT 2021 - 16th International Conference on Software Technologies

260


