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Abstract: V2V messaging systems enable vehicles to exchange safety related information with each other and support 
road safety and traffic efficiency applications. The effectiveness of these applications depends on the 
correctness of the information reported in the V2V messages. Consequently, the possibility that malicious 
agents may send false information is a major concern. The physical features of a transmission are relatively 
difficult to fake, and one of the most effective ways to detect lying is to check for consistency of these features 
with vehicle position information in the message. In this paper, we propose a message consistency checking 
scheme whereby a vehicle acting independently can utilise the strength and variability of received signals to 
estimate the distance from a transmitting vehicle without prior knowledge of the environment (building 
density, traffic conditions, etc.). The distance estimate can then be used to check the correctness of the reported 
position. We show through simulation that our RMCSS method can detect false information with an accuracy 
of about 90% for separation distances less than 100m. We believe this is sufficient for the method to be a 
valuable adjunct to use of digital signatures to establish trust. 

1 INTRODUCTION 

Message-based Vehicle to Vehicle (V2V) 
communications have been proposed as means to 
address issues in Intelligent Transport Systems (ITS) 
such as accident avoidance, traffic monitoring and 
transport efficiency (Boban, Kousaridas, Manolakis, 
& Xu, 2018). In V2V, vehicles broadcast safety 
messages to exchange information about themselves 
and perceived road conditions. These messages form 
the basis of several road safety and traffic efficiency 
applications that are designed to improve safety on 
the roads. Because safety critical decisions are made 
based on the content of these messages, it is important 
to verify as far as possible that they can be trusted. 
Clearly, it is important for the receiving vehicle to 
check that a message has been signed using valid 
credentials that correspond to the sender identity 
used. However, given the large number of vehicles on 
the road, it is unwise to discount the possibility that a 
malicious agent can acquire legitimate credentials by 
some means and use them to broadcast false 
information. It seems prudent, therefore, for the 
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receiving vehicle to check whether the message 
contents make sense in the light of other knowledge 
available to it. The threat scenario addressed in this 
paper involves the malicious agent representing the 
existence of a vehicle in a dangerous location in order 
to cause accidents or widespread disruption to traffic. 
Typically, this will involve the malicious agent 
pretending to be closer to the target vehicles than it 
really is. The solution approach we explore here is for 
the receiving vehicle to check that the position 
claimed in the message is consistent with the strength 
and variability of the received radio signal. 

The remainder of the paper is structured as 
follows. First we present our method, which we call 
RMCCS; RSSI-based Message Consistency 
Checking Scheme for V2V Communications. It is 
based on the well-established log-distance path loss 
model with Gaussian noise, but with the additional 
assumption of a relationship linking the path loss 
exponent (which governs the rate of signal 
attenuation with distance) to the standard deviation of 
the Gaussian variable. This method is then compared 
with approaches taken previously by others. Next we 
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validate the assumption and evaluate the method 
using simulation software that embodies a faithful 
representation of signal propagation in representative 
conditions. A discussion of the relative effectiveness 
of the method and how it may be combined with other 
techniques to provide an effective defence against 
misinformation in a V2V context then follows. 

2 THE RMCCS METHOD 

The received signal strength indicator (RSSI) is a 
commonly used measure of the power of a received 
radio signal. It is the ratio of the power measured at 
two different points, e.g.at the transmitter and the 
receiver, expressed in dB, i.e. RSSI = 10 log10(P/P0) 

In the case of a non-directional signal broadcast 
through a uniform medium, the so-called log-distance 
path loss model (LDPLM) is widely used to estimate 
the RSSI at a receiver (see for example (Fernández, 
Rubio, Rodrigo-Peñarrocha, & Reig, 2014) and 
(Giordani, et al., 2019)): 

RSSI ≈ A - 10B log10(d/d0)   (1) 

where d is the distance from the transmitter, d0 is a 
reference distance that is usually taken to be 1 metre, 
and A and B are positive constants. A depends on the 
transmitter and receiver characteristics, and B, the 
path loss exponent, depends on the transmission 
medium. This is a monotonically-decreasing function 
of d and can readily be inverted to obtain an estimate 
of d given a measurement of RSSI provided A and B 
are known. Taking d0 to be the usual value of 1m: 

d = 10^((A-RSSI)/10B)    (2) 

This estimate can be compared with the distance 
between the known position of the receiver and the 
claimed position of the sender as a consistency check. 

