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Abstract: Network Anomaly detection is an open issue that considers the problem of finding patterns in data that do not
conform to expected behavior. Anomalies exhibit themselves in network statistics differently; therefore devel-
oping general models of normal network behavior and anomalies is a challenging task. This paper presents an
Improved Live Anomaly Detection System (I-LADS) based on AutoEncoder (AE), a well known deep learn-
ing algorithm, to detect network traffic anomalies. I-LADS comes in two versions: (i) I-LADS-v1, that uses
filters to independently model IP addresses from the NetFlow dataset, making it possible to train one model
for each filtered IP address; and (ii) I-LADS-v2, that uses no filter and therefore a single algorithm is trained
for all IP addresses. Experiments have been conducted using a valid dataset containing over two million con-
nections to build a model with multiple features in order to identify the approach that most accurately detects
traffic anomalies in the target network. Preliminary results show a promising solution with 99% and 94% of
accuracy for the supervised and unsupervised learning approaches respectively.

1 INTRODUCTION

Anomaly detection solutions work on the basis of
the data provided by different network monitoring
technologies (e.g., sFlow and NetFlow) or software-
defined management solutions (e.g., OpenFlow) that
allow access to forwarding devices. Due to the
lightweight and efficient nature of the NetFlow pro-
tocol, a number of widely used NetFlow-based solu-
tions have been developed and a great number of al-
gorithms have been proposed to detect abnormal ac-
tivities in NetFlow data (Vaarandi, 2013).

Network Anomaly detection is an open research
that considers the problem of finding patterns in data
that do not conform to expected behavior. Despite of
all the developments in network anomaly detection,
the most popular procedure to detect non-conformity
patterns is still manual inspection during the period
under analysis (e.g., visual analysis of plots, identi-
fication of variations in the number of bytes, pack-
ets, flows). Most of the current work focuses on the
identification of anomalies based on traffic volume
changes. However, since not all of the anomalies are
directly reflected in the number of packets, bytes or
flows, it is not possible to identify them all with such
metrics (Lakhina et al., 2005). Approaches to address
this issue propose the use of IP packet header data.

Particularly, IP addresses and ports allow the charac-
terization of detected anomalies.

In this paper, we propose an Improved Live
Anomaly Detection System (denoted by I-LADS)
based on deep learning algorithms. The approach
explores the use of a well known deep learning al-
gorithm: AutoEncoder (hereinafter denoted by AE),
to identify abnormal behaviors in the NetFlow traf-
fic captured. AE play a fundamental role in unsuper-
vised learning and in deep architectures for transfer
learning and other tasks. They are simple learning cir-
cuits aiming to transform inputs into outputs with the
least possible amount of distortion (Baldi, 2012). AE
have been widely used not only for data compression
and visualization, but also for pre-training neural net-
works. They address issues on the magnitudes of gra-
dients, help finding good local optimums for complex
objective functions, and perform well in generalizing
data with multiple parameters(Le et al., 2015).

I-LADS is proposed in two distinct versions: one
that uses filters to independently model IP addresses
from the NetFlow dataset, making it possible to use
one model per filtered IP address (I-LADS-v1); and
another with no filter that uses a single algorithm to
train all IP addresses. Training and testing have been
performed using different datasets and the two ver-
sions of the proposed solution have been evaluated for
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both supervised and unsupervised learning.
Experiments have been conducted using a valid

data-set containing over two million connections to
build a model with multiple features (e.g., duration,
protocol, ports, packets, flows, etc.), in order to iden-
tify the approach that most accurately detects traffic
anomalies in the target network. The performance of
the proposed approach has been evaluated for each of
the algorithms. Preliminary results show a promis-
ing solution with 99% and 94% of accuracy for the
supervised and unsupervised learning approaches re-
spectively (considering the best I-LADS version).

The remainder of this paper is structured as fol-
lows: Section 2 discusses related work. Section 3
presents I-LADS and details its architecture, method-
ology, algorithms used and performance. Section 4
details the experiments performed to train, test and se-
lect the most accurate anomaly detection model, and
show preliminary results and performance metrics as-
sociated to each algorithm used. Finally, conclusions
and perspective for future work are presented in Sec-
tion 5.

