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Abstract: Satellite data may support management of wetland areas for monitoring of the inundation seasonality. 
Previously successful in Doñana and Camargue Biosphere Reserves, this study examines the transferability 
of unsupervised inundation mapping through automatic local thresholding in discriminating inundated areas 
from non-inundated ones in Kerkini Lake. Nine different alternatives of this approach are employed on 
Sentinel-2 (S2) Level-2A images (2016-2019). The best fit alternative was derived by the validation against 
local and on-site registered attributes. To overcome unfavourable atmospheric conditions, Sentinel-1 (S1) 
images were examined in tandem with derived S2 inundation maps (S2m), using the best fit alternative. 
Two S2m, one preceding and one following a target S1 image, were used to train random forest models (per 
pixel) to be applied to the target S1 image and derive the respective inundation map (S1m). S1m was 
validated against a S2m for the same date; not previously used in the training process. Classification 
performance reached k [0.77-0.94] and overall accuracy [88.05-97.16%] for the S2m. The evaluation of 
S1m showed k of 0.99 and overall accuracy between 99.71-99.88%. Automation of the process and 
minimum human interference supports its usage by non-specialists, e.g. for Protected Areas management. 
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1 INTRODUCTION 

Wetlands are fundamental for maintaining life on 
Earth and demonstrate high biodiversity. They 
provide different ecosystem services that ultimately 
affect human wellbeing (Finlayson & D’Cruz, 
2010; Millennium Ecosystem Assessment, 2005). 
They provide for food and shelter, flood control 
and climate regulation, as well as for supporting 
and maintaining biogeochemical cycles and soil 
formation. Nowadays, they are seen as having a 
cultural role to visitors, too, as they provide a good 
source of income from tourism and recreation. 
These ecosystem services along with their rapid 
decline as a result of human pressures and climate 

change urge for capacity improvement in 
monitoring status. In this context, water presence 
and extent across time is as seriously treated as 
water quality maintenance. The variability of water 
extent is vital for any decision to tackle any 
misbalances in ecosystem services (e.g. cattle 
feeding vs. bird nesting). Spaceborne Earth 
Observation monitoring can be a powerful 
approach for accurate and cost-effecting frequent 
monitoring of open water surfaces. 

Numerous approaches, utilizing optical and 
radar data for water surface area estimation, can be 
used to rapidly generate flood extent maps in real 
time, with no additional need for supplementary 
data (Cohen et al., 2019; Marti-Cardona et al., 
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2013). Radar data-based approaches have an 
advantage over optical data ones by operating 
under nearly all weather and day-night conditions. 
However, emergent vegetation, waves, sand, and 
radar shadows produced by terrain features hinder 
the efficient delineation between water and land 
(Kordelas et al., 2019; Manakos et al., 2019). 
Evidently, extraction of the water surface from 
optical imagery is generally more straightforward 
than radar imagery. The rich spectral information 
of optical data allows for the reliable detection of 
the water presence by utilizing various indices and 
bands; especially, when applying thresholds to 
them. Commonly used thresholding approaches to 
indices, include Normalized Difference Water 
Index (NDWI) (Du et al., 2016; McFeeters, 1996; 
Zhang et al., 2018), Modified NDWI (Xu, 2006), 
and the Automated Water Extraction Index (Feyisa 
et al., 2014; Guo et al., 2017; Rokni et al., 2014; 
Zhang et al., 2018). Numerous classification 
methods, supervised and unsupervised, have been 
applied in detecting water bodies and their extent 
from multispectral imagery (Kordelas et al., 2019; 
Thenkabail, 2015). Furthermore, machine learning 
algorithms (MLA) have been employed for remote 
sensing image analysis and demonstrated improved 
accuracies for inundation map derivation. 
Commonly used MLAs include k-Means  
(Yousefi et al., 2018), Artificial Neural Networks 
(Skakun, 2010), Support Vector Machine  
(Nandi et al., 2017; Sarp & Ozcelik, 2017), 
Decision Trees (Acharya et al., 2019), and Random 
Forest (Feng et al., 2015; Ko et al., 2015).  
These classification-based approaches may achieve 
higher accuracy than thresholding; however, 
ground truth data are required to select appropriate 
training samples. This, in turn, requires skilled 
personnel or enhanced human interference with the 
process.  

Focusing on non-supervised inundation 
mapping, automatic local thresholding methods 
have been successfully applied to Doñana and 
Camargue Biosphere Reserves; both with optical 
data alone or by fusing radar and optical data 
sources by means of machine learning, to increase 
information retrieval capacity (Kordelas et al. 
2018, 2019; Manakos et al, 2019). This study 
examines the transferability of the methods to 
monitor inundation seasonality of a river deltaic 
system entering an inland lake at the foothills of 
Kerkini Mountain in North Greece. 

