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Abstract:  This paper presents an extensive study on issues related to the development of a recently researched Li-Ion 
Polymer (LiPO) battery. The vast area of research on LiPOsuch as state of charge (SoC) estimation, 
electrolyte, an equivalent circuit which includes electrical & thermal modelling, parameter identificationand 
validation cycles have extensively reviewed and discussed. Moreover, the parameter identification methods 
of the battery are also elaborated in detail. A novel attempt is made to prepare and compare the various SoC 
estimation techniques, stating its advantages and disadvantages. The error in the SoC estimation technique 
is greatly dependent on the battery model considered. Various electrical models are discussed that can 
replicate the battery’s electrical performance. The complexity of the model increases as the number of 
performance parametersare included in the model. The estimation is incomplete if the technique is not 
validated and hence various validation cycles are discussed to validate the effectiveness of SoC estimation.  

1 INTRODUCTION 

Nowadays battery plays a very crucial role in several 
engineering applications due to numerous energy 
and environment concerns. The research on various 
aspects of battery picked up during the nineties after 
compulsion of environmental issues. Lithium based 
rechargeable batteries are very suitable power 
sources for several evolving applications.In Li-ion 
battery, Lithium-ion intercalated compound or either 
graphite or disordered form of carbon is used as 
electrodes. The battery reaction is as follows:  
Li + +C6 + e- C6Li : negative electrode reaction 
LiMO2MO2 + Li++ e-: positive electrode reaction  

Compared to its counterpart nickel metal hydride 
and nickel-cadmium batteries, Lithium batteries 
have high energy and power density,high voltage in 
a unit cell and high specific energy with long cycle 
life. Cutting edge competition between the two 
battery technology has led enormous development of 
Li-ion battery as compared to NiMH2 batteries and 
is was well predicted that the two batteries had an 
almost equal number of sales during 2004 which 
was initially dominated by NiMH2 battery 
(Blomgren, 2000). The secret of success lies within 
the progress of electrolytes which was very 

paramount after initial liquid electrolyte, progressed 
to solid electrolyte and thento polymer electrolyte. 
Table 1 shows the comparative analysis between 
solid, liquid and hybrid electrolyte. Sanyo, a 
manufacturer of Li-ion battery, showed that there 
was a 50% increase in the energy content of a Li-ion 
battery from 1994 to 1999. The challenge to the 
liquid electrolyte of Li-ion rechargeable batteries, as 
mentioned in Table 1, was eradicated by the use of 
the gel-based polymer. But they faced compatibility 
issue with lithium metal anode and had problems 
with leak proof packaging (Gozdz et al., 1995). The 
need to have thin batteries with flexible 
manufacturing and battery surface design forced to 
develop Li-Ion Polymer (LiPO) batteries that 
completely had solid electrolyte. The use of polymer 
PEO (Polyethene oxide) was common due tothe low 
conductivity of 10-6 to 10-7 S/cm due to crystallinity 
(Venkatasetty and Jeong, 2002). To achieve high 
conductivity lithium imide salts were developed. 
Numerous co-polymers have been created that can 
deal with the problem of crystallinity. The stability 
of these salts results ina maximum voltage of 4.5V. 
Salts such as CF3SO2NLiSO2C2F5 and 
CF3SO2NLiSO2C4F9 showed higher conductivity 
and optimized the blending condition with polymer 
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electrolyte. To increase the conductivity of polymer, 
nano filters such as BaTiO3 is added in the 
electrolyte, which also reduces the corrosion and 
growth of dendrites in electrode due to less reactive 
nature towards alkali metal.LiPO batteries though 
provided a solution but Solid Polymer Electrolyte 
(SPE) lacks the ionic conductivity due to low 
segmental mobility of polymer chain. Various 
development has been made in the types of polymer. 
Electrolytes such as 1-MLiPF6-EC/PC has been 
developed with conductivity more than 10-3 S/m and 
strength upto 90-100°C. A polymer such as 
BaTiO3less reactive to alkali metal and Formation of 
dendrites is less. Few environmental friendly 
polymers have been developed. This paper is an 
attempt to discuss various issues related to LiPO 
batteries such as SoC estimation, electrolyte, an 
equivalent circuit which includes electrical & 
thermal modelling, parameter identification and 
validation cycles. The contribution has been made to 
identify the advantages and disadvantages of various 
SoC estimation techniques. All the estimation 
techniques available for LiPO battery are briefly 
discussed. Further efforts were made towards the 
selection of battery model and techniques to identify 
the battery parameter. 

Table 1: Comparison of various electrolytes in Li-based 
batteries 

Electrolyte Advantage Disadvantage 

Liquid - High 
conductivity 
- Developed 
technology 

- Leakage of electrolyte 
- costly separator 
- oxidation of electrolyte 
- no flexibility in design 
- Inefficient space 
utilization 

Solid  - No leakage 
of electrolyte 
- simple 
polymer 
processing 
methods 
-Flexibility in 
design 

- Low conductivity 
- Poor mechanical 
properties 

Hybrid - High 
conductivity 
- no leakage 
of electrolyte 
- easy 
polymer 
processing 

-Electrochemical stability 

Furthermore, the validation of SoC via various 
standard cycles have been identified. The state ofthe 
literature on the LiPO battery is shown in figure 1. 

 
Figure 1: Number ofresearch paper under consideration 
for a particular topic. 

2 LITERATURE REVIEW 

2.1 Soc Estimation  

With the development and wide application of Li 
based batteries, the estimation of battery’s SoC is 
utmost important and hence the estimation of SoC 
has been extensively researched and different 
methods have been proposed. Battery system being 
highly non-linear it is very much important to have 
an accurate estimation of SoC as it can avoid the 
condition of overcharge or over-discharge thus 
increasing the life of the battery.  

Various methods of SoC estimation proposed can 
be broadly classified into the direct method, Book 
Keeping method, artificial neural network and model 
based method with a filter algorithm, as shown in 
figure 2. The direct method to estimate SoC remains 
by monitoring voltage and electrochemical 
impedance. Though the method is simple and easy to 
implement. This method is difficult to implement in 
real-time as the driving cycle is very uncertain 
(Sathyanathan and Sugumaran, 2018). This requires 
to evaluate the charge retained by the battery before 
calculation. Moreover, it has a large measuring time 
Xiong et al., (2013), hence its practical application is 
very complex (Dowgialloal, 1976). Open circuit 
voltage estimation being another method for SoC 
estimation, but the time required by the battery to 
reach equilibrium is large and hence cannot be used 
for real-time application (Meng et al., 2016 and Lee 
et al., 2018).  

