International  AAAI  Conference  on  Web  and  Social 
Media (Vol. 9, No. 1). 
Berthon,  P.R.,  Pitt,  L.F.,  Plangger,  K.  and  Shapiro,  D., 
2012.  Marketing  meets  Web  2.0,  social  media,  and 
creative  consumers:  Implications  for  international 
marketing strategy. Business Horizons, 55(3), pp.261-
271. 
Bouazizi,  Mondher,  and  TomoakiOtsukiOhtsuki.  "A 
pattern-based  approach  for  sarcasm  detection  on 
Twitter." IEEE Access 4 (2016): 5477-5488. 
Constantinides,  E.  and  Fountain,  S.J.,  2008.  Web  2.0: 
Conceptual foundations and marketing issues. Journal 
of  direct,  data  and  digital  marketing  practice,  9(3), 
pp.231-244. 
D.  Al-Ghadhban,  E.  Alnkhilan,  L.  Tatwany  and  M. 
Alrazgan, "Arabic sarcasm detection in Twitter," 2017 
International  Conference  on  Engineering  &  MIS 
(ICEMIS),  Monastir,  2017,  pp.  1-7,  DOI: 
10.1109/ICEMIS.2017.8272990. 
E. Lunando and A. Purwarianti, "Indonesian social media 
sentiment  analysis  with  sarcasm  detection,"  2013 
International  Conference  on  Advanced  Computer 
Science  and  Information  Systems  (ICACSIS),  Bali, 
2013,  pp.  195-198,  DOI: 
10.1109/ICACSIS.2013.6761575. 
Fleiss,  Joseph  L.,  and  Jacob  Cohen.  "The  equivalence  of 
weighted  kappa  and  the  intraclass  correlation 
coefficient as measures of reliability." Educational and 
psychological measurement, 33, no. 3 (1973): 613-619 
Gainous,  Jason,  and  Kevin  M.  Wagner.  Tweeting  to 
Power:  The  social  media  revolution  in  American 
politics. Oxford University Press,  
Islam,  M.R.,  Kabir,  M.A.,  Ahmed,  A.  et  al.  Depression 
detection  from  social  network  data  using  machine 
learning  techniques.  Health  InfSciSyst  6,  8  (2018). 
https://doi.org/10.1007/s13755-018-0046-0 
Jansi,  K.  R.,  Pranit  Rao  Sajja,  and  PriyanshuGoyal.  "An 
extensive Survey on Sarcasm Detection Using Various 
Classifiers." International Journal of Pure and Applied 
Mathematics 119, no. 12 (2018): 13183-13187. 
K.  Parmar,  N.  Limbasiya  and  M.  Dhamecha,  "Feature-
based  Composite  Approach  for  Sarcasm  Detection 
using  MapReduce,"  2018  Second  International 
Conference  on  Computing  Methodologies  and 
Communication (ICCMC),  Erode, 2018,  pp. 587-591, 
DOI: 10.1109/ICCMC.2018.8488096. 
Kanwar,  Nikita,  Rajesh  Kumar  Mundotiya,  Megha 
Agarwal,  and  Chandradeep  Singh.  "Emotion-based 
voted classifier for Arabic irony tweet identification." 
(2019). 
Klema,  Jiri,  and  Ahmad  Almonayyes.  "Automatic 
categorization  of  fanatic  texts  using  random  forests." 
Kuwait  journal  of  science  and  engineering  33,  no.  2 
(2006): 1. 
M.  Bouazizi  and  T.  OtsukiOhtsuki,  "A  Pattern-Based 
Approach for Sarcasm Detection on Twitter," in IEEE 
Access,  vol.  4,  pp.  5477-5488,  2016,  DOI: 
10.1109/ACCESS.2016.2594194. 
M. M. Tadesse, H. Lin, B. Xu and L. Yang, "Detection of 
Depression-Related  Posts  in  Reddit  Social  Media 
Forum,"  in  IEEE  Access,  vol.  7,  pp.  44883-44893, 
2019, doi: 10.1109/ACCESS.2019.2909180. 
Make Use of  Sarcasm to Enhance Sentiment Analysis. In 
Proceedings  of the 2015       IEEE/ACM International 
Conference on Advances in Social Networks Analysis 
and  Mining  2015  (ASONAM  '15).  Association  for 
Computing  Machinery,  New  York,  NY,  USA,  1594–
1597. DOI: https://doi.org/10.1145/2808797.2809350 
MondherBouazizi  and  TomoakiOhtsuki.  2015.  Opinion 
Mining in Twitter How to             
Nadeem, Moin. "Identifying depression on Twitter." arXiv 
preprint  arXiv:1607.07384  (2016).  
arXiv:1607.07384v1 [cs. S.I.] 
Ptáček,  Tomáš,  Ivan  Habernal,  and  Jun  Hong.  "Sarcasm 
detection  on  Czech  and  English  Twitter."  In 
Proceedings  of  COLING  2014,  the  25th international 
conference  on  computational  linguistics:  Technical 
papers, pp. 213-223. 2014. 
R. Gupta, J. Kumar, H. Agrawal and Kunal, "A Statistical 
Approach for Sarcasm Detection Using Twitter Data," 
2020  4th  International  Conference  on  Intelligent 
Computing  and  Control  Systems  (ICICCS),  Madurai, 
India,  2020,  pp.  633-638,  DOI: 
10.1109/ICICCS48265.2020.9120917. 
Rajeswari, K. and ShanthiBala, P., 2018. Recognization of 
sarcastic  emotions  of  individuals  on  the  social 
network.  International  Journal  of  Pure  and  Applied 
Mathematics, 18(7), pp.253-259. 
Saha,  Shubhodip,  Jainath  Yadav,  and  PrabhatRanjan. 
"Proposed approach for sarcasm detection in Twitter." 
Indian Journal of Science  and  Technology  10, no. 25 
(2017): 1-8. 
Swami,  Sahil,  AnkushKhandelwal,  Vinay  Singh,  Syed 
Sarfaraz  Akhtar,  and  Manish  Shrivastava.  "A  corpus 
of  English-Hindi  code-mixed  tweets  for  sarcasm 
detection."  arXiv  preprint  arXiv:1805.11869  (2018). 
arXiv:1805.11869v1 [cs.CL] 
T. Jain, N. Agrawal, G. Goyal and N. Aggrawal, "Sarcasm 
detection of tweets: A comparative study," 2017 Tenth 
International Conference on Contemporary Computing 
(IC3),  Noida,  2017,  pp.  1-6,  DOI: 
10.1109/IC3.2017.8284317. 
Thelwall,  M.,  Buckley,  K.,  &Paltoglou,  G.  (2012). 
Sentiment  strength  detection  for  the  social  web. 
Journal  of  the  American  Society  for  Information 
Science and Technology, 63(1), 163-173.