2 RELATED WORK

Network Flow Anomaly Detection has been widely
studied in the literature. Brauckhoff (Brauckhoff,
2010), for instance, uses histogram-based anomaly
detectors to pre-filter a set of suspicious flows and ap-
ply association rule mining to extract the flows that
have caused a malicious event. The model monitors
one of the following attributes: transport protocol,
source IP address, destination IP address, source port
number, destination port number, packets per flow,
bytes per flow, inter-arrival times, flow duration, and
TCP flags. Labels that identify when an anomaly
has happened are required for evaluating whether an
anomaly detection system is accurate or not.

The approach of (Attak et al., 2018) builds upon
this idea, and proposes a SHIELD architecture and
different ML algorithms to the detection of anomalies
using the Netflow traffic protocol. Authors compare
the performance of the different algorithms: one-class
SVM, Isolation Forest, Local Outlier Factor and DL
autoencoders. The autoencoders developed using DL
techniques have a very high potential, although the
fine tuning is necessary to stable results, obtaining an
accuracy score of 87%.

In addition, (Lopez-Martin et al., 2017) propose
an IoT network-based intrusion detection method that
is based on a conditional variational autoencoder that
integrates the intrusion labels inside the decoder lay-
ers. The method is able to recover missing features

from incomplete training datasets and provides a very
high accuracy in the reconstruction process, even for
categorical features with a high number of distinct
values. As a result, the proposed method is less
complex and provides better classification results than
other familiar classifiers.

The work of (Mirsky et al., 2018) refers to an
unsupervised plug and play NIDS that can learn to
detect attacks on the local network. The approach
uses autoencoders as an ensemble of neural networks
to collectively differentiate between normal and ab-
normal traffic patterns. It supports feature extraction
that tracks patterns of every network channel. Results
show the possibility of detecting various attacks with
a performance comparable to offline anomaly detec-
tors.

Furthermore, (Nguyen et al., 2019) present a
framework for detecting and explaining anomalies
in network traffic based on Variational Autoencoder;
and a gradient fingerprinting technique for explaining
anomalies. Results demonstrate an approach effective
in detecting different anomalies as well as identifying
fingerprints that are good representations of these var-
ious attacks

More recently, (Delplace et al., 2020) propose us-
ing ML and DL models for the detection of botnets
using Netflow datasets. In their work, authors gener-
ated new features extracting those from the Netflow
datasets with the objective to improve the models.
According to authors, the Random Forest (RF) classi-
fier has the best performance in 13 different scenarios
with an accuracy of more than 95%.

One of our previous work, (Gonzalez-Granadillo
et al., 2019) we proposed an approach for the analysis
of the behavior of IoT devices that generates few sig-
nals. This approach uses a one-class SVC algorithm
to detect network anomalies with features related to
IP addresses (IP source, IP destination, IP distance,
IP known and IP unknown). Our proposed approach
improves previous works by adding multiple features
to the analysis and using other learning algorithms to
detect anomalies in the network traffic. Results show
significant improvements in the performance of the
tool.

3 IMPROVED LIVE ANOMALY
DETECTION SYSTEM (I-LADS)

I-LADS results from an adaptation of Convolutional
Autoencoders, that instead of processing images to
check for anomalies, it processes NetFlow data cat-
egorize network traffic into normal or anomalous,
based on the modeling of multiple NetFlow param-
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eters. This section details the architecture and main
aspects related to the usage and evaluation of the I-
LADS.

3.1 I-LADS Architecture

The I-LADS architecture (as depicted in Figure 1) en-
compasses modules dedicated to data gathering, train-
ing of the machine learning models and predictions
using the trained models in near real time, process-
ing these data, and generating outputs/results of this
processing.

Figure 1: I-LADS Architecture.

Depending on the requested service, I-LADS is able
to operate in one of the following modes:

i Cleaning. This mode deletes all models stored in
the database.

ii Capturing. This mode collects traffic from the
managed infrastructure and stores the received
NetFlow traffic. I-LADS uses the Monitored Net-
work, which includes NetFlow data from both
hardware devices (e.g., routers) and software el-
ements (softflow); as well as the Softflowd1, a
flow-based network traffic analyzer capable of ex-
porting Cisco NetFlow data.

iii Training. In training mode, the NetFlow traffic
is processed by the SoftFlow Manager and sent to
the Monitor handler and the Capture handler. The
Brain uses a defined learning algorithm to build
the model based on the input data and the de-
fined parameter(s) (e.g., IP addresses, port num-
bers, protocols). Models are then stored in the
database by the DB service.

