
Cloud Key Management using Trusted Execution Environment

Jaouhara Bouamama1, Mustapha Hedabou1 and Mohammed Erradi2
1University Mohammed VI Polytechnic , Benguerir, Morocco

2ENSIAS, University Mohammed V, Rabat, Morocco

Keywords: Cloud Computing, Key Management, Intel SGX.

Abstract: Cloud storage represents a primordial component in most information technology infrastructures. Using cloud
instead of on-premise storage raises several security issues, especially when secret keys are stored on the
cloud. In such a setting, a robust cloud key management system is a must. Using traditional key manage-
ment systems (KMS) in the cloud suffers from performance and scalability limitations. This paper, proposes
an efficient and secure cloud KMS based on Trusted Execution Environment, precisely Intel SGX. The sug-
gested system (KMSGX), while being deployed on the cloud, is fully controlled by the end-user. Therefore,
KMSGX allows running on-premise software key management securely on the cloud provider side, protecting
the exchanged and stored data. The security properties of the suggested design have been formalized using the
Applied Pi Calculus and proved with ProVerif. The experimental results have demonstrated the system’s high
performance in terms of the upload and download durations and the limited overhead compared to the plain
design.

1 INTRODUCTION

Cloud computing consists of using networks of re-
mote servers to store, manage and process data. The
adoption of the cloud computing paradigm is expand-
ing at an astonishing pace for both personal and pro-
fessional usages. Users consider cloud computing
mainly to profit from their high storage capacity and
the available computational power. This is in addition
to the cost reduction, efficiency, and flexibility. How-
ever, security represents a main cloud user require-
ment that must be considered while designing solu-
tions based on the cloud.

Usually, to profit from the cloud services while
ensuring data privacy, users store the data in their en-
crypted form. Using such data requires special han-
dling when managing the secret keys allowing access
to that data. Depending on the type of cloud service
in use, most key management functions are partially
or fully controlled by the cloud providers (Schneier,
2007). Accordingly, due to their sensitivity, crypto-
graphic keys must be handled with care (Chokhani,
2013). For instance, they should be generated ran-
domly, stored safely and exchanged via secure proto-
cols.

Recently, several approaches were proposed to
protect personal keys, ranging from software to hard-

ware solutions (Rosen, 2012; Amazon, 2015; Phe-
gade et al., 2017; Chakrabarti et al., 2017). These
approaches raise many limitations in terms of per-
formance, scalability, and on-demand self-service.
On the other hand, Trusted Execution Environments
(TEEs) were introduced to guarantee a high level of
trust on remote platforms (Sabt et al., 2015). In a nut-
shell, TEEs were designed to build an isolated envi-
ronment for secret code execution. They ensure the
authenticity, integrity, and confidentiality of the exe-
cuted code. In this context, existing popular TEE such
as Intel SGX (Intel, 2017) relies on hardware to iso-
late sensitive code from untrusted access. Intel SGX
operates over one CPU, which can have multiple se-
cure environments called enclaves executed over un-
trusted software (Mukhtar et al., 2019).

In this paper, we design KMSGX, an efficient and
secure cloud key management system based on Intel
SGX. The system is configured and deployed by the
end-user on the cloud platform. The system leverages
trusted execution tools to store keys and perform sen-
sitive computation on the cloud platform in a secure
manner. KMSGX allows executing on-premise soft-
ware key management securely in the cloud provider
through accessible hardware facilities to keep control
over sensitive keys at a low cost.

The proposed system ensures the authentication

560
Bouamama, J., Hedabou, M. and Erradi, M.
Cloud Key Management using Trusted Execution Environment.
DOI: 10.5220/0010558905600567
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 560-567
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

and the confidentiality properties following the Dolev
Yao attacker model (Cervesato, 2001). The exper-
imental results have demonstrated the system’s effi-
ciency in terms of the upload and the download dura-
tion, and the limited overhead compared to the plain
design. To summarize, our contribution in this paper
consists of:

• The design of KMSGX, a new cloud key manage-
ment system based on a Trusted Execution En-
vironment, aims to give complete control of the
secret keys to the end-user while allowing basic
cloud operations.

• The formal proof of the security properties of the
designed system during different states of the se-
cret keys; in transit, in use and at rest.

• The implementation and the evaluation of the sug-
gested system.