 
 
 

2 MATERIALS AND METHODS 

2.1 Study Area 

Lake Kerkini (41°13’N, 23°08’E) refers to the 
artificial lake (reservoir) created in 1932 and the 
surrounding wetland area. Its surface area of 70-76 
km2 lies at the transboundary of Strymonas River in 
northern Greece close to the border with Bulgaria. 
Its drainage area extends over 11,600km2, with the 
Hellenic sub-basin making up to 803 km2 
(Ovakoglou et al., 2016; Psilovikos & Margoni, 
2010). Kerkini climate is an intermediate between 
Mediterranean and Mid-European, with hot 
summers and cold winters. The average annual 
rainfall reaches 463.5 mm and occurs in two peaks, 
one during the cold period of the year and the other 
during May-June (Gerakes, 1989).  

Lake Kerkini has developed into one of the most 
popular stops for migratory bird populations in 
Europe, as well a wetland of international 
significance; established as a Natura2000 protected 
area and a RAMSAR wetland of international 
importance. Kerkini accommodates over 300 bird 
species; with at least 1300 plant species; including 
indigenous and rare species, as well as Greece’s 
largest water buffalo population (Bubalus bubalis). 
Thus, understanding inundation seasonality is 
crucial for the Lake Kerkini Management Authority 
to balance nesting and feeding needs of the 
migrating birds, feeding needs of buffalos and 
irrigation needs of the Serres plain.  

2.2 Satellite Imagery 

Sentinel-2 Level-2A (L2A) products were 
downloaded from the Copernicus European Space 
Agency (ESA) hub between 6 September 2017 and 
27 August 2019 (52 products), as well as 24 S2 
Level-1C (L1C) products between 16 November 
2015 and 23 July 2017. The acquired products 
comprise the tile 34TFL. S2 L1C Top-of-
Atmosphere (TOA) products were processed to L2A 
Bottom-of-Atmosphere (BOA) products using 
Sentinel-2 Level2A Prototype Processor (Sen2Cor) 
software downloaded in the ESA SNAP Desktop 
third-party plugin of the Sentinel-2 Toolbox. 
Sen2Cor has a high performance in generating the 
Scene Classification layer (SCL) (92 ± 4%) (Main-
Knorn et al., 2017). 

To assess the application of the unsupervised 
automatic local thresholding during unfavourable 
atmospheric conditions for S2 image acquisition 11 
S1 Ground Range Detected (GRD) images were 
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downloaded from the Copernicus Open Access Hub 
for the periods between 24 February 2019 to 26 
March 2019 and 30 July 2019 to 29 August 2019. 
ESA SNAP was used for preprocessing the Sentinel-
1 GRD using the command line graph processing 
framework, to (i) apply orbit file, (ii) remove 
thermal and border noise, (iii) calibration, (iv) 
speckle filtering using Lee Signa filter with a 
window-size of 5x5, (v) Range-Doppler Terrain 
Correction. The unitless backscatter coefficient is 
converted then to dB using a logarithmic 
transformation (Filipponi, 2019).  

2.3 Validation Data 

Acquisition dates (22 dates) coinciding with 
recurring water level measurements (2017-2019), 
provided by the Lake Kerkini Management 
Authority, are considered in the unsupervised 
inundation mapping by automatic local thresholding. 
Validation maps were delineated taking into 
consideration actual water level measurements (10-
minute interval), bathymetry map with 10-m pixel 
resolution (Tsolakidis & Vafiadis, 2019), water class 
derived from the Copernicus SCL and expert local 
knowledge about the maximum expected annual 
fluctuation across decades. Specifically, in situ water 
level gauge measurements were combined with the 
bathymetry map (i.e. all pixels under the gauge level 
in the bathymetry map without barriers in-between 
are considered inundated). Then the expert 
knowledge across decades for the maximum flood 
elevation level ever reached was superimposed. In 
addition, information from the water class of the 
SCL was considered at positions, where 
sedimentation of the delta might have influenced 
information derived from existing but older 
bathymetry map.  

2.4 Methodology 

2.4.1 Local Automatic Thresholding of 
Sentinel-2 

The work presented by Kordelas et al. (2018, 2019) 
introduced unsupervised approach in discriminating 
between inundated and non-inundated areas, through 
detecting automatic thresholds. The pre-processed 
S2 L2A image is segmented into non-overlapping 
regions to select segments with high percentage of 
inundated pixels. Then an expanding patch based 
approach, taking into consideration medians of 
percentages of inundated/ non inundated areas, is 
followed based on the centroids of the segments. 