However, there are complications that make this 
approach difficult to use in practice. Firstly, the 
LDPLM only really applies to propagation in free 
space. For example, one correction that is frequently 
applied is to allow for interference between the radio 
waves travelling directly from sender to receiver and 
those reaching the receiver after reflection from the 
road surface. Even if the LDPLM is a good 
approximation at long distances, the presence of static 
and moving obstacles such as buildings and vehicles 
not only tends to attenuate the signal, but also 
introduces considerable variation of RSSI due to 
absorption, reflection, refraction, and multi-path 
interference. Indeed, a more general form of LDPLM 
adds a Gaussian random variable with a mean value 

of 0 to the right-hand side of (1) to take such effects 
into account. This may be interpreted as a margin of 
error on the expected RSSI value at a given distance 
of ±σ, the standard deviation of the random term. This 
can be translated to an uncertainty on the estimated 
distance between sender and receiver, the magnitude 
of which is proportional to the estimated distance, i.e. 
the ratio of the uncertainty to the distance is constant 
for a given σ and B. 

So, obstacles on or near the line of sight (LOS) 
between sender and receiver modify (usually reduce) 
the effective value of B and introduce variability into 
the RSSI that has the appearance of random noise. 
The idea that we explore in this paper is that if these 
two phenomena are correlated, we could use 
measurements of RSSI variability alongside its mean 
value to obtain estimates of distance and the 
associated uncertainty that could be used to assess the 
likely truth of a reported position and give a measure 
of confidence on this assessment. Suppose that B and 
σ are functions of a common hidden variable, γ, that 
characterises the nature of the obstacles on or near the 
path between them, for example,  

B = γB0 and σ = k(γ – γ0)    (3) 

where γ = 1 corresponds to LOS conditions, k is a 
constant of proportionality, and γ0 ≤ 1 allows for the 
possibility of variation in RSSI even in LOS 
conditions. Given measurements of RSSI and σ, the 
distance between sender and receiver, can be 
estimated as: 

d̄ = 10^((A-RSSI)/(10(σ/k + γ0)B0))   (4) 

and the uncertainty on this value as: 

σ̄d = d̄.(10^Γ - 10^-Γ)/2,where Γ = σ/10B0(σ/k + γ0) 
(5) 

If dr is the distance based on the position of the sender 
as reported in the message, then |d̄ - dr|/σd̄ provides a 
measure of the inconsistency of the reported position 
and the measured signal strength and variation. Note 
that, due to the logarithmic dependence of RSSI on 
distance in (1), if σ is independent of distance, then σ̄d 
increases linearly with distance. Thus, a given 
discrepancy Δd = |d̄ - dr| may be regarded as 
inconsistent for small d̄ and consistent for large d̄. 

The receiving vehicle will need to extract 
estimates of the mean RSSI and the corresponding 
standard deviation from the noisy RSSI signal, but we 
propose this can be done using standard signal 
processing techniques such as Kalman and Savistzky-
Golay filtering algorithms. 
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Below, we assess the validity and effectiveness of 
this approach using data obtained from a simulation, 
but first we review other work that has used RSSI 
measurements in the context of V2V. 

3 RELATED WORK 

Several existing research studies have used RSSI-
based techniques to provide solutions to issues in 
V2V. Such techniques are popular as they have low 
computational cost and require no extra hardware. 
The main applications are Sybil node detection and 
localisation of vehicles: 

3.1 Sybil Node Detection  

RSSI-comparison techniques have been proposed as 
a means of detecting non-existent vehicles fabricated 
by malicious agents (so-called Sybil nodes). The core 
idea behind this approach is that as the messages 
apparently sent from multiple Sybil nodes are actually 
sent by the same physical node, they share similar 
signal characteristics with each other and with 
genuine messages from that node. For example, (Yao 
Y. , et al., 2018) record successive RSSI values to 
obtain time sequences apparently corresponding to 
different vehicles. If identical (or at least very similar) 
sequences are observed, this is taken as a sign of Sybil 
activity. In case malicious nodes perform power 
control to avoid their Sybil nodes being detected by 
such means, (Yao Y. , et al., 2019) proposes a 
complementary method that finds Sybil nodes by 
detecting abnormal variations in the RSSI time series. 