Book Keeping method is based on battery current 
integration also called as Ampere-hour counting or 
Coulomb counting method Johnson, (2002) is so 
versatile that it is still the basis of SoC estimation in 
Battery Management System (BMS) provided the 
accuracy in measuring the current and initial SoC of 
battery is maintained (Xiong et al., 2013; Lee et al., 
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2018; Xu et al., 2014 and Chen et al., 2016). This 
method is simple and easy to implement (Xu et al., 
2014). Since this method is an open-loop system, so 
neither of errors in the system can be detected nor 
fixed thus accumulating errors (Xu et al., 2014). 
Further, SoC estimation does not take into account 
battery age, health, temperature (Sathyanathan and 
Sugumaran, 2018 and Hansen et al., 2005). Artificial 
neural networks and fuzzy logic system were 
developed for SoC estimation but it required high 
and very complex computational so it cannot be 
applied on the online system (Lee et al., 2018; Xu et 
al., 2014 and Chen et al., 2016). The various model 
based method with filter algorithms such as Support 
Vector Machine (SVM) method, Sliding Mode 
Observer, Kalman filter was developed to estimate 
SoC.Every method has its own pros and cons. 
Support Vector machine requires low memory but 
accurate training data and proper kernel function are 
required (Lee et al., 2018 and Hansen et al., 
2005).Kalman Filter is a powerful tool as SoC 
estimation does not depend on initial SoC value and 
it can detect and model cell ageing Hansen et al., 
(2005) but to accomplish this advantage an accurate 
battery model and appropriate knowledge of system 
noise are required (Sathyanathan and Sugumaran, 
2018; Xiong et al., 2013; Xu et al., 2014; Xiong et 
al., 2005 and Junet et al., 2014). Sliding Mode 
Observer leads in simple control and robust 
performance under uncertain environments (Xu et al., 
2014 and Junet et al., 2014) but the chattering 
phenomenon cannot be ignored (Xu et al., 2014). 
Some advancements in these basic techniques, such 
as Robust Sliding mode observer, Extended Kalman 
filter, Adaptive unscented Kalman filter were 
employed to escape from those drawbacks, to have 
fast convergence, error below 3%, less computational 
burden and many more. A detailed comparison of 
various techniques has been described in table 2. 

 

Figure 2: Classification of SoC estimation techniques 

2.2 Battery Model  

To estimate the exact performance of battery such as 
SoC and State of Health (SoH), it is important to 
have an accurate battery model. Further, this will 
help to improve the charging and discharging pattern 
of the battery (He et al., 2011). Modelling of the 
battery for any application can be achieved via 
electrochemical model, statistical model, 
probabilistic model, neural network model, 
equivalent circuit model and analytical battery 
models. A detailed comparison of these models has 
been shown in table 3. Numerous electrical 
equivalent circuit models were developed to 
simulate the battery performance. Further, 
development has been made to model and 
compensate for the temperature error (Moshirvaziri 
et al., 2015) and fault diagnosing (CemKaypmaz et 
al., 2011). 

Table 2: Comparison of various SoC estimation techniques. 

S.No. 
SoC Estimation 
Techniques 

Advantage  Disadvantage 

1 

Direct Method Simple and easy to implement -Uncertainty in driving cycle leads to difficulty in 
measurement of SoC and parameter characterization 
in real time(Sathyanathan and Sugumaran, 2018) 
-Before new calculation, BMS requiresto determine 
the charge remaining in battery(Xiong et al., 2013) 
- Large measuring time. (Xiong et al., 2013) 

Open circuit voltage 
estimation 

Simple and easy to implement -Time required by battery to reach equilibrium is 
large and hence cannot be used for real time 
application (Meng et al., 2016) (Lee et al., 2018).

2 

Ampere-hour 
counting or 
Coulomb counting 

-Simple and easy to 
implement (Xu et al., 2014) 
-Consider both current 

-Accuracy of estimation depends on accurateness in 
measurements of the current and initial SoC of 
battery (Xiong et al., 2013; Lee et al., 2018; Xu et 
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or current 
integrationmethod 

measurement and integration 
- Basis of SoC estimation in 
BMS 

al., 2014 and Chen et al., 2016) 
-The coulomb counter cannot detect and fix the 
starting error 
-SoC estimation does not take into account battery 
ageing(Meng et al., 2016 and Hansen et al., 2005) 
- Since the system is open loop, it is prone to 
accumulation error(Xu et al., 2014). 

3 

Artificial Neural 
Networks or Fuzzy 
Logic 

A powerful tool for non-linear 
system (Xu et al., 2014) 

-Learning process requires high computational and 
is very complex and cannot be applied on online 
system (Lee et al., 2018; Xu et al., 2014 and Chen 
et al., 2016) 
-High burden on BMS (Chen et al., 2016) 
-Large memory is required. 

Model based method with a filter algorithm 

4 

Luenberger 
observer 

 -The result depends highly on the accuracy of the 
model (Xu et al., 2014) 
- Computational complexity is high enough for 
online application (Xu et al., 2014) 

Sliding mode 
observer (SMO) 

-Easy control and robust 
performance in uncertain 
environments (Xu et al., 2014 
and Junet et al., 2014).  
-Good convergence (Junet et 
al., 2014). 
-Compensate for the effect of 
nonlinearity and uncertainty  

-The chattering phenomenon causes an error (Xu et 
al., 2014 and He et al., 2011) 
-Inappropriate switching gain can cause slow 
estimation of SoC.(He et al., 2011) 
 

Robust Sliding 
mode observer 
(RSMO) 

-Strong robustness for time-
varying and non-linear battery 
system (Chen et al., 2016) 
- Fast convergences and 
accurate results when 
compared to SMO

- The chattering phenomenon causes an error. 

Proportional 
Integral observer 

-More robust performance 
under uncertain environments

-The chattering phenomenon causes an error (Xu et 
al., 2014 and He et al., 2011) 

Kalman filter - SoC estimation does not 
depend on initial SoC value  
- It can detect and model cell 
ageing (Hansen et al., 2005) 
- It is an optimization method 
of the Luenberger observer 
(Xu et al., 2014) 

- The result depends highly on the accuracy of the 
model. 
- Inappropriate knowledge of noise in the system 
will lead to remarkable error and divergence 
(Sathyanathan and Sugumaran, 2018); Xiong et 
al., 2013; Xu et al., 2014; Xiong et al., 2005 and 
Junet et al., 2014)  
- Computational complexity is high enough for 
online application (Xu et al., 2014) 
- It linearizes the non-linear system (Meng et al., 
2016 and Chen et al., 2016) 

Extended Kalman 
Filter (EKF) 

- SoC estimation does not 
depend on the initial SoC 
value (Lee et al., 2018). 
- Detect and model cell ageing 
and other lifetime effects on 
battery, the accuracy of ±5% 
can be achieved (Hansen et 
al., 2005). 
- Linearizes the non-linear 
system (Meng et al., 2016; 
Chen et al., 2016 and Wu al., 
2018) 

- SoC depends on a particular type of system. 
- High computational complexity, computational 
time and implementation cost (Hansen et al., 2005). 
- Since higher order terms are ignored, linearization 
error is expected (Meng et al., 2016 and Chen et 
al., 2016). 
- Accuracy is reached for first order only (Wu al., 
2018) 

Unscented Kalman 
Filter (UKF) 

- More accurate and easier to 
implement when compared to 
EKF (Meng et al., 2016)

- Noise still remains a major issue. 
- The high computational burden (Meng et al., 
2016).
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-Unscented transformation to 
approximate the probability 
density function (Chen et al., 
2016). 

