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Abstract: Sentiment analysis is a substantial area of research nowadays. Many researchers have proved the subject in 
recent years. The reason behind that is the rapidly growing opinionated data on social media. With the aim 
of surmounting this obstacle, we introduce an efficient approach for sentiment analysis that ensemble the 
advantages of two deep learning models. Sentiment mining is the process of extracting opinion, feelings, 
emotions and attitude towards a specific task. Here, we have collected the IMDB movie review dataset as 
well as used two kind of deep learning classifiers to analyze the experimental result. Hence, the 
contemplated models are Long Short Term Memory and Convolutional Neural Network. The efficiency of 
the proposed model is compared with other traditional approaches in experimental work and outcome of the 
result shows that the ensemble approach can effectively improve the accuracy to predict the sentiments. 

1 INTRODUCTION 

Natural Language Processing(NLP) is a discipline in 
computer science that deals with the communication 
between machines and humans in natural language. 
NLP is dealt with enabling machines to understand 
and develop the human language. There are 
numerous application of NLP such as text 
categorization, sentence classification, Named Entity 
Recognition, speech recognition, Language 
detection and summarization, character recognition, 
structure prediction, decision making, computer 
vision, and others. It is one of the substantial 
applications of Natural Language Processing. 

Sentiment classification has become the most 
effective research area in NLP due to an increase in 
public interest in movies, outlooks, and elections. It 
aims to identify opinions, emotions, and attitudes 
towards specific tasks like movies, events, elections 
and many more. The rich data sources are used to 
perform analysis, likewise social media sites, 
blogging sites, RSS news feed etc. To perform text 
classification, it includes different processes 
likewise feature extraction, emotion detection, and 
attitude extraction. In the real world, there exist 
various application areas likewise in the medical 

field, box office, commercial sites, politics, and 
business intelligence. 

If we look further in the analysis process, there 
are used some notations such as subjective, 
objective, polarity and sentiment level. When the 
sentence holds subjective orientation in a given 
piece of text then it is known as subjective. For 
example “Newton is an awesome movie.” An 
objective can be defined as the sentence holds 
objective orientation. For example “Amit Masurkar 
is the director of Newton movie”. The other notation 
is polarity detection and it can be split up into three 
parts likewise positive, negative and neutral. 
Sentences show different levels of polarity such as I 
love my friends, I hate liars,I usually go outside 
every weekend. The first sentence contains positive 
polarity, the second sentence contains negative 
polarity and the third one contains neutral polarity 
respectively. 

2 RELATED WORK 

In order to do the analysis of sentiments, numerous 
researchers have made their efforts to ensemble deep 
learning andmachine learning classifiers to achieve 
outstanding result in ongoing years. The related 
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work briefly elaborates on the numerous researches, 
associated to text classification of social media 
contents about people’s sentiments, feelings, reviews 
towards various subjects like movies and products 
using NLP techniques. 

The authors have proposed an efficient deep 
learning classifier for sentiment classification which 
calculates the accuracy of 82.53% on Bengali text. 
In order to evaluate the performance, they used two 
deep neural network models such as deep RNN with 
BiLSTM (Sharfuddin AA, 2018). Deep 
learningtechniques achieved significant results in  
textanalysis. (Chen S, 2018) has been proposed an 
innovative method for target-based sentiment 
analysis which reduces the training time of the 
proposed model through regional LSTM. Deep 
learning models are frequently used in NLP 
applications. An efficient approach has been 
proposed for the multi-domain system that is based 
on word embedding. The tool named NeuroSent 
gives an accuracy of 85.15% by using the Amazon 
web site dataset for multi-domain (Dragoni M, 
2017). Some of the deep learning models are based 
on sentence classification in Natural Language 
Processing and some of them are based on 
traditional models like SVM, RNN, LSTM and 
much more. In this literature survey, we basically 
study the ensemble approaches to improve the 
performance. Some authors proposed an ensemble 
method for text classification by using Vietnamese 
text. In this technique, they have merged the 
traditional modelswith deep learning models and 
achieved the remarkable result that is 89.19% 
(Nguyen HQ, 2018). Some  authors  have done their 
research study in artificial intelligence on deep 
learning models. The review basically focuses on 
text classification by using different datasets 
(Alwehaibi A). A novel approach has been proposed 
by authors that are based on an ensemble of two 
models and achieves the accuracy 89%. They have 
used the IMDB movie review datasetfor  the 
analysis process [6]. The ensemble approach gives 
outstanding results over traditional models in text 
analysis. We noticed that the ensemble approaches 
performed much better than traditional models. 
Some authors have proposed a machinelearning-
based approach for improving the performance of 
sentiment analysis. They have used LSTM, Naïve 
Bayes and SVM for analysis process (Day MY, 
2017). Some authors have gained remarkable results 
in the field of Natural Language Processing by using 
deep learning techniques for text classification 
(Hassan A, 2017). In order to do classification, the 

authors have used Tibetan microblogs and achieved 
the result up to the mark (Sun B, 2018). 