iv Monitoring. This mode evaluates in real time the
NetFlow traffic received. Once the Softflow Man-
ager receives the traffic, it uses either the Moni-
tor handler or the Capture handler to pre-process

1https://github.com/irino/softflowd

the traffic and stored in the database. The Cap-
ture handler assumes the traffic does not contain
anomalies, whereas the Monitor handler assumes
the traffic contains both legitimate and anomalous
traffic and redirect the traffic to the Dataset Man-
ager.

v Prediction. This mode tests the models against
text files containing a dataset of the network traf-
fic. The main objective of the prediction service
is to identify anomalous behavior on the network
traffic and to generate alarms (error and/or warn-
ing messages) based on the obtained results. If a
sample falls outside the area defined by the model,
then the sample is considered as anomalous.

vi Exit. This mode closes the application.

The I-LADS output is composed of (a) the models
used for the prediction module stored in the Mongo
DB. This latter needs to be populated with NetFlow
data, indicating all the arguments of the captured in-
terface. It is then possible to indicate the root path
of the NetFlow data, the profile and source name of
the captured traffic; (b) the captured flows generated
by the Capture handler during the training and model
generation process; and (c) the alarms indicating er-
rors and/or warnings about the anomalous behavior of
the analyzed network traffic. The warnings are used
when the flows have a certain IP that is not modelled
or when there is not a valid model, whereas errors are
interpreted as flows classified as anomalous connec-
tions.

3.2 I-LADS Data Pre-processing

Table 1 provides a list of features obtained by Soft-
flowd. Neural networks require all input data in nu-
meric values, therefore, the dataset needs to be trans-
formed accordingly. This section details the steps
used by I-LADS to prepare the dataset before it is
used to build the model.

3.2.1 Version Selection

I-LADS has two available versions (i.e., I-LADS-v1
using filters, and I-LADS-v2 using no filters). Its se-
lection depends on the use case and the required per-
formance.

• I-LADS-v1. This version uses filters to indepen-
dently model the different IP addresses from the
NetFLow dataset. Once the dataset generated
by Softflowd is retrieved, it is possible to get
both the source and destination IPs. For every
IP, the flow can be filtered. This implementation
reduces the number of flows to each subset,
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Table 1: Softflowd Parameters.

Features Description
Date first seen. Start time of the flow
Duration. Duration of the flow
Proto. Protocols used
Src IP Addr. Source IP address
Src Pt. Source Port
Dst IP Addr. Destination IP address
Dst Pt. Destination Port
Flags. TCP flags of the connection
Packets. N. of packets in the flow
Bytes. N. of bytes in the flow
Flows. N. of flows in the connection
Tos. Type of service

which in turn improves efficiency. By filtering
the dataset, we filter the flow of a single IP, which
reduces the noise. However, as it generates k
subsets (k corresponds to the number of unique
IP addresses), then k associated algorithms are
generated simultaneously, which will be trained
with a subset in a local environment. In this case,
it is a local environment from a certain IP. In
addition, a further issue can arise related to some
subsets containing insufficient flows to train the
associated algorithm, which is translated into a
bad performance. In order not to lose informa-
tion, a new dummy variable called is source is
created. As a result, 1 is assigned if the IP appears
as a source, and 0 if it appears as a destination).

• I-LADS-v2. In this version, the Softflowd dataset
is not filtered, and a single algorithm will be
trained for all the IP addresses. In other words,
the algorithm tries to get the similarities between
all the features except for the IPs. Unlike the first
version, in this case there is just one dataset with
an associated algorithm. The dataset may contain
flows from a wide variety of devices (e.g., in a
home network, we can capture the flows from a
smart TV, a printer, a tablet, a mobile phone, and
other appliances), which in turn represents differ-
ent behaviors from each device. Consequently, it
is possible to have some noisy flows, but the data
processing and analysis will be faster compared to
the first version.

3.2.2 Feature Engineering

Feature engineering refers to the creation of more fea-
tures with the aim to improve its performance. I-
LADS has a simple feature engineering with the fol-
lowing features: (i) Packets speed. The number of

Packets divided by the Duration; (ii) Bytes speed.
The number of Bytes divided by the Duration; (iii)
Packets per flow. The number of Packets divided by
the flows, and (iv) Bytes per flow. The number of
Bytes divided by the flows.