Adaptive unscented 
Kalman filter 
(AUKF) 

-Adaptively adjusts process 
noise covariance (Meng et al., 
2016) 

- Result depends highly on the accuracy of model. 
-High computational burden (Meng et al., 2016). 

Adaptive Extended 
Kalman filter 
(AEKF) 

- System adaptively updating 
the process
and measurement noise 
covariance. 

- High computational burden 

Support Vector 
Machine (SVM) 

-Memory requirement is less. 
- Successful for the highly 
non-linear system. 
-After training, SVM does not 
require to call intensive math 
function, as in case of EKF 
-An optimized SVM can offer 
an accuracy comparable to 
EKF at the cost of simple 
coulomb counter (Hansen et 
al., 2005) 

Accurate training data and proper kernel function 
are required. (Lee et al., 2018) 

Table 3: Comparison of various battery models. 

Battery model type Advantages Disadvantages 

Electrochemical model -Fully describe the characteristics of battery 
(He et al., 2011 and Ceylan et al., 2014) 
- Most accurate and can be used as a 
reference for comparison with other models 

-Very complicated and difficult to 
configure. (He et al., 2011; Ceylan et 
al., 2014) 
- Difficulty in simulating the dynamic 
performance (He et al., 2011) 
- Long computation time (Ceylan et 
al., 2014)

Statistical models -Extract data from samples of data. (Ceylan 
et al., 2014 and Krintz et al., 2004) 
-Compact and fast  (Ceylan et al., 2014 and 
Krintz et al., 2004)

-Not as accurate as physical models 
(Ceylan et al., 2014 and Krintz et al., 
2004) 

Probabilistic model -Extract data from sample data. (Ceylan et 
al., 2014 and Rao et al., 2005) 
- Better results as compared to Statistical 
models 

- Complex method  
- Require advanced simulation 
techniques (Ceylan et al., 2014 and 
Rao et al., 2005) 

Neural network model  High accuracy under certain conditions (He 
et al., 2011) 

- Accuracy and calculation burden of 
the model was influenced by the 
choices and quantity of input 
variables of theneural network. (He et 
al., 2011) 
- Neural network trained by data can 
only be used within the original 
scope of that data (He et al., 2011)

Equivalent circuit model - High dynamic simulation with high 
accuracy (He et al., 2011) 
- Temperature dependent model of the 
battery is available

- Not as accurate as Electrochemical 
model. 

Analytical Battery Models - Electrochemical and statistical methods are 
combined (Ceylan et al., 2014) 
- High accuracy, robust, compact and fast 
(Ceylan et al., 2014 and Jongerden et al., 
2009) 
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2.3 Parameter Identification  

Once the battery model is known then it is required 
to identify the parameters of the model so as to 
incorporate the dynamic performance of the battery. 
Many such techniques that identify and optimize the 
battery parameters are Recursive Least Square 
(RLS), Genetic Algorithm, Generalized Pattern 
Search (GPS) Hooke Jeeves optimizationalgorithm, 
extended Kalman filter, least square support vector 
machines. Temperature and ageing parameters of the 
battery were also modelled by many authors to 
investigate the battery depth of discharge, efficiency 
and much other performance parameters (Dogger et 
al., 2011). The importance of temperature in the 
battery was felt and authors in Lee et al., (2012) 
installed temperature sensor in battery and authors in 
Pruteanu et al., (2012) proposed a method to predict 
the thermal behaviour of LiPO battery. 

2.4 Charging of Batteries 

A proper charging cycle would increase the life of 
the battery. The basic charging pattern is Constant 
Current/Constant Voltage (CC/CV) charging which 
is not sufficient for fast charging. Authors in (Choe 
et al., 2013) have developed a charging algorithm 
that determines the magnitude of charging current 
and duration of charging current on the basis of SoC 
of the battery and the Li concentration at the surface 
of the electrode. Authors Kim et al., (2016) proposed 
a strategy to reduce the charging losses inLiPO 
battery while in Amanor et al., (2018) authors 
discussed the strategies to have faster and efficient 
battery charging techniques by determining the pulse 
width and frequency of the charging pulse. 

3 SOC ESTIMATION 
TECHNIQUES 

SoC estimationof a battery is very much vital for 
battery based devices such as Mobile phones, 
Laptop, Electric Vehicles (EV) Solar charger and 
much more applications.  
SoC is defined as the measurement of the charge 
contained in the electrode calculated in terms of the 
lithium concentration. SoC can also be understood 
as an indicator or energy available within the battery 
(Watrin et al., 2012). So estimating the SoC is of the 
utmost important parameter in a battery. Definition 
of SoC is not very easy and consistent as it can be 
expressed by other parameters (Dogger et al., 2011; 

Charkhgard and Farrokhi, 2010). In general, the SoC 
has described the relationship between the current 
capacity (q(t)) and rated capacityof the battery as 
given in equation 1 (Dogger et al., 2011; Charkhgard 
and Farrokhi, 2010). 

𝑆𝑜𝐶 𝑡
 

   (1) 

Equation 2 gives the expression of SoC in 
continuous form and discrete form with Δt as the 
sampling interval.  

𝑆𝑜𝐶  𝑆𝑜𝐶
.

𝑆𝑜𝐶 𝑆𝑜𝐶 𝜂. 𝐼
    (2) 

Where η is charge or discharge efficiency, I refer to 
current flowing through the battery qnis the rated 
capacity of the battery. SoCK is the SoC at the kth 

instant. 
In the Direct method, SoC is estimatedfrom the 

open circuit voltage (OCV)and SoC curve of the 
batteryof a Li-ion Polymer. There is no linear 
relationship between SoC and OCV of Li-ion PO 
battery (Shown in figure 3) and the relationship is 
different for different batteries. 