3.2 Localisation of Vehicles  

Several schemes that use RSSI to estimate the 
location of vehicles have been proposed previously. 
For example, (Garip, Kim, Reiher, & Gerla., 2017) 
describes an approach whereby neighbouring 
vehicles collaborate to determine the location of a 
target vehicle. Each vehicle estimates its distance to 
the target vehicle using the LDPLM formula and then 
sends the estimated distance and its current location 
to a chosen vehicle called the observer. The observer 
processes the aggregated information and advertises 
the target vehicle’s actual location. Also, (Ahmad, et 
al., 2019) describes an RSSI-based localization 
mechanism that uses nearby stationary roadside units 
(RSUs) to estimate the location of a target vehicle. 
Each RSU measures the RSSI values of transmissions 
from the target and uses them to estimate its distance. 

Schemes like these are cooperative in nature, 
meaning that they rely on information received from 
nearby nodes to function, and are vulnerable to 
collusion attack. Moreover, there is no means to 
guarantee the credibility of nodes’ measurement 
reports. Besides, transmission of the distance 
estimates adds more traffic to the network, increasing 
bandwidth consumption. A latency penalty is also 
incurred as the observer must wait to receive distance 
estimates from other nodes. In our RMCCS method, 
a receiving vehicle acting alone can determine 
whether another vehicle is lying about its position.  

4 SIMULATION AND 
EVALUATION 

To obtain RSSI measurements, we use the GEMV2 
simulation software of (Boban, Barros, & Tonguz, 
2014), which incorporates a range of propagation 
effects including transmission through materials, 
diffraction and reflection. In particular, it models the 
impact of the presence of vehicles, buildings and 
foliage. The developers of GEMV2 have validated it 
against measurements performed in urban, suburban, 
highway and open space conditions. 

To generate data for the evaluation we used 
models of real locations taken from Open Street Map 
(OSM) that include representations of building 
geometry and road networks. In particular, we 
selected locations in Newcastle, UK, that represent 
distinct types of environment. The locations are (a) a 
city center area (b) an inter-city highway, and (c) a 
suburban area. We then used SUMO, which is a 
widely used road traffic simulation tool, to generate 
mobility traces of vehicles trajectories in these 
locations. The mobility traces are then converted into 
floating car data (FCD) format and used as input to 
the GEMV2 to calculate the RSSI. The number of 
vehicles used in these locations and other parameters 
used in the simulation are shown in Table 1. 

Table 1: Simulation Settings. 

Parameters Value 
Number of vehicles  2 – 200  
Communication range 300m 
Message frequency  10Hz 
A -39dBm 
Operating frequency  5.9GHz 
SUMO simulation time 3600s 
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Figure 1: RSSI vs Distance. 

The RSSI data generated from each of these 
scenarios was plotted against the distance between 
sending and receiving vehicles. Fig. 1 is an example 
of such a plot generated for a city center scenario in 
high traffic density conditions. It is apparent that the 
plot can be divided into distinct segments, which were 
found to correspond to line of Sight (LOS) conditions 
(characterized by absence of noise-like variability), 
obstruction by traffic, obstruction by buildings, etc. 
Each RSSI trace was divided into segments by eye. 
Curves of the form (1) were fitted independently to 
each segment to obtain values for B, with A being 
held fixed at a value (given in Table 1) determined 
from typical vehicle characteristics, and d0 =1. The 
root mean square deviation of RSSI points from the 
fitted curves was then calculated to obtain σ values 
for each segment. It may be seen from Fig. 2 that the 
segments appear to be distributed about a straight line 
in (B, σ) space. We therefore assumed the 
parameterisation of (3) with B0 being the least value 
of B for any segment, and k and γ0 being determined 
from a least-squares fit through the points of Fig 2. 

