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Abstract: Typically, unconditionally secure computation using a (𝑘, 𝑛)  threshold secret sharing is considered 
impossible when 𝑛 < 2𝑘 − 1. Therefore, in our previous work, we first took the approach of finding the 
conditions required for secure computation under the setting of 𝑛 < 2𝑘 − 1  and showed that secure 
computation using a (𝑘, 𝑛) threshold secret sharing can be realized with a semi-honest adversary under the 
following three preconditions: (1) the result of secure computation does not include 0; (2) random numbers 
reconstructed by each server are fixed; and (3) each server holds random numbers unknown to the adversary 
and holds shares of random numbers that make up the random numbers unknown to the adversary. In this 
paper, we show that by leaving condition (3), secure computation with information-theoretic security against 
a semi-honest adversary is possible with 𝑘 ≤ 𝑛 < 2𝑘 − 1. In addition, we clarify the advantage of using secret 
information that has been encrypted with a random number as input to secure computation. One of the 
advantages is the acceleration of the computation time. Namely, we divide the computation process into a 
preprocessing phase and an online phase and shift the cost of communication to the preprocessing phase. 
Thus, for computations such as inner product operations, we realize a faster online phase, compared with 
conventional methods. 

1 INTRODUCTION 

Recently, with advancements in big data and the 
Internet of Things (IoT), there has been a high 
anticipation regarding technology that could make 
use of an individual’s information. However, there is 
still concern among individuals about the privacy, 
security, and confidentiality of their information. 
Therefore, to solve this problem, there is a need for a 
technology that allows their information to be used 
without infringing their privacy. One of the available 
technologies that could permit this is called secure 
computation, wherein a set of parties with private 
inputs wish to compute a joint function of their inputs, 
without revealing anything but the output. There are 
two main approaches for constructing secure 
computation protocols: 
─ Secret sharing (Araki et al, 2016; Ben-Or et al, 

1988; Cramer et al., 2000; Kamal et al., 2017; 
Shingu et al., 2016; Tokita et al., 2018) 

─ Homomorphic encryption (Bendlin et al., 2011; 
Brakerski et al., 2012; Damgård et al., 2012; 
Damgård et al., 2013; Smart et al., 2010; van Dijk 
et al., 2010) 

However, homomorphic encryption is known to 
be expensive in terms of computational cost, and 
therefore it requires a much longer computation time. 
Therefore, approaches with lower computational cost 
are preferable to homomorphic encryption, when 
considering the utilization of big data and IoT data. 

Secret sharing is a method in which a single input 
is divided into multiple shares, which are then 
distributed to multiple users. A known example of a 
secret sharing is the (𝑘, 𝑛) threshold secret sharing, 
where an input 𝑠 is divided into 𝑛 number of shares. 
The original input 𝑠  can only be reconstructed or 
retrieved from a threshold 𝑘  number of shares, but 
any 𝑘 −  1  or smaller number of shares reveals 
nothing about the original input. Therefore, when 𝑛 > 𝑘, a (𝑘, 𝑛) threshold secret sharing can realize 
resistance toward loss of at most 𝑛 − 𝑘 servers. 

However, secure computation using a secret 
sharing can perform secure addition and subtraction 
easily, but this is not so in the case of multiplication. 
For example, in the (𝑘, 𝑛)  threshold secret sharing 
proposed by Shamir (Shamir, 1979), the degree of a 
polynomial changes from 𝑘 − 1 to 2𝑘 − 2 for each 
multiplication of polynomials. To restore the 
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multiplication result, the number of shares required 
increases from 𝑘  to 2𝑘 − 1 . Typically, 
unconditionally secure computation is considered 
impossible when 𝑛 < 2𝑘 − 1 . Therefore, for most 
information-theoretically secure computations using 
a secret sharing, it is assumed that 𝑛 ≥ 2𝑘 − 1. 