In Open circuit voltage estimation method 
employs the fact that internal impedance causes 
voltage to drop as the battery discharges. In other 
words, one can say that EMF of battery is related to 
SoC.This method comes with serious drawback that 
as the battery is near to get discharged, the error in 
SoC estimation is large (Chang et al., 2013). 

In Ampere-hour counting or Coulomb counting 
or current integrationmethod, the discharging current 
I(t) is integrated to calculate the charge remaining in 
the battery and thus estimating the State of Charge 
(SOC(t)) of the battery as mentioned in equation 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 
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𝑆𝑂𝐶 𝑡  𝑆𝑂𝐶 𝑡 1  
 

∆𝑡  (3) 

Where SoC (t-1) is previously estimated SOC value. 
Accuracy in SoC estimation depends on various 
factors such as discharging current pattern, battery 
SoH, temperature and life cycle. 
 

Input Layer
(Indicating Battery 

Status) Output LayerHidden Layer

Actuall Voltage

Actual Current

Temperature
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Figure 4: SOC estimation using backpropagation 
techniques 

In Back propagation neural network method, SoC is 
predicted on the basis of recent data of current, 
voltage and battery temperature Linda et al., (2009), 
a typical block diagram for back propagation 
technique is shown in figure 4. The architecture 
contained actual voltage, actual current and actual 
temperature as inputneurons. Output layer, 
containing one layer, is used to estimate the 
SoC.Architecture is shown in figure 4. Equation 4 
governs the input of neurons inthe hidden layer.  

𝑛𝑒𝑡𝑖 ∑ 𝑥 𝑣 𝑏    (4) 
Where netij is referred to input to jth hidden layer 
neuron; xi is referred to input to hidden layer neuron 
j; vij is referred to weighted function between i and j 
and finallybj is referred to bias function of the 
hidden layer neuron j. The governing equation of 
output layer neuron is similar to that of equation 4.  
The activation function applied to hidden layer 
neuron and output layer neuron is the hyperbolic 
tangent function and sigmoid function, respectively. 
The advantage of this technique is that it has the 
ability to self-learn, self-organize and efficient 
mapping of non-linear system. 

3.1 Support Vector Machine (SVM)  

The SVM Hansen et al., (2005) uses a non-linear 
estimator that gives robustness to this technique. 

SoC estimation starts with the training of SVM. The 
training data should be different from the testing 
data and it should cover the entire range of operation 
of SVM. Next, the optimum SVM parameter is 
calculated. Now the processing of the test data to 
obtain the SoC is done in the same way as that of 
training data. The root mean square error was 
approx. 5% with a positive maximum as +16% and a 
negative maximum of9%.  

An optimum SVM can condense thousands of 
training points to a manageable number of support 
vectors. Unlike EKF, matrix inversion and complex 
math function are not required to be called in SVM. 

3.2 Sliding Mode Observer (SMO) 
Technique 

The key to the success of SMO Junet et al., (2014) 
technique is a simple control structure with 
unmatchable performanceunder uncertain 
environments. The modified Thevenin model of 
battery or Dual Polarization model has been used so 
as not to compromise with accuracy in estimation of 
SoC. 

The technique starts with developing piece-wise 
relationship between SoC and OCV. Then battery 
system that includes various parameters such as Rt1, 
Rt2, Ct1 and Ct2, (as mentioned in table 5) is 
developed in state space form, as shown in equation 
5. The battery system needs two additional terms 
namely sliding feedback gain and Luenberger-type 
gain. Luenberger gain ensures stability to the 
observer. An additional function sgneq(y), defined in 
equation 6, is added to the state-space equation to 
remove the chattering levels produced by this 
technique. 
 

𝑉
𝑉

𝑆𝑜𝐶

1
𝑅 𝐶 0 0

0 1
𝑅 𝐶 0

0 0 0

𝑉
𝑉

𝑆𝑜𝐶

⎣
⎢
⎢
⎢
⎡

1
𝐶

1
𝐶

𝜂
𝐶 ⎦

⎥
⎥
⎥
⎤

𝐼                                                                        (5) 

𝑠𝑛𝑔 𝑒      (6) 

The results from the SMO techniques show that 
steady state error is asymptotically stable which 
make its performance better for an unpredictable 
environment.  
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3.3 Robust Sliding Mode Observer 
(RSMO) 

RSMO Chen et al., (2016) technique comes with 
switching adaptive gain that helps to predict the SoC 
in an unpredictable environment. This is achieved by 
designing feedback gain matrix and observer input 
function in such a way that robustness and 
convergence of error aredefinite. The technique 
proceeds with modelling the battery system in 
discrete form.  Error dynamics is calculated by 
obtaining the difference between estimated states 
and true states. With the adaption of Radial Basis 
Function Neural Network in the RSMO, prediction 
techniques can gain robust tracking capability of 
parameter against system uncertainty. It can further 
significantly restrain the chattering magnitudes in 
the SoC estimation 

3.4 Extended Kalmanfilter (EKF) 

The main focus was to develop the temperature 
compensated model of LiPO battery via EKF Lee et 
al., (2018), to estimation SoC. The temperature 
ranges from 37°C to 40°C. Estimation of SoC is 
based on reducing the error between the measured 
value and estimated value by adjusting the Kalman 
gain. Prediction begins with developing the battery 
model in a state-space form that includes Gaussian 
Process noise and Gaussian measurements noise. 
State-space model of Thevenin battery model is 
represented in equation 7. 

,

1 0
0

, ,
,

,

,

𝐼                                                             (7) 

Once the battery terminal voltage and state of charge 
are calculated then the battery internal voltage is 
observed using equation 8 as, 

𝑉 , 𝑎 𝑇 1
𝑆𝑂𝐶
𝑉 ,

𝐼 𝑅 , 𝑇 𝑏 𝑇 (8) 

Where R1t,k-1(T) refers to the battery resistance at a 
particular temperature.  
The temperature and voltage are measured and the 
initial SoC is determined. Temperature compensated 
model is identified and the SoC is estimated using 
the EKF algorithm as shown in figure 5. 
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Figure 5: SoC Estimation block diagram for EKF 
technique. 

3.5 Unscented Kalman Filter (UKF) 

UKF Wu et al., (2018) proceeds with the 
discretization of non-linear system dynamics in the 
state space equation. SoC is defined on the basis of 
equation 2. For SoC estimation in discrete form, the 
sampling time of Δt =1 sec is considered. State-
space model of battery is given in equation 9 

𝑉 𝑉 , 𝑒 𝐼 . 𝑅 1

𝑒                                                                      (9) 

State variable Xk, comprises of two variable, namely 
SoCk, Vt,k. The observation equation is shown in 
equation 10 
Vt,k = Vin(SOCk, T) – IkR1(SoCk,T) – Vt,k           
(10) 
SoC is estimated by flow chart as given in figure 6. 

