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Abstract: In response to resource shortages caused by the COVID-19 pandemic, many communities have been leasing
health facilities such as hospitals, clinics, and other centers in order to meet the needs of their patients. The
goals have been two-folded: leasing costs had to be optimized and patients had to be served as soon as possible.
Decisions as to when to lease which services at which facility locations shaped the success of these goals. At
the heart of these decisions lies a complex optimization problem, which we call the Online Non-metric Facility
Service Leasing problem (non-metric OFSL), a generalization of the well-known Online Non-metric Facility
Leasing problem (non-metric OFL) in which facility locations are leased for different facility-time durations.
In non-metric OFSL, each facility location may provide a number of services leased for different service-time
durations. Additionally, each service is associated with a dormant fee that needs to be paid for each day at
which the service is not leased. The optimization goal is to minimize the total leasing costs, dormant fees, and
the distances between patients and the facilities they are connected to. We develop the first online algorithm
for non-metric OFSL, evaluated using the notion of competitive analysis. The latter is a worst-case analysis
used to measure the quality of online algorithms, in which the online algorithm’s output is compared to the
optimal offline solution for all instances of the problem.

1 INTRODUCTION

The COVID-19 pandemic has put health systems
around the world under immense pressure (Vaccaro
et al., 2020; Kumari et al., 2020; Emanuel et al., 2020;
Sen-Crowe et al., 2021; Pfefferbaum and North,
2020). According to the World Health Organiza-
tion, failure to protect health care can have a long-
lasting impact on the health and well-being of pop-
ulations (WHO, 2020). A successful protection of
these systems means the ability to provide patients ac-
cess to health services as soon as needed. For most
communities, available health facilities were notably
scarce and so new measurements had to be taken.
Some sought to build new health facilities. Others
made agreements with various facilities to lease med-
ical services at their locations. Circumstances were
changing too fast and decisions had to be made on-
the-fly. The lack of future knowledge in terms of the
evolution of the COVID-19 disease made decision-
making even more challenging.

Motivated by these events, we target in this pa-
per provably good decision-making in the face of the

uncertainty of the future, focusing on communities
that lease services at different facility locations, such
as hospitals, clinics, and other centers to meet the
needs of their patients. The goals here have been two-
folded: leasing costs had to be optimized and patients
had to be served as soon as possible. Decisions as
to when to lease which services at which facility loca-
tions shaped the success of these goals. The challenge
was to make immediate decisions without knowing
the future with as few regrets as possible.

More generally, consider a company trying to
serve its clients with the least possible costs while op-
timizing the distances between clients and the facility
locations they are served by. The company has made
contracts with a number of facility locations, each
willing to offer a number of services. The contract re-
quires that these facility services remain reserved for
the company for as long as the contract states. The
company has a number of lease types to choose from
when it comes to leasing services at facilities. Lease
types respect economy of scale such that longer leases
are more expensive but cheaper per unit time. More-
over, the price of leasing the same service for the same
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duration may differ between one facility location and
the other. Prices vary based on how attractive a facil-
ity location is in comparison to other locations. The
company has the option not to lease a service at some
facility location for some period of time but has to
pay a dormant fee for each day at which the service is
not leased. This is to compensate for what the facility
location could have gained had there been no reserva-
tion of this service at the facility location. By holding
a service for the company, the facility is losing poten-
tial customers from other companies that could have
been interested in the service at the facility during that
period of time. Each day, a number of clients show
up, each requesting a number of services. The com-
pany needs to decide when to lease which facilities at
which facility locations in order to connect clients to
a number of facility locations jointly offering the ser-
vices requested. Its goal is reached only if each client
is served as soon as it arrives by services leased at the
time of its arrival.

At the heart of such decisions lies a complex op-
timization problem which we approach in this paper
from an online algorithmic perspective. Unlike clas-
sical offline algorithms, the input to an online algo-
rithm is not given all at once but arrives in portions
over time. The job of the online algorithm is to re-
act to each arriving portion while targeting a given
optimization goal against the entire input. Online al-
gorithms are evaluated using the notion of competi-
tive analysis. The latter is a worst-case performance
analysis in which the online algorithm’s decisions are
compared to the optimal offline decisions which could
have been made in an ideal situation should the entire
future be known.