The paper is organized as follows. Section 2 presents
the TEE technology used in the proposed model. We
discuss the existing related works in section 3. The
overview of the system model and the threat model
are given in section 4. In section 5, we describe the
suggested key management system. Section 6 aims
to formalize and prove the security properties. Sec-
tion 7 is dedicated to the experimental results and a
discussion. Finally, we conclude the paper in section
8.

2 INTEL SOFTWARE GUARD
EXTENSION

Cryptographic operations have evolved from protect-
ing the confidentiality of communication over public
channels to more complicated tasks ranging from en-
abling access control to data, ensuring user authenti-
cation, to checking virtual machine integrity in cloud
providers platforms. Accordingly, a key management
system must be designed and implemented in se-
curely since encryption is believed to be the only way
to guarantee the confidentiality and authentication of
outsourced data (Bentajer and Hedabou, 2020). In
this direction, the key management process consists
of multiple states, ranging from key generation, key
storing, key processing, key activation/deactivation,
key archival, and finally, key destruction (Chokhani,
2013). In this paper, we leverage the trusted execution
environment functionalities to design KMSGX, a key
management system based on Intel SGX.

Intel SGX is a technology that aims to enable
high-level protection of secrets against all nonautho-
rised access, including operating systems and hy-
pervisors. It has known a huge success by its

involvement in designing multiple secure solutions
(Kaaniche et al., 2020). It works by allocating
hardware-protected memory where data and code re-
side. This protected memory is called an enclave. The
enclave code can be invoked only via special instruc-
tions such as ECALL and OCALL. The ECALL in-
struction is a call to a predefined function inside the
enclave from the application, whereas an enclave can
invoke a predefined function in the application via an
OCALL.

Additionally, Intel SGX provides dedicated at-
testation and sealing mechanisms to build a secure
model. To this end, two hardware keys are generated.
Typically, a Report Key to verify the signature of an
enclave and a Seal Key to encrypt sensitive data out-
side the enclave (Intel, 2017).

Generally, a software attestation aims to convince
a challenger that a software is trustworthy and running
on the same platform. Accordingly, an enclave can
prove its identity to either another enclave in the same
platform or to a remote party (figure 1) .

Figure 1: Intel SGX Attestation.

Attestation. The enclave starts by receiving the ser-
vice provider’s attestation request, and it generates a
signed REPORT. This REPORT is sent to the quot-
ing enclave, which is responsible for converting lo-
cal REPORT to a QUOTE verifiable by the service
provider. The quoting enclave generates a QUOTE
by signing the REPORT with the private key of the
enclave. Then, it forwards the QUOTE to the ser-
vice provider. Finally, the service provider verifies
the QUOTE via Intel Attestation Service, which is a
public web service operated by Intel that proves the
trustworthiness of QUOTES.

3 RELATED WORKS

Several research efforts have been dedicated to de-
signing efficient cloud key management systems. Ex-
isting approaches might be categorized into homo-

Cloud Key Management using Trusted Execution Environment

561

morphic encryption and trusted environment-based
approaches. In the following, we are presenting an
overview of the most well-known approaches. In
(Rosen, 2012), the author has presented Porticor, a
Homomorphic Key Management Protocol. This pro-
tocol is based on the multiplicative homomorphic
properties of El-Gamal scheme (ElGamal, 1985). The
design depends mainly on the key split approach,
which consists of splitting the key into two parts. The
first one, a master key, which is under the control of
the user. The second part is generated by the Porticor
Virtual Appliance and stored within the Porticor Vir-
tual Key management (PKVM) Service. The appli-
ance uses both parts of the key to encrypt and decrypt
data. The master key is homomorphically encrypted
and never exposed in plain. Although, the master key
is exposed to neither the Porticor Virtual Appliance
nor the PVKM. The protocol relies on the assump-
tion that an appliance and the PVKM do not collude.
Moreover, as presented by their schema, the keys gen-
erated by the Porticor Virtual Appliance are stored as
cleartext in the appliance memory, which runs in the
cloud. If the memory is compromised, the keys and
the encrypted data would be exposed as well.

The author of (Hamid, 2013) suggested the usage
of Hardware Security Module (HSM) for key man-
agement in the cloud. HSM is used as the root of
trust for various key management services where it
safeguards and manages digital keys for strong se-
curity guarantees. Although HSM’s isolated hard-
ware, which is intrusion-resistant and tamper evident
against physical attacks, was developed before the
birth of the cloud computing paradigm. Thus, using
HSM in cloud settings turns out to be costly and has
inherent limitations related to a lack of elasticity and
interoperability.