Figure 6: Flow chart to estimate SoC using UKF.  

3.6 Adaptive Unscented Kalman Filter 
(AUKF) 

AUKF Meng et al., (2016) method gives successful 
result in the estimation of SoC because of the fact 
that sampling of a non-linear battery system. AKUF 
based SoC estimation starts with the basic SoC 

Initialize with temperature and SOC

Parameters Look-up 

UKF Algorithm updated the time and 
measurement

Battery Parameter and SOC Update
OCV, R1, Rt1, Ct1  

Vt < Threshold value

SoC

Yes

No
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equation as shown in equation 2.To incorporate the 
system noise, the parameter qk has been added in 
equation2.The accurate model of the system is 
developed via LSSVM where another parameter 
rkhas introduced that account for measurement noise. 

Algorithm of AKUF estimation, as shown in 
figure 7 starts with an initial value of SoC and then 
measurement error and noise in the system is 
determined. Then, calculating sigma point and 
weighting coefficients. Now, prediction and 
correction are done based on set equations. Finally, 
adjustment of noise covariance.  

M Initial Training Samples of SoC, 
Current Voltage

M > N

LSSVM State space 
equation 

SoC estimation by 
AUKF

T < t

Y

N

 
Figure 7: Flowchart of AUKF algorithm for SoC 
estimation.   

In order to reduce the computational burden and size 
of the data set, the data collection is done by moving 
window method. SoC estimation of the battery is 
done on the basis of parameters in equivalent circuit 
model that is consistently updated on the basis of 
age, operating time. Further for computation of SoC, 
the initial training sample required for computation 
is less.  

3.7 Adaptive Extended Kalman Filter 
(AEKF) 

SoC and peak power capability for a 3.7V/35Ah 
LiMn2O4 Li-ion battery is robustly determined by 
AEKF(Sathyanathan and Sugumaran, 2018); Xiong 
et al., 2005 and Sun et al., 2014). This method is 
also used to calculate State of Power (SoP) (Sun et 
al., 2014). 

SoC is defined and estimated on the basis of 
equation 2. The voltage is updated equation is 
similar to equation 9 and reproduced here for ready 
reference. SoC estimation requires discretization of 
the battery system as given in equation 11.  

𝑉 𝑉 , 𝑒 𝐼 . 𝑅 1 𝑒

𝑉 𝑉 , 𝐼 . 𝑅 1 𝑒
                                    (11) 

Additional terms such as ωk representing 
unmeasured process noise and υk representing the 
measured noise are required to be added in equation 
11 (Sun et al., 2014). 

Before initialization the AEKF algorithm, it is 
required to develop the measurement model and 
state transition model that can relate SoC to OCV 
The block diagram of AEKF is shown in figure 8. 
The algorithm requires the Development of non-
linear model of the battery and then real time current 
profile is measured and loaded to the model. This 
helps in parameter identification by Recursive least 
square. Identified parameters are used to update the 
SoC which further helps in updating the OCV.Now 
the parameter data and voltage error are transmitted 
to AEKF based SoC estimation technique. With the 
estimated SoC, OCV is updated and after 
computation terminal voltage error converges to set 
value. Then SoC reflects the reference voltage thus 
estimating correct SoC. 

Initialize with random 
battery state

Battery parameter State 
estimated

Error is calculated and 
adapted

Experimental Value

AEKF Gain is updated 

SoC estimated

Battery model

SoC and Vt is accurately 
estimated 

 

Figure 8: Block diagram of SoC estimation via AEKF 
technique. 

3.8 Proportional-integral Observer  

SoC is defined similarly to equation 1 and 2. Battery 
model could be fully regarded as a linear system if 
there is no modelling error or non-linearity are 
considered.Non linearity of the system has been 
considered as an added to the battery system by 
adding a parameter Eυ(t), as shown in equation 13. 

𝑥 𝐴𝑥 𝐵𝑢 𝐸υ t
𝑦 𝐶𝑥 𝐷𝑢            (13) 

E refers to as non-linearity and υ(t) refers to as 
disturbances. There are various parameters that 
cause a disturbance in the system such as sensor 
noise, temperature and so on. The parameter 
dυ(t)/dt≈ 0 since temperature variation is slow, drift 
in the current sensor is also slow. So simple case of 
dυ(t)/dt ≈ 0 is considered. The Proportional Integral 
observer Xu et al., (2014)model is developed 
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according to the Li-ion battery system as per the 
definition. The parametersKp, Ki1 and Ki2of the 
observer technique are identified using Linear 
Quadratic method. 

Finally, to provide a clear view of SoC 
estimation, table 4 represents the comparative 
analysis of various SoC estimating techniques and 
the error associated with it. 

Table 4: Comparison of error in various SOC estimation 
techniques using a different model and validating cycles.  

S.No SOC 
Estimation 
technique 

Error Validating 
cycle 

Model 
considere
d 

Remark 

1 T-UKF 3 NEDC Thevenin 
Model 

Temperatur
e 
compensati
on

2 RSMO 2.23 UDDS DP 
Model 

 

3 SMO 5.81 UDDS DP 
Model 

 

4 REKF 1.56 FUDS DP model 
5 AEKF 2 - Thevenin 

model 
 

6 T-EKF 3 PCC Thevenin 
model 

 

7  1.5 FTP72 Thevenin 
model 

 

8 EKF 5.31 - Thevenin 
model 

 

9 SMO 1.31 - Thevenin 
model 

 

10 UKF 3 PCC  SOC ≥ 
20%

11 AUKF 1.2 PCC  SOC ≥ 
20%

12 PI 
observer 

2 UDDS Thevenin 
model 

 

13 AEKF 1.5 FUDS Thevenin 
model 

 

14 SVM 5.76   
15 AEKF 1 UDDS Thevenin 

model 
 

16 AEKF 3 FUDS DP model 
17 EKF 3 - Neural 

Network 
model 

 

18 AEKF 1.06 FUDS DP model  

4 ELECTROLYTE 

Electrolyte plays an important role in the safety of 
the battery and hence solid electrolyte is preferred 
over liquid electrolyte. But this advantage comes 
with the cost of reduced conductivity and many 
more issues as mentioned in table 1. Many types of 

research are conducted to overcome their 
disadvantages. 