Conversely, there is little research on secure 
computation using a secret sharing with 𝑘 ≤ 𝑛 <2𝑘 − 1 . Methods such as the SPDZ method 
(Damgård et al., 2012) have been proposed to 
combine secret sharing with homomorphic 
encryption to solve this problem. However, this 
approach only realizes computational security, not 
information-theoretic security. Our research focuses 
on realizing secure computation of secret sharing with 𝑘 ≤ 𝑛 < 2𝑘 − 1; however, we took an approach of 
first finding the conditions required to realize 
information-theoretic security against semi-honest 
adversaries, and then find another method for easing 
the conditions required. The result is that we proposed 
a secure computation known as the TUS (Tokyo 
University of Science) methods (Shingu et al., 2016; 
Kamal et al., 2017; Tokita et al., 2018) with the 
following three conditions.  
(1) The computation result does not include 0. 
(2) Random numbers reconstructed by each server 

are fixed.  
(3) Each server holds random numbers unknown to 

the adversary, and the shares of random 
numbers that make up the random numbers 
unknown to the adversary. 

The characteristics of all TUS methods are that 
the input of secure computation is first encrypted with 
a random number before being used for secure 
computation. However, the TUS methods incur high 
computational costs and cannot realize fast 
computation.  

Therefore, in this study, we introduce a method to 
improve the TUS methods to provide information-
theoretic security against a semi-honest adversary in 
a particular condition with a faster computation 
speed. Namely, we divide the computation process 
into preprocessing and online phases and shift all 
computations related to random numbers to the 
preprocessing phase. Thus, we propose a method in 
which the communication cost can be totally 
eliminated from the online phase (known as the TUS 
4 method). Next, we reduce the conditions required in 
the TUS methods and show that the TUS methods can 
be realized securely with only Condition (3). In 
addition, we also discuss the merits and demerits of 
the TUS methods. 

Our proposed secure computation model is based 
on a client/server model where any number of clients 

can send shares of their inputs to 𝑛  servers that 
perform the computation for the clients and return the 
results to them without learning anything.  

The remainder of this paper is organized as 
follows: in Section 2, we present related works; in 
Section 3, we explain the TUS 4 method, in Section 4 
we explain the discussion on the merits and demerits 
of encrypting inputs with random numbers and 
discuss each conditions of the TUS methods. Finally, 
in Section 5, we perform an experimental evaluation 
and show that the TUS 4 method can realize an 
overwhelmingly fast computation speed. 

2 RELATED WORKS 

2.1 SPDZ Method 

Damgård et al. proposed a secure multiparty 
computation called SPDZ methods (Damgård et al., 
2012; Damgård et al., 2013) that utilizes a somewhat 
homomorphic encryption and is secure against a 
dishonest majority with 𝑛 = 𝑘. SPDZ consists of a 
preprocessing and an online phase. SPDZ ensures the 
confidentiality of the inputted secrets by using an 
additive secret sharing. Moreover, multiplication is 
based on Beaver’s circuit randomization (Beaver, 
1991), where shares of random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉, 
called a multiplicative triple, that satisfy 𝑎 ∙ 𝑏 = 𝑐 are 
used. However, the construction of a multiplication 
triple requires a fully homomorphic encryption 
(Gentry, 2010) where the computation cost is high, 
thus significantly increasing the overall process time. 
Please refer to Section 2.1 in (Iwamura et al., 2021) 
for the detailed protocol of SPDZ method. 

2.2 Araki et al.’s Method 

Typically, in a secure multiparty computation, the 
cost of communication between servers can affect the 
overall processing speed more than the actual cost of 
computation. Therefore, Araki et al. proposed a 
method for rapid secure computation under the 
parameters 𝑛 = 3, 𝑘 = 2 , which requires only one 
communication per multiplication (Araki et al., 
2016). Please refer to Section 2.2 in (Iwamura et al., 
2021) for the detailed multiplication protocol.  

