
Monitoring System for Cloud Services in Distributed Architecture

Sohit Shukla, Neelendra Badal
Department of Computer Science & Engineering, KNIT, Sultanpur, India

Keywords: Cloud Services, Distributed architecture, Monitoring system

Abstract: Services over the cloud are the key emerging features of the Internet world, which will facilitate a virtual
cloud service in a distributed architecture. These services are tremendously increasing with time. The
increase in the service will be led to a huge number of real-time tasks in progress that will utilize many site
facilities, data, and networks. To check the performance and the accuracy there is a various monitoring
system which will provide the data to be analyzed for the improvement. We have presented the main aspects
of these monitoring systems for cloud services in a distributed system that has been designed for the
services in the virtual environment.

1 INTRODUCTION

A huge number of independent resources mutually
connected through a network and virtually available
in the distributed environment creates a cloud.
Clouds are what when anyone sees in the sky then
they observe that there is something which equally
lies above us and available to us as it to others. In
the same way, the cloud provides its services in the
form of a platform, infrastructure, and software if
categorize broadly and further extended to
everything as a service. These resources which were
combined in a virtual environment to create a
service cloud have different features & requirements
compare to the traditional resource network. Cloud
service in distributed architecture has a federation of
the clusters of distributed hosts these hosts may have
diversity in the factors of the infrastructure.

For monitoring the cloud service architecture one
has to make the consideration of the diverse factors
involving the cloud infrastructure. Cloud computing
refers to the platform for the distributed computing
this leads to the distributed service architecture work
as the platform for the cloud service architecture.

2 MONITORING SYSTEMS

2.1 Monitoring the Agents in a Large
Integrated Service Architecture
(MonALISA)

Newman H.B. et al had proposed a model which was
based on dynamic distributed services architecture
(DDSA) (Newman H. B. et.al, 2001) known to be as
“Monitoring the Agents in a Large Integrated
Service Architecture” (MonALISA) (Newman H. B.
et.al, (2003).

WSDL/SOAP technologies & JINI/JAVA were
used to implement. The DDSA inherently
distributed, self-restarting, and loosely coupled,
compiled them to robust & scalable. In their work to
manage and optimize the workflow through the data
grid composed of the various servers located at
different sites having several computing & storage
units, they had created a framework in which
services were registered and sometimes traced by the
look-up service. These events get notified whenever
there was a change in state (change in the state of the
distributed system). These invoke the ensemble of
service to disseminate and gather the information
about the configuration of the time-dependent state
of the process, network, and the jobs running
throughout the structure. This gathered information
is transmitted for the analysis to advance level for
corrective measures.

Shukla, S. and Badal, N.
Monitoring System for Cloud Services in Distributed Architecture.
DOI: 10.5220/0010563400003161
In Proceedings of the 3rd International Conference on Advanced Computing and Software Engineering (ICACSE 2021), pages 115-118
ISBN: 978-989-758-544-9
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

115

The implementation prototype for the above
architecture was on web-based technology which
incorporates software components and devices into a
single dynamic distributed system. Thus architecture
formed has broad segments as follows.

The Data Collection Engine.One of the important
tasks of the architecture was a collection of data
independently and in parallel. Various modules were
formed to collect different sets of information which
were dynamically loaded and executed in atomic
threads. In this manner, a pool of threads has been
created and reused frequently.

Data Storage. Collected data values in form of
normalized tables were stored in the relational
database. As the collection of the data become older
they were compressed and mean values were
computed for a bigger duration.

Registration and Discovery. There has been an
assignment of the attributes set for the group of
services in the register of JINI Lookup Discovery
Services. There will be replication from one to
another when the information related to the group is
found common in two Lookup Discovery Services.
This will leads to the possibility of framing a reliable
network for the registration of services. The
registration was based on a lease mechanism that
was responsible for verification services to be alive.
Those services which fail to renew lease had been
removed from the Lookup Discovery Services and a
notification has been sent to clients & services
which were subscribed for that events.

Predicates, Filters, and Alarm Agents. Resultant
values of attributes description were similar to
regular expressions-based predicates. Historical data
was fetched with SQL queries on the request from
the local databases. To serve each of the clients a
dedicated thread has been created through creation
request. These threads were responsible for the
similarity test in the data flow as well as for the
compressed serialized objects to the clients.
Independent threads were fast and reliable if the
communication errors were avoided.

Using the WSDL/SOAP predicates mechanism
was also possible for the Monitoring data requests.
WSDL has been used to describe the predicted
classes for the client’s objects to dynamically
communicate.

Agent filters have been also used for information
extraction. These modules are developed in the Java

language for MonLISA services, data processing
tasks, and returning periodically the processed
information.

Whenever abnormal behaviors were detected,
alarm agents were dynamically loaded to improve,
manage the efficiency of the facilities for a Grid
system.

Graphical Clients. The global graphical client has
been developed for the discovery of active services
from defined groups. These are application web start
which can be started from any of the browsers.

A dedicated GUI has been developed containing
the marshaled components for the service's
attributes. Communicating back with each of the
services to fetch the detailed information to plot has
been created with values requested. Filters Agents,
predicate mechanism provides the flexibility in the
real-time and historical value in MonALISA. GUI
automatically updates the values whenever it finds
the matching values of the subscription that was
collected. Services were started and unavailable this
can be easily shown by the graphical clients by
remote notification mechanism.

