Conference  on  Intelligent  Systems  and  Control 
(ISCO). 
Kartik Dutta, Praveen Krishnan, Minesh Mathew, and CV 
Jawahar  (2018).  Improving  CNN-RNN  Hybrid 
Networks for   Handwriting Recognition. International 
Conference on Frontiers in Handwriting Recognition. 
Khaoula E., C. Garcia,& Pascale S.(2011).Comprehensive 
Neural-  Based  Approach  for  Text  Recognition  in 
Videos using Natural Language Processing.ICMR. 
Lei  Tang,  Suju  R.,  &  Vijay  K.  N.(2009).Large  Scale 
Multi-Label Classification via MetaLabeler. 
Louradour, J., &Kermorvant, C. (2014, April). Curriculum 
learning for handwritten text line recognition. In 2014 
11th  IAPR  International  Workshop  on  Document 
Analysis Systems (pp. 56-60). IEEE. 
Manoj  Sonkusare  and  Narendra  Sahu  (2016).  A  Survey 
On  Handwritten  Character  Recognition  (HCR) 
Techniques For English Alphabets.Advances in Vision 
Computing:  An  International  Journal  (AVC)  Vol.3, 
No.1. 
MarouaTounsi,  IkramMoalla,  Adel  M  Alimi  (2016). 
Supervised  Dictionary  Learning  in  BoF  Framework 
for  Scene  Character  Recognition.  23rd  International 
Conference on Pattern Recognition (ICPR). 
MarouaTounsi, IkramMoalla, Frank Lebourgeois, Adel M 
Alimi(2018).  Multilingual  Scene  Character 
Recognition  System  using  Sparse  Auto-Encoder  for 
Efficient  Local  Features  Representation  in  Bag  of 
Features. 
Michael, J., Labahn, R., Grüning, T., &Zöllner, J. (2019). 
Evaluating  Sequence-to-Sequence  Models  for 
Handwritten  Text  Recognition. arXiv  preprint 
arXiv:1903.07377. 
Minghui  L.,  Baoguang  S.,  Xiang  Bai,  Xinggang  W., 
&WenyuL.(2017),  ”TextBoxes:  A  Fast  Text  Detector 
with  a  Single  Deep  Neural  Network”,    AAAI 
Conference on Artificial Intelligence. 
Moysset,  B.,  &  Messina,  R.  (2019).  Manifold  Mixup 
improves  text  recognition  with  CTC  loss. arXiv 
preprint arXiv:1903.04246. 
NalKalchbrenner, Edward Grefenstette, and Phil Blunsom 
(2014). A convolutional neural network for modelling 
sentences. In Proceedings of ACL. 
Nam-Tuan  Ly, Cuong-Tuan  Nguyen,  Kha-Cong  Nguyen, 
&  Masaki  N.(2017).  Deep  Convolutional  Recurrent 
Network  for  Segmentation-free  Offline  Handwritten 
Japanese Text Recognition. IAPR (ICDAR) (vol-7). 
P.  Doetsch,  A.  Zeyer,  and  H.  Ney  (2016).  Bidirectional 
decoder  networks  for  attention-based  end-to-end 
offline  handwriting  recognition,”  International 
Conference  on  Frontiers  in  Handwriting  Recognition, 
pp. 361–366. 
P.  Voigtlaender,  P.  Doetsch,  and  H.  Ney  (2016). 
Handwriting  recognition  with  large  multidimensional 
long  short-term  memory  recurrent  neural  networks. 
ICFHR. 
Polaiah B., Naga s., Gautham K. P., and S D Lalitha Rao 
Sharma  Polavarapu  (2019).  Handwritten  Text 
Recognition  using  Machine  Learning  Techniques  in 
Application  of  NLP.(IJITEE)  ISSN:  2278-3075, 
Volume-9 Issue-2. 
Poulos,  J.,  &  Valle,  R.(2019).  Character-Based 
Handwritten  Text  Transcription  with  Attention 
Networks. 
Praveen  Krishnan,  and  CV  Jawahar  (2016).Generating 
Synthetic Data for Text Recognition.  
Praveen Krishnan,  Kartik Dutta, and CV  Jawahar  (2016). 
Deep eature Embedding for Accurate  Recognition and 
Retrieval  of  Handwritten  Text.  International 
Conference on Frontiers in Handwriting Recognition. 
Praveen  Krishnan,  Kartik  Dutta,  and  CV  Jawahar 
(2018).Word  Spotting  and  Recognition  using  Deep 
Embedding. Document Analysis Systems. 
Puigcerver,  J.  (2017).  Are  multidimensional  recurrent 
layers really necessary for handwritten text 
recognition?  In 2017  14th  IAPR  International 
Conference  on  Document  Analysis  and  Recognition 
(ICDAR) (Vol. 1, pp. 67-72). IEEE. 
S. Hochreiter and J. Schmidhuber (1997). Long short-term 
memory,”  Neural  Computation,  vol.  9,  no.  8,  pp. 
1735–1780.. 
Saumya  J.,  KapilMehrotra,  AtishVaze,  &SwapnilBelhe 
(2014).  Multi-script  Identication  from  Printed  Words. 
International  Conference  Image  Analysis  and 
Recognition. 
Shangbang  Long,  and  Cong  Yao(2020).  UnrealText: 
Synthesizing  Realistic  Scene  Text  Images  from  the 
UnrealWorld.  Proceedings  of  the  IEEE/CVF 
Conference  on  Computer  Vision  and  Pattern 
Recognition(pages. 5488-5497). 
Shangbang  Long,  JiaqiangRuan,  Wenjie  Zhang,  Xin  He, 
Wenhao  Wu,  and  Cong  Yao(2018).  TextSnake:  A 
Flexible  Representation  for  Detecting  Text  of 
Arbitrary Shapes. 
Sheng  Zhang,  Yuliang  Liu,  LianwenJin,  Canjie  Luo 
(2018).  Feature  Enhancement  Network:  A  Refined 
Scene  Text  Detector.  AAAI  Conference  on  Artificial 
Intelligence(vol-32). 
Siddhant  Bansal,  Praveen  Krishnan,  and  CV 
Jawahar(2020).  Fused  Text  Recogniser  and  Deep 
Embeddings  Improve  Word  Recognition  and 
Retrieval.  International  Workshop  on  Document 
Analysis Systems. Springer, Cham (Pp.309-323). 
SwapnilBelhe,  Chetan  P.,  Akash  D.,  Saumya  J., 
&KapilM.(2016).Hindi  Handwritten  Word 
Recognition using HMM and Symbol Tree. Workshop 
on Document Analysis and Recognition. 
Vu  Pham,  T.  Bluche,  Christopher  K.,&  J.  Louradour 
(2014). Dropout improves Recurrent Neural Networks 
for  Handwriting  Recognition.  arXiv:1312.4569v2 
[cs.CV]. 
Weixin Y., Lianwen J., ZechengXie, &ZiyongFeng(2015). 
Improved  Deep  Convolutional  Neural  Network  For 
Online  Handwritten  Chinese  Character  Recognition 
using Domain-Specific Knowledge.(ICDAR), IEEE. 
Wenniger, G. M. D. B., Schomaker, L., & Way, A. (2019). 
No  Padding  Please:  Efficient  Neural  Handwriting 
Recognition. arXiv preprint arXiv:1902.11208.