Note that it is usually not considered a problem, 
even if communication is required in the 
preprocessing phase. In addition, secure computation 
of addition in Araki et al.’s method is performed 
locally, where the shares are added together. 
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2.3 (𝒌, 𝒏) Threshold Secret Sharing 

A (𝑘, 𝑛)  threshold secret sharing satisfies both the 
conditions stated below: 
 Any 𝑘 − 1, or less, number of shares will reveal 

nothing about the input 𝑠. 
 Any 𝑘 and above number of shares will allow 

for the reconstruction of the input 𝑠. 
The classic methods of the (𝑘, 𝑛) threshold secret 

sharing are Shamir’s (𝑘, 𝑛) threshold secret sharing 
(Shamir’s method) proposed in (Shamir, 1979) and 
the XOR-based method (XOR method) proposed in 
(Kurihara et al., 2008). In our protocol, Shamir’s 
method was used, and all computations were 
performed in modulus 𝑝. The shares of input 𝑠, are 
represented by ሾ𝑠ሿതതതത. 
2.4 The TUS Methods 

Shingu et al. proposed a 2-inputs-1-output 
computation called the TUS 1 method (Shingu et al., 
2016), where the input is first encrypted with a 
random number. The encrypted input is momentarily 
restored as a scalar value, and multiplication is 
realized using the scalar value ×  polynomial 
approach to prevent an increase in the polynomial 
degree. However, the TUS 1 method is not capable of 
coping with computations that require a combination 
of addition/subtraction and multiplication/division. 

Kamal et al. introduced an improved method 
called the TUS 2 method, where the computation 
involving a combination of addition/subtraction and 
multiplication/division can also be performed 
securely (Kamal et al., 2017). This method was 
proven to be secure under the three aforementioned 
conditions. However, the TUS 2 method incurs 
significantly more computational cost. 

Therefore, Tokita et al. realizes a more efficient 
method for computation, known as the TUS 3 method 
(Tokita et al., 2018), where XOR method of secret 
sharing is used. The TUS 3 method also proposed a 
way to ease one of the conditions (known as the TUS 
3’ method), wherein there are no longer limitation for 
the inputs of computation; however, the three 
conditions still remain. 

Moreover, information in Condition (3) is defined 
as follow, where 𝜀 = ∏ 𝜀ିଵୀ  is defined as a random 
number unknown to the adversary. ሾ𝜀ሿ = ൫ሾ𝜀ሿതതതത, ሾ𝜀ሿതതതതത, … , ሾ𝜀ିଵሿതതതതതതതത൯ 

Here, ሾ𝜀ሿതതതത is a share of 𝜀 and ሾ𝜀ሿ is a set of share 
containing shares of 𝜀 and 𝜀 (used to compute 𝜀). 

3 THE TUS 4 METHOD 

By dividing the computation process into the 
preprocessing phase and online phase, it allows us 
to shift parts of the computation that require 
communication to the preprocessing phase. This 
significantly reduce the cost of communication in the 
online phase and speed up the entire process. 

Here, instead of the simple product-sum operation 
of 𝑎𝑏 + 𝑐, we present a solution for computing the 
following extended product-sum operation:  ൫𝑎ଵ,𝑎ଶ, … 𝑎,൯ୀଵ  

This allows multiple computations to be 
performed at once instead of only one computation of 𝑎𝑏 + 𝑐  each time. However, a single product-sum 
operation can also be realized by setting the 
parameters 𝑙 = 2, 𝑚ଵ = 2, 𝑚ଶ = 1. 

Typically, because Equations (1) and (2) hold, 
any computation of (𝑎ଵ𝑎ଶ … 𝑎)  can be computed 
from (𝑎ଵ + 1), (𝑎ଶ + 1), … , (𝑎 + 1). 