Fortinax (Phegade et al., 2017) is a trusted exe-
cution environment that uses Intel SGX enclaves for
cryptographic protection from threats. The solution
establishes a Self-Defending Key Management Ser-
vice (SDKMS). It is considered the first commercial
implementation of Intel SGX to create runtime en-
cryption capsules. However, the paper lacks detailed
description on how the protection and storage of the
key is being handled.

OpenStack Barbican (Benjamin et al., 2017) is a
platform developed by the Openstack community to
design REST APIs that provide secure storage, pro-
visioning and secrets management (i.e. passwords,
encryption keys and X.509 Certificates). The Open-
stack Barbican key management service stores secrets
in a dedicated HSM. Recently, an improvement of
this work has been proposed by (Chakrabarti et al.,
2017), which uses an intel SGX plugin that supports

SGX attestation instead of using HSM. However, the
suggested solution has only been evaluated within the
OpenStack Barbican platform. It does not operate as
a standalone solution where it can be used with other
systems that require key management. In both ap-
proaches (Phegade et al., 2017; Chakrabarti et al.,
2017), the key management system is not directly
managed by the end-user.

4 SYSTEM MODEL

This section presents, the system model of the Cloud
Key Management based on Intel SGX (KMSGX)
and, the threat model. The system is configured
and run on the cloud platform by the end-user.
The proposed solution involves two entities: The
conventional key management system (KMS) and
a virtual appliance (VA). The KMS is run on the
user’s infrastructure perimeter. Whereas, the VA is
uploaded in the cloud platform to serve as a bridge to
link the KMS to the encryption application running
on the cloud platform.

System Model. The proposed cloud key management
delegates the control of the key management steps to
the key management system on-premise. This goes
from the key generation to the key deletion. The vir-
tual appliance is leveraged to perform computation on
stored data in cloud platform after decrypting it.

The main components of the proposed design are
the key management service on-premise and a virtual
appliance running inside the cloud and data storage.
The appliance is composed of untrusted/trusted ap-
plications, where a secret code is executed inside an
SGX enclave. The protocol is divided into three main
phases: Setup, Upload, and Operation request, as pre-
sented in figure 2.

Figure 2: System Model.

During the Setup phase, the KMS starts an appliance
that initializes an SGX enclave. Then, the enclave es-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

562

tablishes a secure channel with the KMS on-premise.
For the Upload phase, the KMS upload a data using
the exchanged session key. Where, the KMSGX’s en-
clave decrypts the data using the same session key.
Finally, the enclave seals the data using the unique
Seal Key. Regarding the Operation request phase, the
KMS sends an encrypted request to perform an oper-
ation on an uploaded data (i.e. download). The En-
clave decrypts the request, extracts the requested data
and unseal it using the Seal Key. Later, the enclave
performs the requested operation and encrypts the re-
sults to be sent back to the KMS.
Threat Model. The communication between the dif-
ferent entities is not assumed to be secure. An attacker
may have complete control over the communication
channels. So, the adversary’s goal is to intercept the
user’s secret key to learn its sensitive data.

Moreover, the threat model is based on the Dolev
Yao attacker model (Cervesato, 2001), where an arbi-
trary adversary is powerful enough to intercept/mod-
ify the communication. We consider that an attacker
cannot perform any hardware attacks over the SGX
appliance in this scope. These attacks were covered in
previous works (Van et al., 2018; Kocher et al., 2019;
Lipp et al., 2018).

On the other hand, the attacker has high privileges
within the cloud side, where all system software con-
sidered malicious (i.e. operating system, hypervisor,
etc.). In the presence of an attacker given this threat
model, different security proprieties must be ensured.

Secrecy. The KMS secret data requires to remain
confidential, by securing the encryption key. Thus,
they must be processed inside a secure environment
and stored in encrypted memory. With the presence
of high privileged attacker in the VA, the secret key
cannot be learned. The appliance should guarantee
the confidentiality of the sensitive data.

Authentication. The KMS sends sensitive data only
to trusted appliances, where the identity of the soft-
ware is verified before any exchange. An attacker
cannot impersonate the appliance and claims to be a
genuine software.