The optimization problem at hand is called the
Online Non-metric Facility Service Leasing problem
(non-metric OFSL), a generalization of two well-
known optimization problems in the field of Online
Algorithms (Borodin and El-Yaniv, 2005), namely, the
Online Non-metric Facility Location problem (non-
metric OFL) (Alon et al., 2006) and the Parking Per-
mit problem (PP) (Meyerson, 2005). In non-metric
OFSL, rather than leasing facilities as in (Markarian
and Meyer auf der Heide, 2019; Abshoff et al., 2016;
Nagarajan and Williamson, 2013), services are leased
at facilities for different time durations, and addition-
ally, each service is associated with a dormant fee that
needs to be paid for each day at which the service is
not leased. Such fees were not considered in previ-
ous leasing models. The goal is to minimize the total
leasing costs, dormant fees, and the distances between
clients and the facilities they are connected to. We call
these distances connecting costs.

We say r is the competitive ratio of an online algo-
rithm (or an online algorithm is r-competitive) if r is
the worst case ratio of the cost of the online algorithm
to that of the optimal offline solution, measured over
all possible instances of the problem. In this paper, we
design the first online algorithm for non-metric OFSL
and prove that it has an O(log(n+m · lmax) log(Lm))
competitive ratio, where:

– n is the total number of clients

– lmax is the length of the longest lease duration

– L is the number of lease types available

– m is the total number of facility locations

Outline. The rest of the paper is structured as fol-
lows. In Section 2, we given an overview of works
related to leasing and online non-metric facility loca-
tion problems. We give a formal definition of non-
metric OFSL in Section 3 and formulate it as a graph-
theoretic problem in Section 4. In Section 5, we
present our online algorithm for non-metric OFSL
and analyze its competitive ratio in Section 6. We
present in Section 7 some concluding remarks and fu-
ture works.

2 RELATED WORK

The first leasing model was introduced by Meyer-
son (Meyerson, 2005) with the Parking Permit prob-
lem (PP). Meyerson proposed an O(L)-competitive
deterministic algorithm and an O(logL)-competitive
randomized algorithm for PP and showed that these
ratios are the best possible competitive ratios. Many
network optimization problems were later studied fol-
lowing the leasing model of Meyerson (Anthony and
Gupta, 2007; Markarian and Kassar, 2020; Nagarajan
and Williamson, 2013; Abshoff et al., 2016). A num-
ber of extensions of the model were also known (Feld-
kord et al., 2017; Li et al., 2018; Markarian, 2018;
De Lima et al., 2017; De Lima et al., 2020).

Facility Location problems have been studied as
non-metric and metric versions. The latter version as-
sumes facilities and clients reside in a metric space
and all distances respect the triangle inequality. This
property has been used to prove the competitive ratio
of the algorithms for the metric version (Meyerson,
2001; Fotakis, 2008). In this paper, we study the non-
metric version.

Non-metric OFSL is a generalization of the non-
metric Online Facility Location problem (non-metric
OFL) (Alon et al., 2006), in which there is only one
lease type of length infinity; each facility offers one
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service; and dormant fees are zero. Alon et al., (Alon
et al., 2006) gave an O(logm logn)-competitive on-
line randomized algorithm for non-metric OFL.

Non-metric OFSL generalizes the Online Set
Cover problem (OSC) (Alon et al., 2003) and the
Parking Permit problem (PPP) (Meyerson, 2005).
We can thus conclude that there is a lower bound
of Ω(logn logm + logL) on the competitive ratio
of any randomized polynomial-time algorithm for
non-metric OFSL. The latter results from the lower
bound on the competitive ratio of any randomized
polynomial-time algorithm for the Online Set Cover
problem (OSC) due to (Korman, 2005) and the lower
bound on the competitive ratio of any randomized al-
gorithm for the Parking Permit problem (PPP) due
to (Meyerson, 2005).