 𝑎ଵ𝑎ଶ = (𝑎ଵ + 1)(𝑎ଶ + 1) − (𝑎ଵ + 1) − (𝑎ଶ + 1) + 1 (1) 

 𝑎ଵ𝑎ଶ … 𝑎 = (𝑎ଵ … 𝑎ିଵ)(𝑎 + 1) − (𝑎ଵ … 𝑎ିଵ) (2) 

In addition, extending Equation (2) will result in 
the following. 𝑎1𝑎2 … 𝑎𝑚 =  (−1)𝑖 ෑ ൬𝑎𝑗′ + 1൰𝑚−𝑖𝑗′=1𝑚𝐶𝑚−𝑖𝑖=0  

However, 𝑗ᇱ is an element of the combination of 
choosing the 𝑚 − 𝑖 number from 𝑚 number of ൫𝑎 +1൯. For example, the following holds when 𝑚 = 3,4. 𝑎1𝑎2𝑎3 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)− {(𝑎1 + 1)(𝑎2 + 1)+ (𝑎1 + 1)(𝑎3 + 1)+ (𝑎2 + 1)(𝑎3 + 1)} + {(𝑎1 + 1)+ (𝑎2 + 1) + (𝑎3 + 1)} − 1 𝑎1𝑎2𝑎3𝑎4 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)− {(𝑎1 + 1)(𝑎2 + 1)(𝑎4 + 1)+ (𝑎1 + 1)(𝑎3 + 1)(𝑎4 + 1)+ (𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)+ (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)}+ {(𝑎1 + 1)(𝑎2 + 1)+ (𝑎1 + 1)(𝑎3 + 1)+ (𝑎1 + 1)(𝑎4 + 1)+ (𝑎2 + 1)(𝑎3 + 1)+ (𝑎2 + 1)(𝑎4 + 1)+ (𝑎3 + 1)(𝑎4 + 1)} − {(𝑎1 + 1)+ (𝑎2 + 1) + (𝑎3 + 1) + (𝑎4 + 1)}+ 1 

Therefore, when 𝑙 = 2, 𝑚ଵ = 3, 𝑚ଶ = 4, 𝑎ଵ𝑎ଶ𝑎ଷ 
will be 𝑎ଵ,ଵ𝑎ଶ,ଵ𝑎ଷ,ଵ , and 𝑎ଵ𝑎ଶ𝑎ଷ𝑎ସ  will be 
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𝑎ଵ,ଶ𝑎ଶ,ଶ𝑎ଷ,ଶ𝑎ସ,ଶ , thus allowing the following to be 
computed. 𝑎1,1𝑎2,1𝑎3,1 + 𝑎1,2𝑎2,2𝑎3,2𝑎4,2 

In the TUS 4 method, inputs 𝑎ଵ,, 𝑎ଶ,, … . 𝑎, 
must be within the modulus 𝑝 and be a number under 𝑝 − 2. In addition, all random numbers used were 
uniformly distributed and did not include the value 0. 
Moreover, all other values belong to 𝐺𝐹(𝑝), and all 
computations are performed with the modulus 𝑝 . 
Moreover, we assume that communication between 
players and servers is secure. In addition, random 
numbers not known to the adversary shown in 
Condition (3) are assumed to be 𝜀()(ℎ = 1, … 8) , 
and shares of all random numbers 𝜀,()  used to 
construct 𝜀() are prepared and stored in the servers 
in advance. Moreover, 𝑘  servers in Steps 4 and 5 
shown in the preprocessing phase are chosen in 
advance from 𝑛  servers. Below, for ease of 
understanding, we show our protocol for 𝑚 = 3 ; 
however, it can also be extended to any 𝑚. 
Preprocessing Phase. 
1. Dealer 𝐷  generates 𝑘  random numbers 𝑏(ଵ,),, 𝑏(ଵ,),ଵ, … , 𝑏(ଵ,),ିଵ  with respect to inputs 𝑎ଵ,(𝑖 = 1, … , 𝑙) , computes 𝑏ଵ, = ∏ 𝑏(ଵ,),ିଵୀ , 