BaTiO3nanocomposite polymer is shaped with 
the electrolyte of LiPO battery in order to achieve 
better Li-ion concentration at the electrode surface 
which was found to be around 3.5 × 104 
mol/m3(Sathyanathan and Sugumaran, 2018).This 
has an added advantage of increased conductivity 
about 2.4 × 10-3 S/cm at 343K. The voltage dip from 
4.02V to 3.92V in just 5 Sec but remained saturated 
at that point.A low cost commercially available 
polymer is developed for polymeric binder for 
LiMxOy cathodes, coke or graphite based anode. 
Random copolymers of vinylidene fluoride with 
hexafluoropropylene can be solvent cast in the 
presence of at least 50-60 volume%of liquid 
electrolyte solutions, such as 1-M LiPF6-EC/PC, to 
give strong, homogeneous filmswhich exhibit good 
mechanical properties even when temperature raise 
to 90°C - 100°C(Gozdz, Tarascon, Schmutz, 
Warren, Gebizlioglu and Shokoohi, 1995).Research 
has been carried out in lithium salts and copolymer 
to have electrochemical stability and conductivity up 
to 3×10-5 S/cm (Venkatasetty and Jeong, 2002). A 
low cost environmental friendly polymer electrolyte 
membrane (Adding LiClO4, to polyvinyl alcohol 
(PVA) and polyethene oxide (PEO)) polymer for 
LiPO battery has been developed by casting of 
polymer solution(Rochliadi et al., 2015). The 
optimum ionic conductivity with mechanical 
strength of the polymer electrolyte membrane was 
observed when PVA and PEO were mixed in the 
ratio of 7:3. When the ratio of PVA and PEO 
changed to 8: the conductivity increases with the 
cost of low mechanical strength. PVA-PEO-LiClO4 
has the potential to qualify as biodegradable 
electrolyte membrane for Li-ion battery. The 
nanocomposite polymer electrolyte for Li-ion 
polymer battery was developed by mixing 50 
percent by weight of polyhedral 
oligomericsilsesquioxane-functionalized with 
polyethene glycol (POSS-PEG) nanoparticle and 
polyethylene oxide (PEO)with lithium bisoxalate 
borate (LiBOB) which increased the conductivity to 
3.98 × 10-6 S/cm(Reddy et al., 2018). 

5 ELECTRICAL MODEL  

A well-defined battery model will lead to an 
accurate estimation of SoC, SoH, OCV. A detailed 
comparison of various modelshas been presented in 
table 3.Based on the dynamic characteristics and 
working principles of the battery, the electrical 
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equivalentcircuit model such as Rint Model, RC 
model, Thevenin equivalent circuit model, PNGV 
Model, Dual polarization model, Randels equivalent 
circuit was developed by using resistors, capacitors 
and voltage sources to form a circuit network (He et 
al., 2011). Electrical equivalent model of battery 
contains various parameters of battery that are 
modelled as resistance, capacitance and ideal voltage 
source.  

Table 5: Various Parameter of commonly used battery 
model. 

Common 

q(t) Remaining battery capacity
qn Rated capacity of battery
Vt Terminal voltage of battery
Vin Open circuit voltage 
I Load current 

Rint Model R1 Electrolytic resistance 

Thevenin 
Model 

Rt1 Polarization resistance
Ct1 Polarization capacitance
R1 Electrolytic resistance 

PNGV 
Model 

Cacc voltage due to accumulation 
of load current. 

Rt1 Polarization resistance
Ct1 Polarization capacitance
R1 Electrolytic resistance 

Dual 
Polarization 

Model 

Rt1 Polarization resistance
Ct1 Polarization capacitance
R1 Electrolytic resistance 
Rt2 Electrochemical Polarization 

Resistance 
Ct2 Electrochemical Polarization 

capacitance  

The Rint model comprises of resistance and an ideal 
voltage source, both being a function of SoC, SoH 
and temperature. Positive and negative load current 
denotes for discharging and charging current, 
respectively. The open circuit voltageis given by Vt 
= Vin - IR1.The equivalent circuit is shown in figure 
10. Resistance was evaluated via the following 
equation R SoC R k SoC Einhorn et 
al., (2013) where 𝑘  iscoefficient for change in R1 
with SoC.In RC model two capacitors Cc, Cb 
represents the battery state. Cc represents the 
capacitance due to surface effect of battery and has a 
small value. The Capacitor Cb, with large 
capacitance, represents the chemical energy stored in 
the battery and is responsible for the SoC of battery. 
The resistances are Rt (Terminal resistance), Re (end 
resistance) and Rc (Capacitor Resistance) and the 
two capacitance Cc, Cb describes the electrical 
behaviour of battery. The equivalent circuit is shown 
in figure 10.  

R1

Vin Vt

I

 

Figure 9: Rint model of a battery 

In order to include the transient performance of the 
battery in Rint model, a parallel RC network is 
connected in series, thus giving Thevenin equivalent 
circuit model as shown in figure 11. The resistance 
Rt1 denotes polarization resistance and capacitance 
Ct1 describes the transient response of battery during 
charging and discharging. The governing equation of 
the model is 𝑉 𝐼𝑅 𝑉  (Sathyanathan and 
Sugumaran, 2018; Meng et al., 2016; Lee et al., 
2018; Xu et al., 2014; Chen et al., 2016; Xiong et al., 
2005; He et al., 2011 and Einhorn et al., 2013) 

Rt

CC

Re

RC

Vin Vt

Cb

I

 

Figure 10: RC model of a battery 

Ct1

R1

Vin

Vt

Rt1

Vt1
I

 

Figure 11: Thevenin equivalent model of a battery 

The parameter of the equivalent circuit model 
dependent on SoC and Temperature.In (Ceylan et 
al., 2014),the model was used with a new 
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mathematical function:𝑉 𝑉 𝑅 𝑅 𝐼
𝑅 𝐼𝑒 ⁄ whereas in (Sun et al., 2014) open 
circuit voltage is given by Vin = Ko+ K1×SoC+ 
K2/SoC +K3×ln SoC +K4×ln(1-SoC). 
PNGV model takes into account of change in open 
circuit voltage in the time accumulation of load 
current. This change is incorporated in the Thevenin 
model thus giving the PNGV model of battery. The 
governing equation of the battery is𝑉 𝑉 𝑉
1

𝐶 𝐼𝑑𝑡 𝐼𝑅 and the equivalent circuit 

diagram is shown in figure 12. 

 

Ct1

Cacc
R1

Vin

Rt1

Vt

Vt1

I

 
Figure 12: PNGV equivalent model of a battery. 

Thevenin model to some extent can easily model 
the polarization characteristics of the battery. The 
complete polarization is considered in dual 
polarization (DP) model. the This model takes into 
consideration of polarization that is caused due to 
concentration polarization and electrochemical 
polarization (Chen et al., 2016; Junet et al., 2014; He 
et al., 2011; Choe et al., 2013; Kim et al., 2016 and 
Einhorn et al., 2013). The governing equation is 
𝑉 𝑉 𝑉 𝐼𝑅 and the equivalent circuit is 
shown in figure 13. 