5 KMSGX: CLOUD KEY
MANAGEMENT SYSTEM

In this section the proposed solution is described in
more detail. The Key Management System challenges
the remote cloud through the KMSGX appliance to
prove its trustworthiness using the remote attestation
provided by Intel SGX. . Furthermore, a secure chan-

nel is established via an authenticated Diffie-Hellman
key exchange (Diffie and Hellman, 1976; Krawczyk,
2003). Accordingly, the interactions between the Key
Management System, the Virtual Appliance, and the
SGX enclave are described in figure 3.

5.1 Setup

Practically, the session establishment is done through
sigma protocol (Ludlum, 2002). It is a three-phase
protocol based on a Diffie-Hellman key exchange au-
thenticated with digital signatures.

Firstly, the KMS sends an attestation request to
the VA. The request is in the form of a nonce (a ran-
dom number generated for this exchange) and a pub-
lic key. The KMS on-premise chooses a generating g
in a finite cyclic group G, and it picks a private ran-
dom number a to generate the public key ga. Then,
the VA performs a call to the enclave to initialize the
remote attestation taking the KMS request as an in-
put. The KMSGX enclave, in its turn, generates a
Diffie-Hellman public key (gb). A QUOTE is created
and sent back to the VA. The QUOTE includes infor-
mation about the public key and signed with the en-
clave’s identity. The VA forwards the QUOTE back to
the KMS on-premise. Finally, the KMS extracts the
Diffie-Hellman public key embedded in the QUOTE
after a successful verification with the IAS.

5.2 Upload

After establishing a secure channel through the setup
phase, a shared key is exchanged. In the meantime, a
given user sends a file to the KMS on-premise to be
stored in the cloud.

After receiving the file, the KMS generates an En-
cryption Key used to encrypt the file. This Encryption
Key is encrypted using the Session Key. Next, the
KMS sends the encrypted file and the encrypted Key
to the appliance. The VA invokes a call to the trusted
code, taking as an input the received data from the re-
mote KMS. Inside the enclave, the encryption key is
decrypted using the session, key and it is re-encrypted
using the enclave’s Seal Key. The Seal Key is consid-
ered to be a hardware key known only to the actual
enclave. Later on, the enclave sends back the results
to the VA using an OCALL. Finally, the application
stores the encrypted data in data storage.

5.3 Operation Request

After receiving an operation request from the given
user, the KMS encrypts it using the session key. Then,

Cloud Key Management using Trusted Execution Environment

563

Figure 3: KMSGX Design.

it sends the encrypted request to the VA, which in-
vokes a call to the trusted code, taking the request as
an input. Inside the enclave, the operation request is
decrypted using the session key. Next, the enclave
invokes an OCALL to download the specific file in-
cluded in the request. The requested file is extracted
from the data storage. Then, it is sent to the KMSGX
enclave. Afterward, the enclave decrypts the encryp-
tion key using the Seal Key. And, using this encryp-
tion key, the file can be decrypted. At the end, the
enclave performs the requested operation and sends
back the encrypted results through an OCALL. Fi-
nally, the VA forwards the encrypted results to the re-
mote KMS, which decrypts the results and sends them
to the specific user.

6 FORMALIZATION & PROOF

In this section, we present a formal verification of
the KMSGX model, using the applied pi-calculus, an
extension of the pi-calculus used with cryptographic
functions defined by an equational theory, (Abadi
et al., 2017; Cortier and Kremer, 2014). Explicitly,

the applied pi-calculus can study and analyze security
protocols.
The protocol is presented with the applied pi-calculus
syntax semantic. Then, the analysis phase is auto-
mated using the Proverif software. This tool which is
a tool that verifies symbolic protocols.