3 PROBLEM DESCRIPTION

In this section, we give a formal definition of the
Online Non-metric Facility Service Leasing problem
(non-metric OFSL).

Definition 1. (non-metric OFSL) We are given m fa-
cility locations and k services. Each facility location
offers a subset of the k services. These services can
be leased for L different types, each differing by a du-
ration and price. For each service at some facility
location and each time step at which the service is not
leased by the algorithm, there is a dormant fee that
needs to be paid. There are in total n clients that may
arrive. In each time step, a subset of the clients ar-
rives, each requesting a subset of the k services. The
algorithm serves a client by connecting it to a number
of facility locations jointly offering the requested ser-
vices, such that these services are leased at the time
of the client’s arrival. Connecting a client to a facility
location incurs a connecting cost which is equal to the
distance between the client and the facility location.
In each time step, the algorithm needs to decide which
services to lease at which facility locations with which
lease type in order to serve all arriving clients. The
goal is to minimize the total leasing costs, dormant
fees, and connecting costs.

4 GRAPH FORMULATION

In this section, we formulate non-metric OFSL as a
graph-theoretic problem. The latter will be the basis
of our algorithm in Section 5.

Figure 1: Interval Model.

Nodes.
– For each client which arrives, we create a node,

called actual client node.

– For each facility, we create a node, called actual
facility node.

– For each service, we create a node, called service
node.

– For each time step and facility, we create two
nodes, one client node, called virtual client node,
and another facility node, called virtual facility
node.

Edges.
– We add a directed edge from each actual client

node to each actual facility node of weight equal
to the connecting cost between the corresponding
client and facility.

– We add L directed edges from each actual facility
node to each service node, corresponding to the
L lease types, each of weight equal to the corre-
sponding cost of leasing the service at the facility.
The Interval Model below explains the choice of
L.

Interval Model. Meyerson (Meyerson, 2005)
proved that we can assume, without affecting the
competitive ratio of the algorithm by more than
a constant factor, that leases may have a special
property in regards to their allignment and length. He
refered to the model as the interval model, defined as
follows.

– leases of the same type do not overlap

– all lease lengths are power of two

Figure 1 gives an illustration of the Interval Model
using an example of four lease types denoted as l1, l2,
l3 and l4. We assume in this paper that leases are in
accordance to the Interval Model. This means that at
any time step, there are exactly L different lease types
available. Hence, on any time step t, the L directed
edges correspond to the L different leases whose in-
tervals cover time step t.

– For each virtual client node corresponding to fa-
cility j, we add a directed edge from the virtual
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Figure 2: Graph formulation of non-metric OFSL instance.

client node to the actual facility node correspond-
ing to j and a directed edge from the virtual client
node to the virtual facility node corresponding to
j; both edges have weight equal to 0.

– We add a directed edge from each virtual facil-
ity node to each service node associated with it of
weight equal to the dormant fee associated with
the service at that facility.

Figure 2 illustrates the graph formulation using an
instance of two lease types l1 and l2, two services s1
and s2, two facilities A and B, and two clients, 1 and
2. Facility A offers both services s1 and s2. Facility B
offers service s2. Virtual facility A′ and virtual client
a′ are created in association with facility A. Virtual fa-
cility B′ and virtual client b′ are created in association
with facility B. Hence, virtual facility A′ has outgoing
edges to s1 and s2; virtual facility B′ has an outgoing
edge to s2 only. The figure also shows the weights on
the edges in association with each dormant fee, con-
necting cost, and lease cost, as described earlier.

Algorithm’s Input. The algorithm initially knows
the facilities, the services, the leasing costs, the dor-
mant fees, and the maximum number of clients that
may arrive. On each time step, a number of clients
requesting different services arrive. The algorithm
will know the connecting costs of a client to all fa-
cilities at the time step of the client’s arrival. Follow-
ing the graph formulation above, the algorithm will
initially know the entire graph except for the actual
client nodes and the outgoing edges from these nodes.
These will be created upon the arrival of the clients.