3.2.3 Categorical Variables

Categorical features (variables) are transformed into
numeric features before they are used as input to the
learning algorithm. The protocol variable can take
two values: TCP and UDP. The conversion process
creates a new binary variable called proto UDP for
which a value 1 is assigned if the protocol is UDP and
0 if it is TCP. This generates one feature per value
of the categorical variable, in other words, two new
binary columns will be generated: proto UDP and
proto TCP. All the categorical variables are trans-
formed using the same technique. The new variables
generated are called dummy variables.

3.2.4 Standardization

The normalization of all input data is necessary to get
a valid dataset, namely train dataset, to use as input in
the deep learning algorithm. After the transformation
in the dataset is performed, we obtained a standard-
ized and clean dataset containing only numeric fea-
tures which can be used as input to train the algorithm
and build the corresponding model.

3.3 I-LADS Training and Prediction

During the training, the algorithm is fed with legiti-
mate traffic and the features already defined in Sec-
tion 3.2 (e.g., IP addresses, port numbers, protocols,
etc.) to build a model for testing and predictions with
a predefined time window that can vary according to
the size of the data to be analyzed (e.g. 5-second win-
dow).

Our research focuses on a semi-supervised
method using a well known deep learning algorithm,
namely Autoencoder (AE). This latter is a type of
Artificial Neural Network (ANN) used to learn effi-
cient data coding in an unsupervised manner. AEs
have a symmetric structure (i.e., input and output lay-
ers have the same dimension), where the middle layer
represents an encoding of the input data. Particularly,
AEs are trained to reconstruct their input onto the out-
put layer, while verifying restrictions which prevent
them from simply copying the data along the network
(Charte et al., 2018).

AEs consist of at least two main parts: (i) An en-
coder part aiming to retrieve the input dataset and
compress the information; and (ii) A decoder part
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aiming to retrieve the compressed information and de-
code it to obtain the initial train dataset. In the de-
coder part, the input dimension is the same as the
train dataset dimension, while the output dimension
is compressed, whereas in the decoder part the input
and output must be the same.

When the AE evaluates an anomalous connection,
the transformed connection should be very different
from the initial input. If the resulting value is bigger
than a specific value or threshold, the connection will
be categorized as an anomalous connection. Other-
wise, if the value is lower than the threshold (or close
to zero) it will be categorized as a legitimate connec-
tion. The threshold is set through experimentation,
i.e., in an unsupervised learning problem, this thresh-
old is predetermined, whereas in a supervised learn-
ing problem, the threshold could be adjusted to im-
prove performance.

Since the threshold can be adjusted using the la-
bels of a supervised learning problem, this is consid-
ered a semi-supervised learning process. The key part
of this approach is to define an appropriate threshold
to determine which connections are anomalous or le-
gitimate.

4 I-LADS TESTING AND
VALIDATION

Validation comprises the training and generation of
prediction models, as well as a set of tests per-
formed with different features that characterize Net-
Flows aiming to analyzing aspects such as flow du-
ration, packet size, ports and protocols used in the
communications, among other features, to determine
whether connections are legitimate, or anomalous.

4.1 Training Data

In order to check the validity of the Autoencoder as
a classification algorithm, we used the CIDDS-001
dataset, which is part of the Coburg Intrusion Detec-
tion datasets (CIDDS) (Ring et al., 2017), a set of la-
belled Flow-based public datasets. This dataset con-
tains unidirectional NetFlow data consisting of traffic
generated by emulating small business environment
consisting of two main networks: (i) OpenStack com-
posed of four internal subnetworks; and (ii) External
Server, consisting of a file synchronization and a web
server deployed on the Internet to capture real and up-
to-date traffic.

The CIDDS-001 dataset consists of large num-
ber of traffic instances (172,839 instances from
OpenStack and 153,026 instances from the External

Server) from which communication is captured over
the course of a month. The dataset provides a list of
attributes including those depicted in Table 1 and oth-
ers classifying the connection as normal, attacker, vic-
tim, suspicious and unknown, as well as identifying
the type of attack (e.g., Brute Force, DoS, PortScan,
PingScan).

The CIDDS-001 dataset has been split into two
subsets: (i) Training, composed of the data from week
4 because it has no attacks; and (ii) Testing, composed
of the data from week 2 because it contains both legit-
imate and attack instances. Given that our algorithm
classifies the connections as legitimate or anomalous,
all connections labeled as victim or attacker have been
treated as anomalous.