6.1 Semantic of the Model

The syntax of the calculus includes an infinite set of
names, an infinite set of variables, and a signature Σ

consisting of a finite set of function symbols associ-
ated with an arity. In this work, the function sym-
bols consist of the cryptographic primitives used by
the protocols. The suggested model is presented in
the following grammar:

The symbol functions are described as follows:

6.2 Formal Model

As described in the system model the protocol is com-
posed of three phases: Setup, Upload and operation
request. We simply refer to download as a particular
case of operation request, and this, does not impact

SECRYPT 2021 - 18th International Conference on Security and Cryptography

564

M,N,Q,S,U ::= Terms
sk,ek Variables (seal/encryption key)
SEnc(M,ek) Symmetric Encryption
SDec(M,ek) Symmetric Decryption
Quote(M) Quote Generation
CheckQuote(Q) Quote Verification
Seal(S,sk) Sealing
Unseal(U,sk) Unsealing
f st(< M,N >) First Projection
snd(< M,N >) Second Projection

SDec(SEnc(M,ek),ek) = M Encryption
Quote(M) = Q Quote Generation
CheckQuote(Q) = M Quote Verification
Unseal(Seal(S,sk),sk) = S Sealing
f st(< M,N >) = M First Projection
snd(< M,N > = N Second Projection

the proof. The main processes in this design are the
Key Management System, the SGX appliance, and
the storage server processes. Therefore, we have two
communication channels :
Cenc : Channel between the KMS and the SGX appli-
ance. This channel is used to transfer secret data.
Cseal : Channel between the SGX appliance and the
storage server. This channel is used to seal secret data.
Ci :/Ci : Input/output in a channel i.
Note that, we formally present each process within
each phase. These processes capture the communica-
tion exchanges and do not abstract the hardware ini-
tialization and specification.
The aim is to prove that the KMS will send his sen-
sitive data only to a trustworthy SGX appliance after
a successful session key exchange. Then, we need to
ensure that data transited is secret and protected in a
Dolev Yao attack model (Cervesato, 2001) .

6.3 Verification

The security properties of the system were verified us-
ing Proverif. It is a tool for automatically analyzing
the security properties of different cryptographic pro-
tocols (Blanchet, 2005).
Authentication. The authentication property is cap-
tured using correspondence assertion. This latest is
used to capture relationships between events which
can be expressed in the form: “if an event e has been
executed, then event e’ has been previously executed”
(Blanchet, 2005).

The proposed scheme makes sure that if the KMS
is sending his sensitive data to the SGX appliance,
the identity of the appliance is verified. Hence, we
present the following events:
event KMSattestSGX(pkey): The KMS attests the ap-

SETUP PROCESSES
Key Management System
νa new private value

Cenc < ga > output Pubkey
Cenc < xE > wait Quote
let y = CheckQuote(xE) in get enclave Pubkey
let Kse = ya in session key
Virtual Appliance
νb new private value
Cenc < xS > wait Pubkey

Cenc < Quote(gb)> output Quote

let Kse = xb
S in session key

UPLOAD PROCESSES
Key Management System
νM,Kenc new data, ENCkey
let Menc = SEnc(M,Kenc) in data encryption

Cenc < Menc,SEnc(Kenc,Kse))> output ENCdata
Virtual Appliance
Cenc < xS > wait secret data
let Kdec = DEnc(snd(xS),Kse) decrypt ENCkey

Cseal < f st(xS),Seal(Kdec,Kseal))> seal in storage
Storage Server
Cseal < xE > wait data

DOWNLOAD PROCESSES
Key Management System

Cenc < xE > wait data
let Mdec = DEnc(xE ,Kse) decrypt data
Virtual Appliance
Cseal < xseal > wait stored data
let Kunseal = Unseal(snd(xseal),Kseal) unseal secret key
let Mdec = DEnc(f st(xseal),Kunseal) decrypt data

Cenc < SEnc(Mdec,Kse)> output ENCdata
Storage Server
Cseal < M,K > output stored data

pliance SGX after verifying a report using the sup-
plied public key.
event SGXstartattestKMS(pkey): The SGX appli-
ance starts an attestation process to generate a report
verifiable by its public key.

As the KMS is willing to send secret data only to
reliable appliance, we define the following correspon-
dence:

query: pkey; event(KMSattestSGX(x)) ==>
event(SGXsttartattestKMS(x)).

The correspondence proves the authentication of
the SGX appliance. If the KMS receives a report from
the SGX appliance, then the SGX appliance should
have sent it before.
Confidentiality. The aim of this part is to prove that
the exchanged secret data remains secure while it is
in transit via the secure channel and while it is in use
inside the enclave and while it is at rest within the
cloud storage. In fact, the specification of the secrecy
inside a trusted environment was already presented
in several works (Sinha et al., 2015; Subramanyan

Cloud Key Management using Trusted Execution Environment

565

et al., 2017). Therefore, we assume that the under-
lying hardware is secure. Also, we assume that the
cryptographic primitives are perfect, and an attacker
can decrypt or verify signature only when he has the
required keys. To test the secrecy of the secret S in the
model, the following query is included in the Proverif
input file:

query attacker(S)

The query asks for the secrecy of the exchanged
secret in the presence of an attacker.