 

 

Vin

Vt

R1

Vt1

Ct1

Rt2

Ct2

 

 

Vt2
I

 
Figure 13: Dual polarization model of battery. 

 

6 THERMAL MODEL 

The temperature has a serious effect on the battery 
and hence it is vital to have thermal modelling. The 
battery parameters such as resistance, OCV, 
Capacitance are observed as the temperature is 
changed from 0oC to 40oC with the interval of 10oC 
and then parameters are selected on the basis of 
temperature (Wu al., 2018). Conductivity increases 
as the temperature was increased from 273K and 
reach its maximum value at 343K and then falls off 
(Sathyanathan and Sugumaran, 2018). 

Change in battery capacity was increased from 
0.6116 Ah to 0.6218 Ah as the temperature is 
increased from 370C to 400C.With the help of 
experimental data and then employing least square 
curve fitting method to get the relation OCV(T,SoC) 
= a(T)  SoC +b(T)(Lee et al., 2018). 

Temperature effect on internal resistance and 
capacitance is determined by the direct current 
internal resistancemethod. 

Another relation between the Equivalent series 
resistance and temperature provided the ageing 
effect is neglected. R = R0eA/T(Dogger et al., 2011). 

7 IDENTIFICATION OF 
BATTERY PARAMETER 

Once the electrical model of the battery is 
developed, the next foremost important thing is to 
determine the value of the parameter in the 
equivalent circuit. The most basic method is to 
experimentally observe the variation in the 
parameter with the SoC level at adifferent interval 
and then develop the relationship between various 
parameters and with SoC or temperature or with age. 
The parameter can be identified via conducting 
experiments that make battery undergo standard 
technique such as pulse current discharge (PCD), 
pulse current charge (PCC), Hybrid Power Pulse 
Characterization (HPPC), battery test bench with 
dedicated software or using estimating techniques 
that include least square method with advancements, 
support vector machine, extended Kalman 
filter.Parameter identification is not limited to the 
above methods and can be estimated by combining 
the experimental and estimation techniques. Figure 
14 presents various battery parameter extraction 
techniques. 
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Figure 14: Various method of battery parameter 
identification techniques. 

A combined version of PCD and PCC test was 
conducted to obtain to give the offline battery 
parameters that were identified via the least square 
method. In real-time or online battery parameter is 
identified via forgetting factor recursive least square 
(Chen et al., 2016).  

One such technique is the HPPC test.The 
experiment was conducted with the help of Digatron 
EVT500-500 hardware and BTS 500 software at 
constant 20oC and data from the test were used for 
parameter extraction (He et al., 2011). The battery 
parameter of improved Thevenin model was 
identified with battery test bench that 
includesDigatron EVT500-500, with BTS 600 
software (He et al., 2011). Various experiments were 
conducted on ArbinBT2000 battery test system 
hardware and MITS Pro Software within a thermal 
chamber with different charge and discharge rates to 
determine the parameter (Sathyanathan and 
Sugumaran, 2018). Another approach is to collect 
data from the experiments andthenemploy Recursive 
Least Square (RLS) method with forgetting factor to 
determine the electrical parameter of the battery 
model (Wu al., 2018).The format given by HPPC to 
extract the model parameter, cannot be used by 
BMS, so prediction based on particle swarm 
optimization can be employed to optimize the 
parameters(Sun et al., 2014).  

Experiments are conducted and controlled by 
LabVIEW in a closed environment and computation 
of data is done by MATLAB. The experiments were 
conducted from 37oC to 40oC at an interval of 1oC. 
The least square method is used to find the battery 
modelparameter (Lee et al., 2018).The circuit 
parameter has been calculated with the 10A 
discharge curve drawn between OCV and SOC. The 

circuit impedance is measured at a various frequency 
ranging from 0.07 Hz to 7 kHz with temperature 
ranging from 5oC to 20oC, thus helping to extract the 
model parameters. The model parameters are 
updated itself, based on temperature(Moshirvaziri et 
al., 2015).  

Battery parameters were mathematically 
modelled and were identified with the help of 
experimental data, governing equation and a build-in 
real-time data acquisition system that was loaded 
with the Discharge curve of the battery(Ceylan et al., 
2014).  

The least square method is used to estimate the 
battery parameter with some advanced technologies 
such as recursive least square with optimal 
forgetting algorithm used in Xiong et al., (2005) 
where battery model parametershave been identified 
by multiple linear regression method. 

Parameter identification and optimization were 
based on cross validation method for least square 
support vector machines(Meng et al., 2016). 

The battery parametersare identified by the EKF 
algorithm(Junet et al., 2014). 

Another interesting technique was used 
in(Einhorn et al., 2013) where the value of capacitor 
C is extracted from the datasheet provided by the 
manufacturer and the parameter is linearized. Linear 
parameterization requires significantly less time with 
a setback of loss of accuracy. The parameter has 
been optimized by using GPS Hooke Jeeves 
optimizationalgorithm in GenOpt software.  

8 VALIDATION CYCLE 

Validating cycle simulates the real life condition to 
test the battery,thus making it cost 
effective.Validating the battery parameter gives the 
accurateness in the battery model. Validating would 
also increase battery life with optimized battery 
performance (Brandt, 1992).A various method such 
as Dynamic Stress Test (DST),Federal Urban 
Driving Schedule (FUDS),Urban Dynamometer 
Driving Schedule (UDDS) or Federal Test 
Procedure -72 (FTP-72),New European Driving 
Cycle(NEDC), HPPCTest were used for validating 
the battery parameters.  

DST is performed with the intentions to simulate 
the dynamics of battery discharging exclusively for 
automotive application. To perform this test a 
battery test bench, a temperature controlled chamber 
and temperature sensors are required. Test is 
performed with the battery fully charged at the 
controlled environment and the battery is loaded 

Classification 
of battery 

parameters

Experimental

HPPC

PDC & 
PCC

Battery 
test 

bench

Digatron EVT500-
500, with BTS 

600/500 software

Arbin BT2000 
with MITS Pro 

Software

Estimation 
technique

Least square 
method

forgetting 
factor 

recursive 
least 

recursive 
least square 

least square 
support vector 

machines

EKF 
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with the set current profile (shown in figure 15) that 
include charging and discharging of battery and it 
lasts for 360 seconds. Test is continued till the end 
of discharge point is reached which is specified by 
either by rated battery capacity in ampere-hour or 
80% of rated capacity in ampere-hourUnited States 
Council For Automotive Research, (2016). 

 

Figure 15: Standard Power profile of DST set by USABC 
United States Council For Automotive Research, (2016).  

 

Figure 16: Federal Urban Driving Schedule charging and 
discharging profile United States Council For Automotive 
Research, (2016).  