The deep learning-based models improve the 
result in the field of NLP over the years. The authors  
have proposed a model named SentiWordNet and 
achieved better results. The model used word2Vec 
to perform analysis (Alshari EM, 2018). A novel 
approach ECNN has proposed that is used to 
identify opinion, polarity, and emotions in 
microblogs (Yang G, 2019). Numerous researchers 
have proposed a model related to sentiment 
classification. They have used word embedding 
methods of learning at the word level and sentence 
level (Zhang Z, 2015). In this field of research, we 
can achieve better results by using deep learning-
based approaches. The authors have proposed an 
ensemble approach that is the result of two machine 
learning models CNN, SVM for text sentiment 
analysis (Cai J, 2018). Many researchers have 
proposed an efficient method to perform 
classification processes on the IMDB review dataset 
and they found that RNN performs effectively in 
terms of words semantic and they achieved an 
accuracy of 89.8% (Zharmagambetov AS, 2015). In 
order to perform analysis, there are different 
parameters used such as feature extraction, opinion 
mining, applying different kinds of machine learning 
algorithms. An approach has been proposed that is 
based on a machine learning and Lexicon based 
features to perform sentiment analysis on the movie 
review dataset (Bandana R. 2018).  Word 
embedding is a technique that is used to convert the 
words into vectors. The researchers have been using 
the word embedding method for sentiment analysis. 
An efficient approach has been proposed for 
sentiment analysis by using word embedding (Deho 
BO, 2018). 

The comparative study is done by researchers on 
different tools and techniques of machine learning 
approaches of Natural Language Processing. The 
paper presents the various feature selection methods 
and machine learning techniques (Mejova Y, 2009). 
A joint framework has been proposed for sentence 
classification based on CNN and RNN. It gives the 
accuracy of 93.3%, 48.8%,89.2% on the movie 
review dataset, fine-grained and  binary accuracy 
respectively (Hassan A, 2018). The authors have 
proposed a deep learning approach for the 
classification process. (Patel Alpna, 2019) have 
achieved an accuracy of 87.42% by using RNN. The 
researchers have presented a novel approach to 
extract features and textual modalities and to 
improve the performance, they have used a deep 
CNN approach for the classification process (Poria 
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S., 2017). (Ruangkanokmas, 2017) have been 
proposed a model named Deep Belief Network. 
They have used a semi-supervised learning method 
called Deep Belief Network. The authors have 
proposed a method for users’ interests classification  
based on CNN and Word2Vec. The proposed 
framework is based on deep learning and they used 
CBOW as a feature extraction algorithm and SVM 
for classification that gives the accuracy 96% on the 
IMDB movie review dataset (Om, A. H., 2017). 
(Changliang Li, 2018) builds the Chinese Sentiment 
Treebank over social data and further introduces an 
approach named Recursive Neural deep model for 
the analysis process. The authors have been using 
word vectorization to extract corpus features and 
PCA to reduce dimension (Li, C., 2014). (Kumar 
Ravi, 2018) performed sentiment analysis on article 
citation sentences and they have been proposed an 
ensemble method for deep learning. The authors 
have been performing sentiment analysis by using 
word embedding techniques like word2vec and 
Glove as a pre-trained vector (Henry, S., 2017).  

The author DoaMohey El-Din Mohamed 
Hussein has done the comperative study on 
sentiment mining challenges (Hussein, 2018). 
(Feilong Tang, 2019) have been proposed a model 
named JABST stands for joint aspect-based 
sentiment topic for multi-grained aspect by using 
supervised learning method to process the model. 
The authors have been presented as an attention 
mechanism for target-level and context-level 
attention. The presented mechanism is more 
effective for sentiment feature (Yang, C., 2019). 
(AbinashTripathy, 2015) focuses on machine 
learning techniques. They obtained the result by 
using Naïve Bayes and SVM and show the 
comparison on the movie review dataset. The 
authors have shown the comparison between two 
classifiers named Deep Recurrent Neural Network 
and SVM. They concluded that the Support Vector 
Machine performs much better than Deep Recurrent 
Neural Network (Al-Smadi, M., 2018). (Rodrigo 
Moraeset., 2013) have been presented with an 
empirical comparison between ANN and SVM on 
the movie review dataset and they found ANN 
performs better than SVM. The authors have 
presented an ensemble deep learning method for 
sentiment analysis by using the IMDB movie review 
dataset (Araque, O.m, 2017). 

