M. M. Tadesse, H. Lin, B. Xu and L. Yang, "Detection of 
Depression-Related  Posts  in  Reddit  Social  Media 
Forum,"  in  IEEE  Access,  vol.  7,  pp.  44883-44893, 
2019, doi: 10.1109/ACCESS.2019.2909180. 
A.  U.  Hassan,  J.  Hussain,  M.  Hussain,  M.  Sadiq  and  S. 
Lee,  "Sentiment  analysis  of  social  networking  sites 
(SNS)  data  using  machine  learning  approach  for  the 
measurement  of  depression,"  2017  International 
Conference  on  Information  and  Communication 
Technology Convergence (ICTC), Jeju, 2017, pp. 138-
140, doi: 10.1109/ICTC.2017.8190959. 
Sharath  Chandra  Guntuku,  David  B  Yaden,  Margaret  L 
Kern, Lyle H Ungar, Johannes C Eichstaedt, Detecting 
depression  and  mental  illness  on  social  media:  an 
integrative  review,  Current  Opinion  in  Behavioral 
Sciences, Volume 18, 2017, Pages 43-49, ISSN 2352-
1546, https://doi.org/10.1016/j.cobeha.2017.07.005. 
V. Arun, P. V., M. Krishna, A. B.V., P. S.K. and S. V., "A 
Boosted Machine Learning Approach For Detection of 
Depression,"  2018  IEEE  Symposium  Series  on 
Computational  Intelligence  (SSCI),  Bangalore,  India, 
2018, pp. 41-47, doi: 10.1109/SSCI.2018.8628945. 
M. R. H. Khan, U. S. Afroz, A. K. M. Masum, S. Abujar 
and S. A. Hossain, "Sentiment Analysis from Bengali 
Depression  Dataset  using  Machine  Learning,"  2020 
11th  International  Conference  on  Computing, 
Communication  and  Networking  Technologies 
(ICCCNT),  Kharagpur,  India,  2020,  pp.  1-5,  doi: 
10.1109/ICCCNT49239.2020.9225511. 
arXiv:1607.07384v1 [cs.SI] 
S.  Jain,  S.  P.  Narayan,  R.  K.  Dewang,  U.  Bhartiya,  N. 
Meena  and  V.  Kumar,  "A  Machine  Learning  based 
Depression  Analysis  and  Suicidal  Ideation  Detection 
System using Questionnaires and Twitter," 2019 IEEE 
Students  Conference  on  Engineering  and  Systems 
(SCES),  Allahabad,  India,  2019,  pp.  1-6,  doi: 
10.1109/SCES46477.2019.8977211. 
N. A. Asad, M. A. Mahmud Pranto, S. Afreen and M. M. 
Islam,  "Depression  Detection  by  Analyzing  Social 
Media  Posts  of  User,"  2019  IEEE  International 
Conference  on  Signal  Procesing,  Information, 
Communication  &  Systems  (SPICSCON),  Dhaka, 
Bangladesh,  2019,  pp.  13-doi: 
10.1109/SPICSCON48833.2019.9065101. 
arXiv:1805.11869v1 [cs.CL] 
E. Lunando and A. Purwarianti, "Indonesian social media 
sentiment  analysis  with  sarcasm  detection,"  2013 
International  Conference  on  Advanced  Computer 
Science  and  Information  Systems  (ICACSIS),  Bali, 
2013,  pp.  195-198,  doi: 
10.1109/ICACSIS.2013.6761575. 
Mondher  Bouazizi  and  TomoakiOhtsuki.  2015.  Opinion 
Mining  in  Twitter  How  to  Make  Use  of  Sarcasm  to 
Enhance  Sentiment  Analysis.  In  Proceedings  of  the 
2015  IEEE/ACM  International  Conference  on 
Advances  in  Social  Networks  Analysis  and  Mining 
2015  (ASONAM  '15).  Association  for  Computing 
Machinery,  New  York,  NY,  USA,  1594β1597. 
DOI:https://doi.org/10.1145/2808797.2809350 
K.  Parmar,  N.  Limbasiya  and  M.  Dhamecha,  "Feature 
based  Composite  Approach  for  Sarcasm  Detection 
using  MapReduce,"  2018  Second  International 
Conference  on  Computing  Methodologies  and 
Communication (ICCMC), Erode,  2018, pp. 587-591, 
doi: 10.1109/ICCMC.2018.8488096. 
Liparas  D.,  HaCohen-Kerner  Y.,  Moumtzidou  A., 
Vrochidis  S.,  Kompatsiaris  I.  (2014)  News  Articles 
Classification  Using  Random  Forests  and  Weighted 
Multimodal Features. In: Lamas D., Buitelaar P. (eds) 
Multidisciplinary  Information  Retrieval.  IRFC  2014. 
Lecture  Notes  in  Computer  Science,  vol  8849. 
Springer,  Cham.  https://doi.org/10.1007/978-3-319-
12979-2_6 
I.  Hussain,  O.  Ormandjieva  and  L.  Kosseim,  "Automatic 
Quality  Assessment  of  SRS  Text  by  Means  of  a 
Decision-Tree-Based  Text  Classifier,"  Seventh 
International  Conference  on  Quality  Software  (QSIC 
2007),  Portland,  OR,  2007,  pp.  209-218,  doi: 
10.1109/QSIC.2007.4385497. 
Desjarlais, Robert  R. World mental  health: Problems  and 
priorities  in  low-income  countries.  Oxford  University 
Press, USA, 1995. 
Murray,  C.  J.,  Lopez,  A.  D.,  &  World  Health 
Organization. (1996). The global burden of disease: a 
comprehensive assessment  of  mortality  and  disability 
from  diseases,  injuries,  and  risk  factors  in  1990  and 
projected  to  2020:  summary.  World  Health 
Organization. 
P. V. Narayanrao and P. Lalitha Surya Kumari, "Analysis 
of  Machine  Learning  Algorithms  for  Predicting 
Depression,"  2020  International  Conference  on 
Computer  Science,  Engineering  and  Applications 
(ICCSEA),  Gunupur,  India,  2020,  pp.  1-4,  doi: 
10.1109/ICCSEA49143.2020.9132963. 
Islam,  M.R.,  Kabir,  M.A.,  Ahmed,  A.  et  al.  Depression 
detection  from  social  network  data  using  machine 
learning techniques. Health Inf Sci Syst 6, 8 (2018). 
GonzΓ‘lez-IbΓ‘nez,  Roberto,  Smaranda  Muresan,  and  Nina 
Wacholder.  "Identifying  sarcasm  in  Twitter:  a  closer 
look." Proceedings of the 49th Annual Meeting of the 
Association  for  Computational  Linguistics:  Human 
Language Technologies. 2011. 
Alsaleem,  S.,  2011.  Automated  Arabic  Text 
Categorization  Using  SVM  and  NB.  Int.  Arab.  J.  e 
Technol., 2(2), pp.124-128. 
M.  Bouazizi,  T.  OtsukiOhtsuki.  A  Pattern-Based 
Approach for Sarcasm  Detection on  Twitter. In IEEE 
Access, vol. 4, pp. 5477-5488, 2016. 
Tom'asPt'acek,  Ivan  Habernal,  Jun  Hong,  Tom'asHercig. 
Sarcasm  Detection  on  Czech  and  English  Twitter.  In 
COLING (2014). 
David  Bamman,  Noah  Smith.  Contextualized  Sarcasm 
Detection  on  Twitter.  In  International  AAAI 
Conference on Web and Social Media (2015).