Administration Services. To optimize the
workflow and manage the distributed facilities
dedicated GUI-based dynamic configuration
mechanism was created. This configuration
mechanism will help in creating or reconfiguring
clusters, network elements, and new nodes or
modules as required. It also helps module
suspension, stopping, and restarting, which plays an
important application performance to be understood.

Global web start also helps in the start of the
administrative GUI with authentication of the trusted
users. This can be proceeded by providing a private
key from the administrator into the GUI and the
clients will have the rights to the services.

Automatic Update for Services. As the framework
deployed several locations it requires efforts to
update and maintain the application. This has been
achieved by developing the mechanism to
automatically update the monitoring service.
Threads were there check periodically for updates if
any in the distribution, a restart operation was
initiated when any of the events were detected. In
the sequence of this, all packages were downloaded
automatically to run the application while checking
necessary constraints. The last published version of
the application securely runs after the updating
services state.

ICACSE 2021 - International Conference on Advanced Computing and Software Engineering

116

2.2 The Lattice Monitoring
Framework

S. Clayman et al, built a lattice framework to
optimize the workflow of the cloud services
(Clayman S. et.al, 2010). Managing cloud services
required the collection of relevant data effectively,
so as no footprint overload occurs. In huge
distributed architecture large number of probes
occur so there is required relevant data collection.
Designing the framework we have to first
understand the producers and consumers of the data
that were in the workflow. These were the elements
of the network which will generate the data values
while communicating with each other. In various
monitoring systems probes are responsible for the
data source while in lattice framework there has
been a data source that will control and interact
encapsulating more than one probe. There was a
requirement for a fully dynamic data source. As the
data is produced and collected from the various
probes in the system they have a data distribution
mechanism for efficient transmission of the
measurement over the network.

Utilization of Lattice within RESERVOIR. As a
part of the RESERVOIR project (Galis et.al, (2009)
they had built a system for cloud service
management using the Lattice framework. From the
various probed they have gathered measurement
data which were attached with virtual machines. In
the sequence monitoring virtual resources and
monitoring physical resources, probes have been
written.

Monitoring Physical Resources. Probes have been
created for Memory, CPU usage, and network usage
in the underlying infrastructure. The probes for the
CPU usage firstly collect data from all the cores of
the processor from the various server, then the probe
for memory usage is initiated following the probe
responsible for the network data, these all worked in
a real-time manner. This sequence runs at an equal
interval of time to manage the traffic.

Monitoring Virtual Resources. Probes have been
created for the data collection at running virtual
machines on a particular host. Hypervisor and probe
interact with each other to collect data that are under
the control of the hypervisor. On the virtual
machine, these probes run regularly for the
collection of the data.

Monitoring Service Applications. In each virtual
machine, there must be a probe deployed for the
service cloud on the application environment. These
probes collected data and sent it to the service
manager via infrastructure from a virtual machine.
Sun Grid Engine application (Sun Microsystems,
2008) used the virtual job queue that was developed
by these probes.

This application has the elasticity rule to measure
the queue length, so that (a) Automatically a new
virtual machine has been allocated when queue
length was high or (b) Automatically shut down the
machine when it is low. Sun Grid Engine
application-optimized the running Service Manager
by adapting to the queue length of virtual machines.

3 CONCLUSION

The MonaLISA architecture simplifies the
administration of the complex system, construction,
and operation by interacting with the services in a
robust, dynamic manner. On the same pattern, the
Lattice framework provides used as a platform for
various monitoring systems. Anyone can write
probes of specific purpose to collect data, and
consumers can access it in any way necessary. For
different applications Lattice had not provided any
pre-defined consumers, data source, or probe.
Rather, as per the requirement, each of them can be
deployed.

The above mentioned both of the discussed
monitoring systems well successful monitoring
system known. These systems work in three stages,
which include the creation of probes for services,
collection of the data values from each of the probes
then sequentially updating the administrative system
of the application. This shows that in today’s virtual
world of cloud services deployment, monitoring
optimization works together in parallel for the better
performance of the distributed system.

REFERENCES

H. B. Newman, J. J. Bunn, I. C. Legrand, (2001), “A
Distributed Agent-based Architecture for Dynamic
Services” in CHEP, Beijing,

H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, C.
Cirstoiu, (2003), “MonALISA : A Distributed
Monitoring Service Architecture” at Computing in
High Energy and Nuclear Physics, La Jolla, California,
24-28.

Monitoring System for Cloud Services in Distributed Architecture

117

Sun Microsystems, (2008), “Guide to Sun Grid Engine 6.2
Installation and Configuration,” white paper.

Galis, B. Rochwerger, E. Levy, D. Breitgand, et al. (2009),
“The RESERVOIR model and architecture for open
federated cloud computing,” IBM Journal of Research
and Development, vol. 53, no. 4.

S. Clayman, G. Toffetti, A. Galis, B Rochwergere, C.
Chapman, L. Rodero-Merino, L M. Vaquero, K Nagin,
(2010), “Monitoring Service Clouds in the Future
Internet” in Towards the Future Internet G. Tselentis
et al. (Eds) IOS Press.

ICACSE 2021 - International Conference on Advanced Computing and Software Engineering

118