Considering that the CIDDS is labeled, we
adapted the model to be used both as supervised and
unsupervised learning problems. The former is used
when labels are included in the dataset, whereas the
latter is used with no labels. The unsupervised learn-
ing problem should be a more realistic scenario. For
our tests, we only use internal connections because
they are a representative sample of our expected real-
life scenario.

4.2 Experimentation

Validation comprises the training and generation of
prediction models, as well as a set of tests (experi-
ments) performed with different features that charac-
terize NetFlows aiming to measure aspects e.g., num-
ber of flows/packets/bytes per second, among others,
to determine whether connections are legitimate or
they are considered as anomalous since they fall out-
side the boundaries of the model.

In order to validate the models built by the I-
LADS and to identify the features that best contribute
in the detection of normal and anomalous connec-
tions, we performed a series of tests with multiple fea-
tures, using three Recurrent Neural Networks (RNN)
layers having a size that directly depends on the in-
put data size. The training data passes through the
model 10,000 entries (batch = 10,000) at a time until
all of the entries have passed through, making the end
of one epoch, and the process is repeated 500 times
(epoch = 500). The algorithm encodes 30 features
into 15 and then, decodes them to output 30 features.
The remainder of this section details two of the main
experiments and the preliminary obtained results.

4.2.1 Experiment 1: I-LADS-V1

This experiment evaluates a dataset composed of
2,232,715 internal connections using both supervised
learning (labeled data) and unsupervised learning (no
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labeled data). This experiment focuses on analyzing
the performance of the I-LADS-V1 (which filters IP
addresses during the training) in detecting normal and
anomalous behavior on the 2,232,715 internal con-
nections. The unsupervised learning scenario requires
a threshold to be determined before the training of
the Autoencoder, however, this version of the I-LADS
does not define any threshold because its analysis re-
quires the IP addresses.

4.2.2 Experiment 2: I-LADS-V2

This experiment uses the same dataset used in experi-
ment 1 to evaluate the I-LADS-V2 (using no filters on
the data training).The dataset has been tested against
the two versions of the I-LADS and has been labeled
as legitimate (with a value of one) or anomalous (with
a value of zero). The unsupervised learning scenario
requires a threshold to be determined before the train-
ing of the Autoencoder. For this version of I-LADS
(using no filters), we used the results of the super-
vised learning approach to determine the value of the
threshold that provides the highest performance. All
metrics have been evaluated using different thresh-
olds (in this experiment from 0.1 until 100) and the
best performance is obtained with a threshold equals
to 10.0.

4.3 Preliminary Results

This section presents preliminary results of the exper-
iments performed with both version of our proposed
solution by grouping them in two categories: super-
vised and unsupervised learning results.

4.3.1 Supervised Learning Results

The performance of the I-LADS for a supervised
learning scenario using Autoencoder against the
CIDDS-001 dataset is summarized in Table 2. As can
be seen, both versions of the I-LADS tool have been
analyzed. for the case of normal detection, v1 seems
to perform better than v2 with higher accuracy, preci-
sion and F1-Score values.

A similar result is obtained while comparing the
performance of detecting anomalous connections on
the two versions of the I-LADS. While I-LADS-v1
has all performance values close to one (meaning that
is able to predict all normal and anomalous connec-
tions accurately), the performance of I-LADS-v2 is
decreased on the precision and F1-score on the detec-
tion of normal connections. This is mainly due to the
higher false positive rate obtained in the detection of
normal connections.

For the case of the I-LADS-v2, since there is no
filtered IP address, individual results are unable to
be obtained. Only global performance is possible to
be drawn for these experiments. Note that although
the performance of the I-LADS-v2 is lower than the
I-LADS-v1, the model shows a performance higher
than 0.9 on the detection of anomalous connections.

4.3.2 Unsupervised Learning Results

Table 3 depicts the results of the unsupervised learn-
ing approach against the CIDDS-001 dataset used
in the experiments. Note that since no filters are
used, no additional tests have been performed using
I-LADS-v2, therefore results are the same for super-
vised and unsupervised approaches in detecting both
normal and anomalous connections.

It is important to highlight that the performance
of the unsupervised learning model of I-LADS-v2 is
higher than the I-LADS-V1, with accuracy, recall,
and F1-score values approaching to one. It is impor-
tant to note that the performance is slightly better for
the anomalous detection compared to the normal de-
tection.