(Abinash, 2016) presented a novel technique for 
sentiment mining. They used an ensemble of 
classifiers named Naïve Bayes, SVM and Stochastic 
Gradient Descent and achieved an accuracy of 
83.33% on the IMDB movie review dataset. 

(Giatsoglou Maria, 2017) have been presented with 
an approach named RAE and achieved an accuracy 
of 83.99%. The authors have been performed better 
by using micro-blogs text (Zhang, S., 2018). 
(CagatayCatal, 2017) have proposed a model for 
analysis. The model has achieved the accuracy of 
86.13%. The authors have proposed a model named 
ML-KNN for classification. They used the 
unsupervised learning method (Zhang, M. L., 2007). 
The authors have presented a review on research 
topics, venues and top-cited papers (Mäntylä, M. V, 
2018). The authors have been presented with a 
boosted ensemble-based classifier for sentiment 
analysis (Athar A, 2017).  Anuj Sharma et. al. have 
been presented with aboosted  approach based on 
SVM (Sharma A, 2013; Dumoulin J, 2015). The 
authors have been  using a hierarchical approach for 
analysis (Sharma A, 2013). (Sharma A, 2012)  gave 
the literature survey on the ensemble of the classifier 
for sentiment mining. The authors have been using a 
deep neural network for sentiment prediction (Piao 
G, 2018). (Wan X., 2008) applied ensemble 
techniques for unsupervised Chinese 
sentimentanalysis (Piao G, 2018). 

3 PROPOSED APPROACH 

This section presents the detailed overview of the 
proposed model to classify sentiments in movie 
domain. The proposed approach uses two classifier 
of deep learning i.e Long Short Term Memory and 
Convolutional Neural Network. It uses word 
embeddings as input and takes them to LSTM for 
feature extraction and further output is given to  
CNN and followed by classification layer. The 
following step is followed by a proposed approach: 

 Word Embedding method is used to 
convert the word into featured vectors in 
the given text. 

 The hybrid model takes the advantages of  
two deep learning approaches such as 
LSTM and CNN for feature extraction. 

 The classification layer uses the Softmax 
activation function to compute the 
predictive probability. 

 

3.1 Long Short Term Memory 
Architecture 

Long Short Term Memory is a deep neural network 
model that is used for sequential information and 
proposed by (SeppHochreiter, 1998). LSTM is RNN 
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architecture that REMEMBERS values over 
arbitrary intervals and used to resolve a problem of 
vanishing gradient problem (Schuster M, 1997; 
Hochreiter S., 1998; Zhou C, 2015). LSTM enables 
RNN’s to remember their inputs over a long period 
of time. It uses input gate, forget gate and output 
gate as gates. The input gate is used for new input in, 
forget gate for whether information delete or not and 
the output gate for output at the current time step 
(Liu P, 2016; Tang D, 2015). The LSTM 
Architecture is depicted in  figure 3. 

 
 
 
 

 
 
Input                                                                            Output     

 
 
 
 
                                                                                    
 
 
 
                                    

Input Gate                                                               Output Gate  
 
 
 
 
 
                                                      
 
                                                                                                                     
 
 
 

 
 
 
                                                  
                                               Forget Gate 

   Ct    

   Ot 

ut 𝑁𝑡     

 

Figure 3.1: The LSTM gate architecture 

The sigmoid function gives the output value between 
0 or 1. The equation is given below:  

Input gate equation 

𝐼 ൌ 𝜎ሺ𝑤ൣℎିଵ,𝑥൧  𝑏             (3.1) 

Forget gate equation 

𝐹 ൌ 𝜎ሺ𝑤ൣℎିଵ,𝑥൧  𝑏        (3.2) 

Output gate equation 

 𝑂 ൌ 𝜎൫𝑤௨ൣℎିଵ,𝑥൧  𝑏௨൯            (3.3) 

where Ig represents the input gate, Fg as forget gate, 
Og as output gate, σ denotes the sigmoid function, wx 
shows the weight for the respective gate (x) neurons, 
h(g-1) represents the output of previous LSTM block, 
xg shows input of current timestamp and bx shows 
the biases for relative gates. The equations are given 
as follows: 

Cell state equation 

  ć௧ ൌ 𝑡𝑎𝑛ℎሺ𝑤ൣℎ௧ିଵ,𝑥௧൧  𝑏ሻ     (3.4) 

Candidate cell equation 

𝑐௧ ൌ 𝑓௧ ∗ 𝑐௧ିଵ,  𝑖௧ ∗ ć௧         (3.5) 

Final output equation 

ℎ௧ ൌ 𝑜௧ ∗ 𝑡𝑎𝑛ℎሺ𝑐௧)            (3.6) 

where ct denotes the cell state  at t timestamp and ćt 
shows candidate for cell state at t timestamp. we 
evaluate the above equation that our cell state knows 
that what it needs to forget from previous state 
(ft*ct-1) at any timestamp and what it should include 
from current timestamp (it* ćt) and * represents the 
element-wise multiplication. Next, we refine the cell 
state and pass it to the activation function (Nowak J, 
2017; Nabil M, 2016). 

