from a slot in the parking lot to the road. Finally, in 
the  third  scenario,  the  car  is  already  inside  the 
parking lot and it travels backward until the parking 
slot.  As  the  video  shows,  our  self-driving  car 
operates appropriately in the real world with PPUE. 
6  CONCLUSIONS 
We presented a path planner for  unstructured urban 
environments  (PPUE)  for  our  or  any  other  self-
driving car.  PPUE computes smooth and safe paths 
that obey the kinematic constraints of the vehicle in 
an amount of time suitable for real world operation. 
Compared  with  related  works,  PPUE  differs  in  its 
car’s  collision  model  and  in  its  use  of  an  obstacle 
distance  map  instead  of  an  occupancy  grid  map  – 
these  improvements  allow  for  faster  path 
computation.  
As directions for future works, we plan to extend 
PPUE for allowing its use with semi-trailer trucks.  
ACKNOWLEDGEMENTS 
This study was financed in part  by  Coordenação de 
Aperfeiçoamento  de  Pessoal  de  Nível  Superior  – 
Brasil  (CAPES)  –  Finance  Code  001;  Conselho 
Nacional  de  Desenvolvimento  Científico  e 
Tecnológico - Brasil (CNPq) - grants 310330/2020-
3,  133864/2019-7  and  311654/2019-3;  and 
Fundação de Amparo à Pesquisa do Espírito Santo - 
Brasil (FAPES) – grants 75537958 and 84412844. 
REFERENCES 
Badue,  C.,  Guidolini,  R.,  Carneiro,  R.  V.,  Azevedo,  P., 
Cardoso, V. B., Forechi, A., Jesus, L. F. R., Berriel, R. 
F.,  Paixão,  T.  M.,  Mutz,  F.,  Oliveira-Santos,  T.,  and 
De  Souza,  A.  F.  (2020).  Self-driving  cars:  A  survey. 
Expert Systems with Applications, 113816. 
Cardoso, V., Oliveira, J., Teixeira, T., Badue, C., Mutz, F., 
Oliveira-Santos, T., Veronese, L., and De Souza, A. F. 
(2017,  May).  A  model-predictive  motion  planner  for 
the  IARA  autonomous  car.  In  2017 IEEE 
International Conference on Robotics and Automation 
(ICRA) (pp. 225-230). IEEE. 
Chu,  K.,  Kim,  J.,  Jo,  K.,  and  Sunwoo,  M.  (2015).  Real-
time  path  planning  of  autonomous  vehicles  for 
unstructured road navigation. International Journal of 
Automotive Technology, 16(4), 653-668. 
Dolgov,  D.,  Thrun,  S.,  Montemerlo,  M.,  and  Diebel,  J. 
(2010).  Path  planning  for  autonomous  vehicles  in 
unknown  semi-structured  environments. The 
international journal of robotics research, 29(5), 485-
501. 
Elizondo-Leal, J. C., Parra-González, E. F., and Ramírez-
Torres,  J.  G.  (2013).  The  exact  Euclidean  distance 
transform:  a  new  algorithm  for  universal  path 
planning.  International Journal of Advanced Robotic 
Systems, 10(6), 266. 
Galassi,  M.,  Davies,  J.,  Theiler,  J.,  Gough,  B.,  Jungman, 
G., Alken, P., Booth, M., and  Rossi, F.  (2009).  GNU 
scientific library Reference Manual (3rd Ed). Network 
Theory Limited. 
Ghosh, D., Nandakumar, G., Narayanan, K., Honkote, V., 
and  Sharma,  S.  (2019,  May).  Kinematic  constraints 
based  Bi-directional  RRT  (KB-RRT)  with 
parameterized  trajectories  for  robot  path  planning  in 
cluttered  environment.  In  2019 International 
Conference on Robotics and Automation (ICRA) (pp. 
8627-8633). IEEE. 
Guidolini, R.,  Badue, C.,  Berger, M., de  Paula Veronese, 
L., and De Souza,  A. F. (2016, November).  A simple 
yet  effective  obstacle  avoider  for  the  IARA 
autonomous  car.  In  2016 IEEE 19th International 
Conference on Intelligent Transportation Systems 
(ITSC) (pp. 1914-1919). IEEE. 
Guidolini,  R.,  De  Souza,  A.  F.,  Mutz,  F.,  and  Badue,  C. 
(2017,  May).  Neural-based  model  predictive  control 
for  tackling  steering  delays  of  autonomous  cars.  In 
2017 International Joint Conference on Neural 
Networks (IJCNN) (pp. 4324-4331). IEEE. 
Kicki,  P.,  Gawron,  T.,  and  Skrzypczyński,  P.  (2020).  A 
Self-Supervised  Learning  Approach  to  Rapid  Path 
Planning for Car-Like Vehicles Maneuvering in Urban 
Environment. arXiv preprint arXiv:2003.00946. 
Montemerlo,  M.,  Becker,  J.,  Bhat,  S.,  Dahlkamp,  H., 
Dolgov,  D.,  Ettinger,  S.,  Haehnel,  D.,  Hilden,  T., 
Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., 
Langer, D., Levandowski, A., Levinson, J., Marcil, J., 
Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A., 
Pflueger,  M.,  Stanek,  G.,  Stavens,  D.,  Vogt,  A.,  and 
Thrun,  S.  (2008).  Junior:  The  stanford  entry  in  the 
urban challenge. Journal of field Robotics, 25(9), 569-
597. 
Moraes, G., Mozart, A., Azevedo, P., Piumbini, M., 
Cardoso, V.  B.,  Oliveira-Santos, T., De Souza, A. F., 
and  Badue,  C.  (2020,  July).  Image-Based  Real-Time 
Path  Generation  Using  Deep  Neural  Networks.  In 
2020 International Joint Conference on Neural 
Networks (IJCNN) (pp. 1-8). IEEE. 
Mutz, F., Veronese, L. P., Oliveira-Santos, T., de Aguiar, 
E.,  Cheein,  F.  A.  A.,  and  De  Souza,  A.  F.  (2016). 
Large-scale mapping in complex field scenarios using 
an autonomous car. Expert Systems with Applications, 
46, 439-462. 
Possatti,  L.  C.,  Guidolini,  R.,  Cardoso,  V. B.,  Berriel,  R. 
F.,  Paixão,  T.  M.,  Badue,  C.,  De  Souza,  A.  F.,  and 
Oliveira-Santos,  T.  (2019,  July).  Traffic  light 
recognition  using  deep  learning  and  prior  maps  for 
autonomous  cars.  In  2019 International Joint 
Conference on Neural Networks (IJCNN)  (pp.  1-8). 
IEEE.