Algorithm’s Output: Upon the arrival of a new
client, the algorithm needs to serve it immediately
by connecting it to a number of services jointly offer-
ing the services requested, such that these services are
leased at the time of the client’s arrival. On each time
step, the algorithm needs to decide which services to
lease at which facility locations with which lease type

in order to serve all arriving clients. Following the
graph formulation above, on each time step, the algo-
rithm needs to:

– for each arriving client i, find a directed path from
the actual client node corresponding to i to each
service node corresponding to each service re-
quested by i.

– for each facility j, find a directed path from the
virtual client node corresponding to j to each ser-
vice node corresponding to each service offered
by j.

Algorithm’s Decisions. By finding the aforemen-
tioned paths, the algorithm can make its decisions by
mapping the solution paths as follows.

– The virtual facility and client nodes will be used
to determine when to pay a dormant fee. For each
virtual client node and service node associated
with it, if the solution path from the virtual client
node to the service node passes through a virtual
facility node, the corresponding dormant fee of
the service at the facility is paid. This means that
the algorithm will pay the dormant fee of a ser-
vice at a facility if the algorithm hasn’t purchased
a lease for the service. This is true since there
must be at least one path from each virtual client
node to each service node associated with it.

– For each client and service it has requested, we
purchase the lease at the actual facility node as-
sociated with the edge on the solution path from
the corresponding actual client node to the ser-
vice node. This guarantees that the algorithm pur-
chases for each arriving client at least one lease
for each service requested.

5 ONLINE ALGORITHM

In this section, we propose an online randomized al-
gorithm for non-metric OFSL, based on the graph for-
mulation described above.

Before the execution of the algorithm, the facility
nodes and the service nodes along with their edges are
created. On a given time step t, the online algorithm
is given a number of clients each requesting a number
of services. For each client, an actual client node and
its edges are created. Moreover, for each facility, a
virtual client node and a virtual facility node along
with their edges are created. Weights on the edges are
added as decribed before. Let the weight of edge e be
denoted by we.
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To find the solution paths, the algorithm will asso-
ciate each edge e with a value ve, initially 0. Through-
out the execution of the algorithm, the values of the
edges will increase, and on each time step, the algo-
rithm will purchase some of the edges of the graph
based on their values so as to provide a feasible solu-
tion for each time step. Recall that, a feasible solution
on a given time step means to find for each arriving
client i, a directed path from the actual client node of
i to each service node requested by i. Moreover, the
solution needs to also include for each facility j, a di-
rected path from the virtual client node of j to each
service node offered by j.

The maximum flow between two nodes will be the
smallest total values of edges which if removed would
disconnect the two nodes. These edges will be called
a minimum cut. While producing a feasible solution
on any given time step, the algorithm ignores all edges
whose corresponding leases are expired.

To decide which edges to purchase, the algorithm
will use a randomization process commonly adopted
by online algorithms (Alon et al., 2006; Markarian
and Meyer auf der Heide, 2019). The process is
rather straightforward. A random variable r is cho-
sen as the minimum among 2dlog(n+m · lmax +1)e
independent random variables, distributed uniformly
in the interval [0,1], where base 2 is assumed for the
logarithms. Recall that n is the total number of clients
and lmax is the length of the longest lease. The choice
of the number of variables and the interval becomes
clear in the competitive analysis of the algorithm in
Section 6.

The solution of the online algorithm is the set of
edges purchased by the algorithm. We define a sub-
routine, called Edges-selection, that takes as input two
nodes i and s, and retuns a set of edges. These edges
will be purchased by the algorithm to guarantee a di-
rected path from i to s in the solution. As a reaction
to a given time step t, the algorithm performs two
phases, depicted in Algorithm 1 below.

6 COMPETITIVE ANALYSIS

In this section, we give a competitive analysis of our
algorithm.