From (5) we see that the ratio of the uncertainty 
on the distance estimate (σ̄d) to the distance estimate 
itself (d̄) is dependent on σ. For B0=1.4 and using 
k=3.89 and γ0=1.00 from the least squares fit, the ratio 
is about 0.14 for σ=1dBm, 0.38 for σ=5dBm and 0.49 
for σ=10dBm. If we use a 3 sigma criterion for 
consistency, then for σ=1dBm, the discrepancy 
between claimed distance and true distance would 
need to be greater than 42% of the true distance to be 
judged to be lying. For σ=3.75dBm, the required 
discrepancy is about the same size as the distance 
itself. As the main threat comes from vehicles 
claiming to be closer than they really are, then the 
proposed technique is only useful for σ<3dBm. 
Reducing the inconsistency criterion extends the 
applicable σ range, however, albeit at the cost of 
increased false positives. 

 
Figure 2: Least Square fitting of (B, σ). 

 
Figure 3: Mean RSSI and standard deviation data generated 
from the filtering algorithm. 

To use (4) to estimate its distance from a moving 
transmitter, and (5) to estimate the uncertainty on this 
value, a receiving vehicle must extract mean RSSI 
values and the corresponding standard deviations 
from a ‘noisy’ sequence of RSSI measurements. 
Furthermore, these values must be updated 
continuously. Two alternative algorithms were tried 
for this purpose, a Kalman filter and a Savistzky-
Golay filter. The filtering algorithms were reset at the 
boundaries between segments, which were detected 
as a rapid alteration in the rate of change of the mean 
RSSI. Fig. 3 shows a sample trace overlaid with the 
values extracted using the Savistzky-Golay filter. As 
may be seen, the algorithms are reasonably effective 
at tracking the mean RSSI value and the 
corresponding standard deviation.  

The distance between the sender and receiver was 
estimated using (5) and then compared with the true 
distance calculated based on the reported position in 
the received message. Fig. 4 plots the estimated 
distance against the true distance for the sample trace. 
It can be seen that on average, the estimated distance 
and true distance are equal, but the margin of error 
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increases with distance. The estimation error, defined 
as |d̄ -dr|/dr, was found to be less than 25% everywhere 
and is below about 12% for separation distance less 
than 50m. Also, the overall average estimation error 
was found to be 7.5% for distances up to 250m.  

 
Figure 4: Estimated distance vs True distance. 

To assess the probability of true negatives, TN, 
(and false positives, FP) for different inconsistency 
criteria, we calculated the proportion of data points in 
the sample trace for which the absolute difference 
between the true and estimated distance exceeds 
various multiples of σ̄d. To assess the probability of 
true positives, TP, (and false negatives, FN), we used 
threat scenario in which a static malicious vehicle 
simulates a Sybil vehicle following the target vehicle 
at various fixed distances. TP is calculated as the 
proportion of data points in the sample trace for which 
the difference between the reported distance and the 
estimated distance exceeds various multiples of σ̄d. 
The results are shown for various following distances 
and inconsistency criteria in Fig. 5.  

 
Figure 5: True Positives for the evaluation scenario. 

To get an overall assessment of TP for a given 
inconsistency criterion, we took the average over the 
various following distances up to 250m. Because it is 
reasonable to suppose that detecting fictitious 
vehicles that are faraway is less important than 
detecting ones that are nearby, we also calculated the 

averages over following distances up to 100m. 
Having obtained TN and TP values for a range of 
inconsistency criteria we calculated accuracy values: 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 
= (TP+TN)/2 (6)

The results are shown in Table 2. As can be seen, 
an inconsistency criterion of |d̄ - dr|/σd̄ > 1 appears to 
give the best accuracy of approximately 90% for 
distances up to 100m and about 83% for longer 
distance up to 250m. 

Table 2: Evaluation parameters of RMCCS for three 
inconsistency criteria: |d̄ - dr|/ σd̄ > N. 