The open water subclass is examined by estimating 
the initial threshold with the ability to separate 
inundated pixels from non-inundated ones through 
the use of: (i) SWIR-1 Band (Alt1), (ii) product of 
SWIR-2 and NIR (Alt2) and (iii) product of SWIR-1 
and NIR (Alt3). The initial threshold is calculated as 
the first deep valley the histogram can detect. The 
final threshold is calculated based on (i) the 
minimum cross entropy thresholding algorithm 
(MCET), (ii) Otsu’s algorithm or (iii) the average 
between them, resulting in nine different alternatives 
from all possible combinations of data and 
thresholding method taken into consideration. The 
performance of each of the alternatives is assessed 
by its ability to accurately distinguish between 
inundated and non-inundated pixels, against the 
validation data, using the overall accuracy of the 
validation dates and the overall Kappa coefficients 
(Congalton & Green, 2009; Whitten et al., 2011). 

2.4.2 Pixel-centric Classification of  
Sentinel-1 

Under the unavailability of data or unfavourable 
weather conditions S2m cannot be generated, hence, 
producing a gap in the monitoring capacity. To 
counterbalance this, Manakos et al. (2019) proposed 
the use of multiple local random forest classifiers’ 
estimation per pixel, based on S1 images timely 
close or coinciding with S2m dates. The training set 
is created for 3x3 pixel samples, with the features 
being the pixel’s backscatter coefficients for bands 
VH and VV, algebraic combinations of the same 
bands, and the season of the year, while the 
reference class for each pixel is derived from the 
closest S2m. Pixel-centric classification is 
performed on the S1 target date data using the 
trained classifiers, based on the location in the 
image, to delineate the required inundation map 
(S1m). The method used in this work is abbreviated 
as TIM (after Manakos et al. (2019)), where two 
S2m, one preceding and one following the 
acquisition date of the target S1 image are used. 
Furthermore, the TIM method was modified in order 
to produce results using only one S2m, either 
proceeding or following. The accuracy of the 
classification of the target S1 image was evaluated 
against the best fit alternative result used to produce 
the timely coinciding S2m; not previously used in 
the training process.  
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3 RESULTS AND DISCUSSION 

3.1 Inundation Maps Derived by 
Sentinel-2 Images 

Accuracy assessment took into consideration all 
pixels present in the area with excellent results as 
indicated in Figure 1. In Table 1 is shown that the 
overall k ranged from 0.77 to 0.94, ‘substantial’ but 
mostly ‘almost perfect’ agreement according to 
Landis and Koch (1977) and overall accuracy ranged 
from 88.05 to 97.16%. Using Alt1, Band 11 (SWIR-
1) as an initial threshold and applying MCET 
algorithm to find the final threshold, achieved the 
best classification performance.  

Table 1: Overall accuracy assessment shows the use of the 
nine alternatives of local automatic thresholding in 
distinguishing between inundated and non-inundated 
pixels, averaged over all 22 images/ dates. 

Alternatives Overall 
Accuracy (%) 

Overall 
kappa  

Alt1 and MCET 97.16 0.94 

Alt1 and Otsu’s 96.82 0.93 

Alt1 and average 97.08 0.94 

Alt2 and MCET 91.32 0.83 

Alt2 and Otsu’s 89.77 0.79 

Alt2 and average 91.03 0.82 

Alt3 and MCET 89.06 0.79 

Alt3 and Otsu’s 88.05 0.77 

Alt3 and average 90.22 0.81 

3.2 Inundation Maps Derived 
Synergistically by Sentinel-2 and 
Sentinel-1 Images 

For the two target dates examined with the TIM 
method, the S1m produced an overall accuracy over 
99.71% in all cases, when compared with the S2m 
reference. The overall kappa values were all over 
0.99 (Table 2).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 1: (a) Inundation map (example of 17 August 2019) 
derived Sentinel-2 image. (b) Validation layer. (c) 
Accuracy assessment (a) against (b).  
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(a) 

 
(b) 

Figure 2: (a) Inundation map (example: 17 August 2019) 
based on pixel centric classification using TIM (07 August 
2019 and 27 August 2019). (b) Accuracy assessment on 
the inundation map S1m (17 August 2019) validated 
against the timely coinciding S2-derived inundation map 
(S2m) produced by best fit alternative. Training dates 
used: 07 August 2019 and 27 August 2019.  

For the same target dates and by using the 
modified TIM method with reduced number of 
training S1 images (Table 3), 1 S2m was used to 
train the target S1 dates, and achieved lower 
accuracies than in Table 2, with overall accuracy of 
83.11 to 99.78%, when compared to the reference 
S2m. The overall kappa values ranged from 0.62 to 
0.98. It becomes clear that the method may be 
successfully applied with less S1 images and in 
various time intervals away from the target date; 
however, results are not as credible. 