We measure the cost of the total edges purchased
by the algorithm. Following the graph formulation in
Section 4 – Algorithm’s Decisions, the latter repre-
sents the cost of the algorithm. Recall that, our leases
follow the Interval Model of Meyerson, as described
in Section 4 – Edges. This means that it is enough
to measure the cost of the algorithm over the duration
associated with the longest lease duration lmax. A sim-

Algorithm 1: Online Algorithm for non-metric OFSL.

Phase 1. For each actual client node i and each
service s requested by the client
- Run Edge-selection(i, s)
- Purchase the edges returned.

Phase 2. For each virtual client node i and each
service s associated with it
- Run Edge-selection(i, s)
- Purchase the edges returned.

Edge-selection (node i , node s)
i. If the current solution contains a directed path
from i to s, we do nothing. Else, while the maxi-
mum flow between i and s is less than 1:

- We compute a minimum cut Q between i and s.
- We increase the value ve of each edge e ∈ Q

using the following equation:

ve← ve(1+
1

we
)+

1
|Q | ·we

ii. We return edge e if its value ve ≥ r.
iii. If i is not connected to s, we return the edges of
a shortest-weight path from i to s.

ilar analysis has been done in (Abshoff et al., 2016;
Markarian, 2015).

Let Opt be the cost of the optimal offline solution.
The algorithm buys edges returned by Edge-selection
in the second and third steps (ii. and iii.). We analyze
each separately.

Edge-selection – Step ii. Let E ′ be the collection of
edges returned by Edge-selection in the second step
ii. Let CostE ′ be the expected cost of this collection.
An edge is returned here if its value exceeds r, the ran-
dom number selected before the execution of the algo-
rithm. We fix any i : 1 ≤ i ≤ 2dlog(n+m · lmax +1)e
and edge e. We denote by Xe,i the indicator variable
of the event that e is returned by Edge-selection. We
denote by we the weight of edge e and ve its value. We
can write CostE ′ as:

CostE ′ = ∑
e∈E ′

2dlog(n+m·lmax+1)e

∑
i=1

we ·Exp [Xe,i] (1)

= 2dlog(n+m · lmax +1)e ∑
e∈E ′

weve (2)

∑e∈E ′ weve can be compared to the optimal offline
solution as follows. Every time we compute a mini-
mum cut, there must be in the minimum cut at least
one edge that belongs to the optimal offline solution.
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This is true since, for any pair that we need to connect,
the optimal solution needs to also connect it through
some path p. By definition of a cut, every cut should
contain at least one edge of p.

We give in the following lemma an upper bound
on the total number of times Edge-selection computes
a minimum cut.

Lemma 1. The total number of times Edge-selection
computes a minimum cut is upper bounded by O(Opt ·
log |Q|), where |Q| is the size of the largest minimum
cut constructed.

Proof. Each optimal edge e could have appeared in
multiple minimum cuts constructed, and after some
number of times, its value becomes 1 and it won’t
belong to any future minimum cut. The algorithm
ensures that the maximum flow is less than 1 be-
fore it computes any minimum cut. Thus, it becomes
easy to see that we can actually bound these number
of times by O(we log |Q|), based on the equation in
Edge-selection for increasing the values of the edges.
Applying the same analysis to each optimal edge and
summing up over all these edges, we can conclude
that the total number of times we compute a minimum
cut is O(Opt · log |Q|), since each minimum cut must
contain at least one optimal edge.

Furthermore, the largest minimum cut |Q| con-
structed by Edge-selection can be upper bounded in
terms of L and m:

|Q| ≤ L ·m (3)

The following lemma shows that the total value
increase does not exceed 2 for each minimum cut.

Lemma 2. The total value increase associated with
each minimum cut constructed does not exceed 2.