After modeling the proposed protocol in the ap-
plied pi-calculus and performing verification using
Proverif, the security properties hold for both secrecy
and authentication. A summary of the verification is
presented in figures 4 and 5.

Figure 4: Confidentiality test.

Figure 5: Authentication test.

7 EXPERIMENTAL RESULTS

We evaluate KMSGX on Intel i5-8259U processors.
Due to the lack of SGX support in current cloud plat-
forms, we simulate the protocol using a virtual ap-
pliance hosted in a Ubuntu 18.04 LTS 64bit virtual
machine. We run the SGX driver, SDK, and platform
software version 2.9.1.
To illustrate the key management on-premise, we
used the PyKMIP version 0.10.0. It is a python im-
plementation of the Key Management Interoperabil-
ity Protocol. Thus, the KMIP server is responsible for
generating, deleting, and encrypting data on behalf of
the user in the implemented model. The tests are per-
formed over files of different sizes: 10 MB, 20 MB,
50 MB, 100 MB, 200 MB, and 500 MB.

We measured the performance of the proposed
protocol within the three phases and compared it with
the plain design where no additional cryptography
and SGX primitives are added (encryption/decryp-
tion, sealing/ unsealing). The distribution of the time
performance is as follows:

a) Setup : The secure channel creation duration us-
ing the sigma protocol within the remote attesta-
tion included in the Intel SGX.

b) Upload : The duration of the secret data transfer
through the secure channel, in addition to the ex-
ecution time inside the enclave.

c) Download: The time of the encrypted data trans-
fer after unsealing from external storage.

The experimental results are grouped in tables 1 and
2.

Table 1: Upload Performance.
File Size

(Mb)
Setup
(ms)

Upload
(ms)

KMSGX
Design
(ms)

Plain
Design

(ms)

Overhead
(%)

10 10,0980 20,12 30,218 20,57 0,4690
20 10,2200 36,13 46,35 40,33 0,1492
50 10,3500 88,13 98,48 93,899 0,04878

100 10,0200 174,05 184,07 182,902 0,0063
200 9,0600 224,95 234,01 233,002 0,0043
500 10,6700 499,95 510,62 510,547 0,00014

Table 2: Download Performance.
File Size

(Mb)
Setup
(ms)

Download
(ms)

KMSGX
Design

(ms)

Plain
Design
(ms)

Overhead
(%)

10 10,0980 14,99 25,088 19,12 0,31213
20 10,2200 31,31 41,53 36,23 0,14628
50 10,3500 64,03 74,38 71,97 0,03348
100 10,0200 131,49 141,51 140,6619 0,00496
200 9,0600 211,25 220,31 219,598 0,00324
500 10,6700 533,22 543,89 543,829 0,00011

We note that for both phases (Upload/Download), the
running time of the setup phase is added. The anal-
ysis shows that the added security properties such
as Diffie-Hellman key exchange in the Setup phase,
Symmetric encryption, Sealing, and Unsealing in
both the upload and download phases did not heav-
ily penalize the performance of the plain design. We
can notice from figures 6, 7 that the overhead cost
does not exceed 0,5 % of the total cost of the plain de-
sign. Therefore, the overhead cost of both upload and
download is negligible when the file size is increased.

Figure 6: Upload Overhead.

8 CONCLUSION

We presented in this work a Cloud Key Management
based on a Trusted Execution Environment, namely
Intel SGX. Throughout the model, we show the pos-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

566

Figure 7: Download Overhead.

sibility of achieving a secure key management fully
controlled by the end cloud customer. Accordingly,
transitive trust is established between the key Man-
agement System on-premise and the SGX appliance
hosted in the cloud. Hence, the suggested KMSGX
allows executing on-premise software key manage-
ment system securely in cloud providers side through
accessible hardware facilities to control sensitive keys
at low cost directly by the end-user.