Table 2: Accuracy assessment of pixel-centric 
classification method done using TIM method applied to 
S1 images acquired on 08 March 2019 and 17 August 
2019. 

Target
S1 

Training dates Accuracy 
(%) 

kappa

S2 images S1 images 

08.03 28.02; 20.03 24.02; 02.03 
20.03; 26.03 

99.78 0.99 

17.08 12.08; 22.08 11.08; 23.08 99.88 0.99 

17.08 07.08; 27.08 05.08; 11.08 
23.08; 29.08 

99.77 0.99 

17.08 02.08; 27.08 30.07; 05.08 
23.08; 29.08 

99.71 0.99 

Table 3: Accuracy assessment of pixel-centric 
classification method done using the modified TIM 
method with reduced number of training S1 images 
acquired on 08 March 2019 and 17 August 2019. 

Target
S1 

Training dates Accuracy 
(%) 

kappa

S2 images S1 images 

08.03 28.02 24.02; 02.03 99.78 0.98 

08.03 25.03 20.03; 26.03 98.55 0.96 

17.08 02.08 30.07; 05.08 83.11 0.62 

17.08 07.08 05.08; 11.08 98.03 0.95 

17.08 12.08 11.08 98.58 0.96 

17.08 22.08 23.08 98.94 0.97 

17.08 27.08 23.08; 29.08 98.26 0.95 

3.3 Applicability of the Methods 

The aim of this work was to assess the performance 
of unsupervised methods applied to Camargue and 
Doñana Biosphere Reverses, and its applicability for 
Kerkini Lake, an inland reservoir whose intense use 
across the years has suffered from a changing water 
extent due to the human pressures, and uncontrolled 
frequent extreme flooding events.  

In relation with the use of the multispectral 
information, Kordelas et al. (2018, 2019) applied 
threshold techniques, which have been usually 
employed for radar images to quantify flood water 
extent (Grimaldi et al., 2016), on multispectral 
images and led to high mapping accuracy of the 
water extent in Kerkini Lake, as well. Minimum 
cross entropy thresholding (MCET) for the 
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estimation of the final threshold had consistent 
results with Camargue and Doñana marine coastal 
areas. The results from this work prove the efficacy 
of the methods in an inland water body and wetland. 
The alternative approaches Alt2 (MCET) and Alt3 
(MCET) demonstrated also similarly good results as 
for Camargue and Doñana complete areas (Kordelas 
et al., 2019).  

In relation with cases when unfavourable 
atmospheric conditions prevail, the sole use of radar 
images proves to fail achieving high accuracy due to 
backscatter confusion among landscape features, 
such as water with emergent vegetation, shadow 
effects, sandy areas, which may be classified either 
as belonging to the water or land class. The use of 
the pixel-centric classification has the ability to 
capture the pixel-related fluctuation of the 
backscatter across a time period, which in one case 
might mean inundation and in a neighbouring one no 
inundation. As a result the application of the pixel-
centric classification with the use of one or two 
Sentinel-2 inundation maps up to a 30-day time 
interval from the targeted Sentinel-1 image, has 
achieved accurate results. The utilization of two 
Sentinel-2 inundation maps provided the best results 
in this study and is consistent with the results from 
its application at the Doñana Biosphere Reserve 
(Manakos et al., 2019).  

The validation of the automation techniques 
provides consistent results for managing water use. 
In the case of Lake Kerkini the hydroperiods 
generated using the S2m and S1m throughout the 
years, revealed the intense reservoir use for flood 
control due to frequent extreme events, which assists 
in retaining a lower level of the lake. Seasonal 
patterns could be identified for various subareas 
within the delta and beyond. 

4 CONCLUSIONS 

This research contributes to the studies conducted by 
Kordelas et al. (2018, 2019) and Manakos et al. 
(2019) on the evaluation of the credibility and 
applicability of the developed methods for 
inundation mapping to other protected areas than 
coastal marine ones. It became evident that methods 
apply also at Lake Kerkini, a protected area and an 
artificially generated inland water body for flood 
mitigation in the plain of Serres, by achieving high 
accuracy. 

High inundation mapping accuracy is achieved 
without the need for simultaneous ground truth data 
or user’s intervention. Employing machine learning 

through fusion of S-1 and S-2 data, allows the 
consistent delivery of products, overcoming the 
limitation of weather conditions and optical data. 
Further steps may utilize DEM or additional post-
processing techniques to correct for hillshade or 
aspects. Additional index optimization could be 
applicable for areas with different types of 
vegetation. Automation of the process and minimum 
human interference further supports the 
implementation of the verified workflow as an 
effective service (even transformed to an online one) 
for Protected Areas management. 
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