FDDS test is conducted for 1372 sec with 
different power levels shown in figure 16. Such test 
requires costly test hardware that includes large 
storage.  

NEDC, as shown in figure 17, the cycle lasts for 
1190 seconds and lasts for 10.93KM. The average 
speed is 43.10 Km/hr reaching a maximum speed of 
120 Km/hr.  

 

Figure 17: New European Driving Cycletesting profile 
(Jeong et al., 2016).  

The HPPC test conducted with the aim to 
determine the dynamic performance of the device 
with 10 sec discharge pulse with 10 sec charging 
pulse through regenerative action. This action is 
repeated after every 10% discharge with 1-hour rest 
period as mentioned in figure 18. 

 

Figure 18: HPPC compete test sequence United States 
Council For Automotive Research, (2016). 

The standard test cycle discussed above has been 
put into the test for different SoC estimation 
techniques and the error obtained is mentioned in the 
upcoming paragraph.  

In Wu al., (2018), to verify the accurateness of 
the Thevenin model of battery with temperature 
compensation. The test was performed at 5 different 
temperatures. The error in battery parameter was 
less than 1 percent and the average absolute error 
was 0.2551 percent.  

The parameter is verified via various current 
profile such as PCD, PCC and urban dynamometer 
driving schedule. The error in voltage was bounded 
within -0.04V to +0.04V(Chen et al., 2016).  

Battery parameters were verified via six 
succeeding Dynamic Stress Test cycle. It was 
observed that Rint model had a maximum error. 
Thevenin model and DP model gave error less than 
1 percent(He et al., 2011).  

EightUDDS tests were used to verify the 
parameters(Sathyanathan and Sugumaran, 2018).The 
battery model is validated through loading FTP72 or 
UDDS current profile in battery model and practical 
battery in sealed environment at 20°C. The error was 
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below 0.5 percent. The error would have gone to 
lower value if currentmagnitude is made 
large(Einhorn et al., 2013). 

The model is validated with MATLAB Simulink 
environment and experiment with Kokam SLPB 
(Superior Lithium Polymer Battery) battery. On 
average, the discrepancy in data from modelling is 
less than 0.422 percent with the maximum value less 
than 3 percent at the end stage of 
discharging(Ceylan et al., 2014). 

To validate the battery parameter, the calculated 
parameter has been compared with experimental 
data obtained from Arbin battery test system 
BT2000 with MITS Pro software and the average 
error was under 0.8806 percent(Junet et al., 2014).  

Accuracy of least square support vector 
machines based model is done by testing it in a 
Simulink model with discharging current profile that 
rapidly changes between 0A to 6A. Experiment was 
conducted on Li-ion PO battery manufactured by 
KOKAM Company. The average absolute error was 
less than 2%(Meng et al., 2016). 
Simulated results and experimental result showed 
3% error in thermal model and 3.5% of SOC error 
(Moshirvaziri et al., 2015).  

The UDDS profile was loaded to Arbin BT2000 
battery system with sealed environment, to verify 
and evaluate the effectiveness of battery model 
parameters.To verify and evaluate the battery 
parameters, an experimental setup that contains 
Arbin BT 2000 battery test system which was 
maintained at 25°C was tested for Federal urban 
driving cycle schedule and Dynamic stress test 
current profile. The maximum error was 1%(Sun et 
al., 2014).  

The battery model is verified by Arbin BT 2000 
battery test system. Battery was loaded to Federal 
urban driving schedule and the error was confined to 
2%(Xiong et al., 2005). 

Federal urban driving cycle schedule current 
profile was loaded to system to verify the battery 
parameters and the error in parameter was under 
3%(Xiong et al., 2013).  

Evaluation of various battery models (RC model, 
Thevenin equivalent circuit model, PNGV Model, 
Dual polarization model,) in United States Council 
For Automotive Research, (2016) were realized 
through various tests such as HPPC, DST and 
FUDS. Since different cycle gave a different error 
on the available models. So the author concluded 
that DP model and Thevenin model gave the least 
error in SoC estimation.  

9 CONCLUSION AND FURTHER 
WORK 

In this paper, an attempt has been made to discuss 
issues related to the development of Li-Ion polymer 
battery namely state of charge (SOC) estimation, 
electrolyte used, modelling which includes electrical 
& thermal modelling and validation cycles.  

Following are the major concluding remarks for 
this study: 
 Among various SOC estimation techniques, 
model based method with filter algorithmgave 
resultswith the error of less than 3 % with low 
burden on battery management system. The common 
limitation to these techniques is non linearity of 
battery system that is resolved by adopting advanced 
methods in Kalman filter such as Robust Sliding 
mode observer, unscented Kalman filter, Adaptive 
unscented Kalman filter Adaptive extended Kalman 
filter. 
 The success of SOC estimation techniques 
depends on the selection of battery’s electrical 
model.  Among various battery model,dual 
polarization model gave better results, followed by 
Thevenin equivalent circuit model. But dual 
polarization model would create high computation 
burden on the system. So, the selection should be in 
such a way that it does not increase the computation 
burden on the system and still maintain the accuracy 
in SOC estimation. Hence, Thevenin equivalent 
circuit model is more useful. 
 Parameters of Battery model need to be 
determined so as to imitate the battery performance. 
Various experimental/analyticalestimation 
techniquescan be used to extract the battery 
parameters. Experimental data were collected from 
battery test benches such as Digatron EVT500-500 
and Arbin BT2000 with dedicated software to 
determine the battery parameter.  
 The estimated parameters need to be validated 
in order to have practical applicability. Various 
standard test cycles have been developed to verify 
the battery model. Error on battery model depends 
on the choice of test cycle. All the model discussed 
gave the maximum error of 3.0 % and minimum 
error of 0.26%.  
 It has been clear from table 4that error by 
estimation technique depends on the considered 
model and validating cycle.  

The paper focuses on the development of Li-ion 
battery with polymer as electrolyte. This gave 
flexibility in the design of battery. Polymers 
CF3SO2NLiSO2C2F5 and CF3SO2NLiSO2C4F9gave 
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high conductivity. Further electrolytes were 
developed that resist the formation of dendrites in 
battery. Eco-friendly electrolytes were also 
developed. 
 Finally, it will provide a comprehensive text on 
Li-ion polymer battery, which will help the 
engineers, researchers and technical persons in this 
area.    
Thefuture directions related to this workare 
summarized as. 
 Very few works of literature were found which 
discuss temperature effect on SoC 
 Few papers discussed reducing the computation 
burden onthe battery management system. 
 Ageing model of the battery needs to be 
developed for accurate estimation. 
 More research is required to develop anaccurate 
relationship between battery SoC and battery SoHfor 
better estimation. 
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