Proof. We fix any minimum cut Q constructed.
Based on the equation in Edge-selection, each edge
e in Q contributes to a value increase of we ·(

ve
we

+ 1
|Q|·we

)
. Before we make any value increase,

the maximum flow is less than 1, that is, ∑e∈Q ve < 1.
Summing up over all the edges in Q, we conclude that
the total value increase does not exceed:

∑
e∈Q

we ·
(

ve

we
+

1
|Q| ·we

)
< 2

From Lemma 1 and Lemma 2, we imply:

∑
e∈E ′

weve ≤ O(Opt · log |Lm|) (4)

Therefore,

CostE ′ ≤ O(Opt · log(n+m · lmax) · log |Lm|) (5)

Edge-selection – Step iii. Let E ′′ be the collection
of edges returned by Edge-selection in the third step
iii. Let CostE ′′ be the expected cost of this collection.
The algorithm performs this step each time it finds
out that the pair at hand is not connected in the cur-
rent solution. We define the flow of a path to be the
minimum of all edge values of the path. To calculate
CostE ′′ , we need to observe the probability that the
given pair (i,s) is not connected. The latter is upper
bounded by the probability that r exceeds the flow of
each path from i to s. We fix a minimum cut Q con-
structed at the end of step i. Before executing step
ii, Edge-selection ensures that the sum of flows of all
paths from i to s is at least 1. Hence, the probability
that the pair is not connected is:

∏
e∈Q

(1− ve)≤ e−∑e∈Q ve ≤ 1
e

Computing for all i: 1 ≤ i ≤
2dlog(n+m · lmax +1)e, the probability that the
pair is not connected will be at most 1

(n+m·lmax)2 .
Each time Edge-selection finds out that the pair

(i,s) is not connected, it returns the cheapest path
from i to s. The latter is a lower bound on Opt. Hence,
CostE ′′ be will at most (n+m · lmax) · Opt

(n+m·lmax)2 , since
there are in total lmax virtual client nodes over an lmax
interval and n actual client nodes.

Thus, the cost is negligible on the competitive ra-
tio.

CostE ′′ ≤
Opt

n+m · lmax
(6)

Therefore, we conclude the following theorem.

Theorem 1. There is an O(log(n+m · lmax) log(Lm))-
competitive randomized algorithm for Online Non-
metric Facility Service Leasing (non-metric OFSL),
where n is the total number of clients, lmax is the
length of the longest lease duration, L is the number
of lease types available, and m is the total number of
facility locations.

7 DISCUSSION & FUTURE
WORK

Inspired by resource shortages during the COVID-19
pandemic, we have presented in this paper an opti-
mization model for leasing services at facility loca-
tions. It is important to note here that the latter is not
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specific to only health services but can be applied to
any type of facility-service-leasing scenario.

Our model aims to minimize the leasing costs
while optimizing the distances between clients and
the facilities they are served by. Moreover, it requires
a dormant fee for each day a service is kept dormant.
As a future work, it would be interesting to study
other variations such as assuming different fees for
different dormant times. For example, a one-month
dormant fee of a service could be cheaper per unit
day than a one-week dormant fee, since the facility
can make use of the service over a longer period if it
knows in advance that the service will not be used for
a whole month rather than a week only.

In this paper, we have presented the first online al-
gorithm for making on-the-fly decisions about leasing
services at facilities and connecting clients to them.
Next steps would be: to achieve a better competitive
ratio by designing another algorithm or improving the
competitive analysis of our algorithm; to prove lower
bounds on the competitive ratio of any randomized
online algorithm for our problem; and to design a de-
terministic algorithm for our problem.

Another research direction is to add capacities to
the facilities and/or the services provided by them. So
far in this model, we have assumed that facilities can
serve any number of clients, since we assume that the
input sequence receives a limited number of clients
each day.

Our proposed online algorithmic approach has the
advantage of providing decisions that have a proven
guarantee. That is, even on the worst input sequence,
the algorithm can assure that the decisions are not
worse than what promised. Hence, it is worth imple-
menting the proposed algorithm first on a simulated
environment of COVID-19 facility locations and ser-
vices, and second on a real-world community provid-
ing services to its members through leased services at
facility locations.
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