We strengthen this work by formally proving the
security properties of the protocol using the Applied
Pi Calculus. Thus, we formally proved that the sug-
gested scheme provides authentication of the SGX ap-
pliance, and the secret keys confidentiality of the se-
cret keys. As a future direction, we plan to extend
this work by considering a distributed setting where
multiple nodes or clouds are involved. The aim is to
design a system that operates in an untrusted multi-
cloud environment.

REFERENCES

Abadi, M., Blanchet, B., and Fournet, C. (2017). The ap-
plied pi calculus: Mobile values, new names, and se-
cure communication. Journal of the ACM (JACM),
65(1):1–41.

Amazon (2015). Amazon, cloudhsm.
Benjamin, B., Coffman, et al. (2017). Data protection in

openstack. In 2017 IEEE 10th International Confer-
ence on Cloud Computing, pages 560–567. IEEE.

Bentajer, A. and Hedabou, M. (2020). Cryptographic key
management issues in cloud computing. Advances in
Engineering Research, 34:78–112.

Blanchet, B. (2005). Proverif automatic cryptographic pro-
tocol verifier user manual. CNRS, Departement dIn-
formatique, Ecole Normale Superieure, Paris.

Cervesato, I. (2001). The dolev-yao intruder is the most
powerful attacker. In 16th Annual Symposium on
Logic in Computer Science—LICS, volume 1.

Chakrabarti, S., Baker, B., and Vij, M. (2017). Intel sgx
enabled key manager service with openstack barbican.
arXiv preprint arXiv:1712.07694.

Chokhani, R. C. M. I. S. (2013). Cryptographic key man-

agement issues & challenges in cloud services. Na-
tional Institute of standards and Technology.

Cortier, V. and Kremer, S. (2014). Formal models and tech-
niques for analyzing security protocols: A tutorial.
Foundations and Trends in Programming Languages,
1(3):117.

Diffie, W. and Hellman, M. (1976). New directions in cryp-
tography. IEEE transactions on Information Theory,
22(6):644–654.

ElGamal, T. (1985). A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE trans-
actions on information theory, 31(4):469–472.

Hamid, L. (2013). Cloud-based hardware security modules.
US Patent App. 13/826,353.

Intel (2017). Intel software guard extensions.
Kaaniche, N., Belguith, et al. (2020). Prov-trust: To-

wards a trustworthy sgx-based data provenance sys-
tem. In Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications,
SECRYPT, pages 225–237. INSTICC.

Kocher, P., Horn, et al. (2019). Spectre attacks: Exploiting
speculative execution. In IEEE Symposium on Secu-
rity and Privacy (SP), pages 1–19. IEEE.

Krawczyk, H. (2003). Sigma: The ‘sign-and-mac’approach
to authenticated diffie-hellman and its use in the ike
protocols. In Annual International Cryptology Con-
ference, pages 400–425. Springer.

Lipp, M., Schwarz, et al. (2018). Meltdown: Reading kernel
memory from user space. In 27th USENIX Security
Symposium, pages 973–990.

Ludlum, R. (2002). The Sigma Protocol. Macmillan.
Mukhtar, M. A., Bhatti, et al. (2019). Architectures for se-

curity: A comparative analysis of hardware security
features in intel sgx and arm trustzone. In 2nd Interna-
tional Conference on Communication, Computing and
Digital systems (C-CODE), pages 299–304. IEEE.

Phegade, V., Schrater, et al. (2017). Self-defending key
management service with intel® software guard ex-
tensions.

Rosen, A. (2012). Analysis of the porticor homomorphic
key management protocol. Porticor Cloud Security.

Sabt, M., Achemlal, et al. (2015). Trusted execution envi-
ronment: what it is, and what it is not. In IEEE Trust-
com/BigDataSE/ISPA, volume 1, pages 57–64. IEEE.

Schneier, B. (2007). Applied cryptography: protocols, al-
gorithms, and source code in C. john wiley & sons.

Sinha, R., Rajamani, et al. (2015). Moat: Verifying con-
fidentiality of enclave programs. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1169–1184.

Subramanyan, P., Sinha, et al. (2017). A formal founda-
tion for secure remote execution of enclaves. In ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 2435–2450.

Van, Bulck, J., Minkin, et al. (2018). Foreshadow: Ex-
tracting the keys to the intel sgx kingdom with tran-
sient out-of-order execution. In 27th USENIX Security
Symposium, pages 991–1008.

Cloud Key Management using Trusted Execution Environment

567