Metric  Distance(m) N = 1 N = 2 N = 3 
TN up to 250m 0.9551 0.9708 0.9809 

TP 
up to 250 0.7195 0.4344 0.2051 

up to 100 0.8441 0.4834 0.1119 

Accuracy 
up to 250 0.8373 0.7026 0.59303 

up to 100 0.8996 0.7271 0.54641 

5 CONCLUSIONS 

In this paper, we describe RMCCS – a mechanism 
that utilizes RSSI measurements to detect when 
vehicles are lying about their position. Like many 
other methods, RMCCS makes use of the LDPLM 
RSSI formula. However, by proposing a linear 
relationship between the path loss exponent and the 
standard deviation of the noise component in this 
formula, the RMCCS method enables a receiving 
vehicle to estimate distance independently without 
prior knowledge of environmental conditions such as 
the current traffic conditions and building density in 
the vicinity. The assumption of a linear relationship is 
justified by empirical evidence obtained from a 
realistic simulation. The estimated distance and 
associated uncertainty provide a means to judge 
whether the sender is lying about its claimed position. 
As a measure of inconsistency, we use the ratio of the 
magnitude of the difference between reported and 
estimated distances to the uncertainty on the estimate. 
The sender is judged to be lying if the inconsistency 
is greater than a threshold value. Lowering the 
threshold tends to increase true positives, but reduce 
true negatives. The threshold can be varied to obtain 
an optimal value that maximises accuracy (which is 
proportional to the sum of true positives and true 
negatives). This provides a way for vehicles to detect 
misinformation without the need for support from 
their neighbors or any nearby infrastructure. 
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Contrasting the previous works described in 3.2 
with the RMCCS method, (Garip, Kim, Reiher, & 
Gerla., 2017) require collaboration among 
neighboring vehicles to estimate the distance of a 
target vehicle whereas in RMCCS the estimation 
algorithm is purely local. The accuracy of this 
approach depends on number of vehicles reporting 
their individual estimated distances to the target and 
the correctness of the reported information. When a 
large proportion of neighbours report incorrect 
distance estimates, the estimated target position will 
deviate from its true location. Such approaches are 
unreliable when vehicles fail to collaborate or their 
messages are lost. Furthermore, the same fixed path 
loss exponent is used by all collaborating vehicles, 
whereas, as we have seen, its value depends on the 
obstacles on or near the transmission path. In contrast, 
RMCCS is able to extract a dynamic value for the 
exponent from the RSSI data using the linear 
relationship. In (Ahmad, et al., 2019), cooperation is 
also required, this time among RSUs. Again a fixed 
path loss exponent is used to estimate the distance to 
the target vehicle. A further disadvantage is that it is 
unrealistic to assume that RSUs will be available in 
all locations.  

In terms of evaluation, the previous works 
assessed their methods using simulators such as NS-
2, employing simple statistical propagation models. 
In contrast, our RMCCS method was evaluated using 
GEMV2, which accounts for RSSI variation caused 
by obstruction by surrounding objects. Studies in 
(Mir, 2018) show a significant difference in received 
power when comparing the performance of GEMV2 
and the propagation models built into NS-2. This 
indicates that performance estimates obtained using 
NS-2 are questionable, and that when the previous 
work is evaluated with a more realistic simulation 
environment, performance will reduce.  

Another work that also checks consistency of 
messages in V2V by using physical signals is (Lin & 
Hwang., 2020). This work exploits angle of arrival 
measured using a multi-antenna configuration, which 
requires vehicles to have special hardware. This 
increases the complexity and cost of the vehicle’s 
onboard units. RMCCS, however, is compatible with 
existing in-vehicle units. 

We have shown through simulation and 
evaluation that RMCCS performs well in terms of 
distance estimation and ability to detect false position 
reports with an accuracy level of about 90% with 
separation distances under 100m. We believe this is 
sufficient for the method to be a valuable adjunct to 
use of digital signatures to establish trust between 
vehicles, which will not only enable effective defense 

against malicious vehicles but also improves traffic 
safety significantly.  

As a future work, we aim to investigate the 
application of RMCCS method in combination with a 
symmetric cryptography based security scheme 
similar to TESLA in order to provide low-latency 
message verification in V2V.  
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