3.2 Convolutional Neural Network  
Architecture 

Convolutional Neural Network was initially 
developed in the neural network image processing 
community. CNN involves basically two operations 
for text classification such as convolution and 
pooling as feature extractors (Lai S, 2015). CNN 
uses two kinds of pooling as feature extractors such 
as max-pooling and average-pooling. The max-
pooling elects a maximum number of values in the 
input feature map and the other selects the average 
number of values in the region (Lee JY, 2016).  

Convolutional Neural Network is also applied to 
the text in Natural Language Processing. When we 
use CNN for text instead of images, then we use the 
1-D array to represent context (Yin W, 2017). 
Mostly in Natural Language Processing (Nasukawa 
T, 2003) task, CNN is used in sentiment analysis 
which  means classifying a sentence into a set of 
predetermined categories. In order to perform text 
classification, each sentence is known as matrix. 
Every row of the matrix shows the one token, 
typically a word. We can say that each row is vector 
and impersonate a word (Guggilla C, 2016). 

In the NLP task (Kao A, 2007), we have used 
filters over full rows of matrices. The following 
model is as follows: 
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Figure 3.2: Convolutional Neural Network Model Structure 

If we analyze the above model, then we see that 
the first layer embed words into low dimensional 
vector after that next layer performs convolutions 
over the embedded word vectors using multiple filter 
sizes and classify the result using a softmax layer 
(Conneau A, 2016).  We have used CNN for text 
analysis for sentiment classification on the IMDB 
movie review dataset (www.kaggle.com). 

3.3 The Embedding Layer 

This layer of network changes the words into real-
valued featured vectors. Our model takes input in the 
form of vectors. In order to convert words into real-
valued featured vectors, we have used the word 
embedding method. Word embedding is the process 
of representing the word or phrase into a vector. The 
word is stored in vocabulary and arranged 
sequentially. We have used distributed 
representation  to overcome the dimensionality 
problem.  

3.4 The Proposed Approach 

In this subsection, we have discussed the detailed 
framework architecture of our proposed approach. 
The proposed approach ensemble the advantages of 
two deep learning classifiersi.e LSTM and CNN. 
Previously, we provideda detailed architectural 
explanation of LSTM and CNN. If we look upon 
RNN, the Long Short Term Memory approach 
performs efficiently related to feature extraction. In 
this approach, the convolutional layer uses Max-
pooling. The ensemble approach uses the embedding 
layer to take the input in the form of words and pass 
it to the multi-layer LSTM model. The multilayer 
LSTM generates the output and it is further passed 
to the convolutional layer as an input for further 

process. After the output of the convolutional layer 
passed to the classification layer for the 
classification process. The convolutional layer 
extracts the features of text sequences. 

LSTM model gives the output; L= [L1, L2, L3, 

…,Lt]T, Ltdenotes the tth words of the n-dimensional 
vector in a given sequence. The number of LSTM 
hidden layers and the vector length both are equal.  
C= [C0, C1, C2,…,Cn-1] will produce one value at t time 
step as follow: 
 UCt= ReLU [ሺ∑ିଵ

ୀ 𝑂௧ାଵ
TCi) +b] (3.7) 

 

where, b denotes the bias value and combination of  
b and C are used RELU activation function( C(y) = 
max (U, y)). It shows the single convolutional filter 
to extract the value of features from a given text 
sequence. The proposed approachis used multiple 
convolutional filters to extract variousfeatures. Next, 
the max-pooling layer formed and passed to the fully 
connected layer. The classification layer uses the 
Softmax activation function to calculate the 
predictive probability for all categories. The 
following equation shows the probability y as 
category w: 

P(x (i) = w|y (i); θ) = 


ഇೕ ሺሻ


∑಼
ೖసభ 

ഇೕ ሺሻ
  (3.8) 

 
 
 

ICACSE 2021 - International Conference on Advanced Computing and Software Engineering

16



 

 

 Embedding 
Layer 
 

 

 

 

 

LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONVOLUTIONAL LAYER 

 

MAX‐POOLING LAYER 

SoftMax Function 

Output

Input 

 
Figure 3.3: The Framework of the Proposed Approach 

4 RESULT AND DISCUSSION 

This section briefly discusses the experimental setup 
and measures the result of the approach. The 
performance was evaluated by using different 
parameters. The following subsection contains 
detailed information about datasets, experimental 
setup, confusion matrix, etc. These are as follows: 

4.1 Dataset Description 

In order to evaluate the performance, we have 
used the IMDB dataset. It includes 25000numbers of 
data on movie reviews from the Kagglewebsite that 
contain binary values named positive and negative 
sentiment. This paper uses the IMDB movie review 
dataset for the purpose of experimental work, the 
dataset contains 25000 numbers of data in which a 
75% number of data for the training set and 25% 
number of data for the validation set. After the split 

the dataset, further we perform dataset preprocessing 
tasks to clean the raw data and break the sentences 
into words and words into text. The detailed process 
is given in the introduction section. 

 

4.2 Environmental Setup and Param 
Setting  

Anaconda is a package provider for machine 
learning models by using python language. 
Tensorflow is the framework that provides the 
environment for machine learning models. We have 
used python version 3.6.5, jupyter notebook and 
Keras for implementing deep neural network 
models. Keras is the higher-level API that uses 
TensorFlow in backend and it is used for sequential 
modeling. In this experiment work, we used 
categorical cross-entropy for loss, Adam optimizer 
with learning rate 0.001, the batch size is 32 and the 
hidden layer of LSTM is 128 with dropout 0.2. 

4.3 Performance Measure 

If we look to the performance of the proposed 
model, a confusion matrix has been used that 
contains some parameters such as tp as true positive, 
tn as true negative, fp as false positive, and fn as 
false negative on test data. The confusion matrix is 
given in Table I as follows: 
It is used to calculate the accuracy of the proposed 
approach by using the following formula: 
 
Accuracy=

௧ା௧

௧ା௧ାା
X 100% 

The parameter accuracy is used to validate the 
proposed hybrid model by using the test set and 
validate set. The Table II depicted the comparative 
result of the proposed approach with deep learning 
approaches: 
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Table 1: Confusion Matrix 

 Label 1 (Predicted) Label 2      (Predicted) 

el 1 (Actual) tn fp 

el 2 (Actual) Fn tp 

Table 2: Accuracy Comparison of Ensemble Approach with Deep Neural Network Model for Sentiment Analysis 

 Deep Learning Models Time (per 
second) 

Test Accuracy Valid 
Accuracy 

1. Bidirectional LSTM 2119 88% 84.85% 

2. LSTM 1164 89% 85% 

3. CNN (max- pooling) 575 97% 85.52% 

4. CNN+GRU 551 95% 85.61% 

5. Bidirectional GRU 2676 89% 85.64% 

6. DeLC  model 1026 91% 85.78% 

 

Figure 3.4: Comparative study of proposed approach over Traditional Approaches 

Here, we compare the outcome of proposed 
approach over traditional approaches. The 
experimental work give the result analysis as 
follows, Bidirectional LSTM gives the accuracy 
84.85%, LSTM 85%, CNN 85.52%, CNN-GRU 
85.61%, Bidirectional GRU 85.64% and DeLC 

hybrid model gives the valid accuracy 85.78%. We 
can see that the proposed approach gives the 
outstanding result over other deep learning 
approaches. The figure 3.4 shows the comparative 
result of the proposed approach with deep learning 
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models including some parameters such as time (per 
second), test accuracy and valid accuracy. 

The figure 3.4 shows the comparison of existing 
approaches with the proposed approach in terms of 
time, test accuracy and valid accuracy. If we look 
forward to the analysis process, we found that the 
proposed approach may perform better in relation to 
other deep learning approaches. The experimental 
result shows that the proposed approach performs 
effectively with an accuracy of 85.78%. 

5 CONCLUSION 

Sentiment classification is the method of extracting a 
user’sview as positive or negative for a specific task. 
We have introduced an efficient approach for 
sentiment analysis that  ensemble the advantages of 
two deep learning models name as Long Short Term 
Memory and Convolutional Neural Network. LSTM 
overcomes the vanishing gradient problem and 
preserves historical information of long term text 
dependencies. Further, CNN extracts the feature of 
context. In this paper, the proposed ensemble 
approach efficiently improves the accuracy of 
sentiment classification. The proposed ensemble 
approach gives an accuracy of 85.78% on IMDB 
movie review data. It is found that the proposed 
approach performs better than other deep learning 
approaches. 
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