When dealing with high volumes of data, it is
therefore recommended to use I-LADS-v1 for super-
vised learning approaches and I-LADS-v2 for unsu-
pervised learning approaches. This is mainly due to
the fact that when using no labeled data, the model de-
creases its performance as the number of connections
included in the training dataset increases.

5 CONCLUSION AND FUTURE
WORK

We have proposed I-LADS, an Improved Live
Anomaly Detection System that uses a deep learn-
ing algorithm called Autoencoders to detect network
traffic anomalies based on the analysis of multiple
NetFlow features (e.g., IP addresses, ports, protocols,
packets size, packets speed, etc.). I-LADS comes
in two distinct versions: (i) I-LADS-v1, that filters
the flow of every IP address; and (ii) I-LADS-v2,
that uses no filters for the IP addresses and trains the
dataset with a single algorithm in charge of identify-
ing the similarities among the NetFlow features.

The proposed model has been tested against a
Flow-based public dataset containing over two mil-
lion connections using both supervised and unsuper-
vised learning approaches. The algorithm encodes
and decodes all features to compute the difference
from the input and output and classify connections as
normal or anomalous based on this difference.
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Table 2: Performance Results Supervised Learning.

Approach TP TN FP FN Accuracy Recall Precision F1-Score
V1(Normal) 0.1736 0.8193 0.0038 0.0033 0.9929 0.9816 0.9784 0.9800
V2(Normal) 0.1329 0.8041 0.0629 0.0000 0.9371 1.0000 0.6786 0.8085
V1(Anomalous) 0.8193 0.1736 0.0033 0.0038 0.9929 0.9953 0.9960 0.9957
V2(Anomalous) 0.8041 0.1329 0.0000 0.0629 0.9371 0.9274 1.0000 0.9623

Table 3: Performance Results Unsupervised Learning.

Approach TP TN FP FN Accuracy Recall Precision F1-Score
V1(Normal) 0.1766 0.5977 0.0008 0.2249 0.7742 0.4398 0.9954 0.6101
V2(Normal) 0.1329 0.8041 0.0629 0.0000 0.9371 1.0000 0.6786 0.8085
V1(Anomalous) 0.5977 0.1766 0.2249 0.0008 0.7742 0.9986 0.7266 0.8411
V2(Anomalous) 0.8041 0.1329 0.0000 0.0629 0.9371 0.9274 1.0000 0.9623

I-LADS-v1 has shown a better performance on anal-
ysis using supervised learning algorithms, whereas
I-LADS-v2 shows a better performance on evalua-
tions using unsupervised learning approaches. This
is mainly due to the fact that when using no labeled
data, the model decreases its performance as the num-
ber of connections included in the training dataset in-
creases. It is therefore preferable to use I-LADS-v2
when dealing with high volumes of data in an unsu-
pervised scenario.

The main limitation identified in our proposed ap-
proach is in terms of explainability. We need to make
use of techniques to compute the difference between
inputs and outputs, making it possible to obtain a diff
value for each analyzed feature (e.g., number of bytes
per flow). If such a difference is too big, it could lead
to understand the reason why a connection has been
classified as anomalous.

Note that for our experiments we have used 80%
of the samples as the training dataset, and 20% of
the samples for testing and predictions. However, the
time needed to obtain results using our model, highly
depends on the size of the dataset, which in some
cases may require several minutes to classify connec-
tions. In such a case, although the testing is executed
in real time, predictions are expected to be obtained
win near-real time.

It is important to highlight that previous versions
of the LADS were best suited for the behavior analy-
sis of IoT devices (e.g., smart security systems, moni-
toring devices, jamming detectors, smart thermostats,
etc.) that generates one or few signals, and whose be-
havior can be easily modelled by the algorithm. Our
proposed approach, although also suitable to model
more complex devices (e.g., workstations, servers,
mobile phones, etc.), it is best suited to model tools
with a specific behavior. We expect the model de-
creases its performance when analyzing devices with

heterogeneous behaviours.
Future work will consider to evaluate different at-

tack scenarios, use other features to evaluate traffic
behavior and other ML and DL algorithms to com-
pare their performance. In addition, we will use other
datasets and different neural network architectures
aiming at improving interpretability of results. The
ultimate goal is to build customized models for a wide
variety of attacks to be tested in different scenarios.
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