and sends 𝑏(ଵ,), to server 𝑆. 
2. Dealer 𝐷 performs Step 1. On 𝑎ଶ,, 𝑎ଷ,. 
3. Dealer 𝐷 sends 𝑏, to User 𝑈, (𝑔 = 1,2,3). 
4. Server 𝑆 (𝑗 = 0, … , 𝑘 − 1)  collects each ൣ𝜀ప,ఫ()൧തതതതതതത௨(𝑢 = 0, … , 𝑘 − 1, ℎ = 1, … ,8)  and 

reconstructs 𝜀,(). 
5. Server 𝑆  generates 𝑑 , computes the following, 

and sends it to one of the servers (Here, we assume 
the server to be server 𝑆). 𝑑𝑏(ଵ,),𝑏(ଶ,),𝑏(ଷ,),𝜀,(ଵ) , 𝑑𝑏(ଵ,),𝑏(ଶ,),𝜀,(ଶ) , 𝑑𝑏(ଵ,),𝑏(ଷ,),𝜀,(ଷ), 

𝑑𝑏(ଶ,),𝑏(ଷ,),𝜀,(ସ) , 𝑑𝑏(ଵ,),𝜀,(ହ) , 𝑑𝑏(ଶ,),𝜀,() , 𝑑𝑏(ଷ,),𝜀,() , 𝑑𝜀,(଼) 
6. Server 𝑆 computes the following and sends to all 

servers. (𝑖 = 1, … , 𝑙). 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଶ,),𝑏(ଷ,),𝜀,(ଵ)ିଵୀ   , 
𝑑𝑏ଵ,𝑏ଶ,𝜀(ଶ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଶ,),𝜀,(ଶ)ିଵୀ   , 

𝑑𝑏ଵ,𝑏ଷ,𝜀(ଷ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଷ,),𝜀,(ଷ)ିଵୀ   , 
𝑑𝑏ଶ,𝑏ଷ,𝜀(ସ) = ෑ 𝑑𝑏(ଶ,),𝑏(ଷ,),𝜀,(ସ)ିଵୀ   ,  

𝑑𝑏ଵ,𝜀(ହ) = ෑ 𝑑𝑏(ଵ,),𝜀,(ହ)ିଵୀ   , 
𝑑𝑏ଶ,𝜀() = ෑ 𝑑𝑏(ଶ,),𝜀,()ିଵୀ   , 

𝑑𝑏ଷ,𝜀() = ෑ 𝑑𝑏(ଷ,),𝜀,()ିଵୀ   ,   

𝑑𝜀(଼) = ෑ 𝑑𝜀,(଼)ିଵୀ   
7. All servers 𝑆 compute and hold the following. ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ) × ൣ𝜀ప(ଵ)൧തതതതതതത  , 
ቈ 𝑑𝑏ଵ,ప𝑏ଶ,పതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଶ,𝜀(ଶ) × ൣ𝜀ప(ଶ)൧തതതതതതത  , 
ቈ 𝑑𝑏ଵ,ప𝑏ଷ,పതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଷ,𝜀(ଷ) × ൣ𝜀ప(ଷ)൧തതതതതതത  , 
ቈ 𝑑𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതത

 = 𝑑𝑏ଶ,𝑏ଷ,𝜀(ସ) × ൣ𝜀ప(ସ)൧തതതതതതത  , 
ቈ 𝑑𝑏ଵ,పതതതതതത

 = 𝑑𝑏ଵ,𝜀(ହ) × ൣ𝜀ప(ହ)൧തതതതതതത  , 
ቈ 𝑑𝑏ଶ,పതതതതതതത

 = 𝑑𝑏ଶ,𝜀() × ൣ𝜀ప()൧തതതതതതത  , 
ቈ 𝑑𝑏ଷ,పതതതതതതത

 = 𝑑𝑏ଷ,𝜀() × ൣ𝜀ప()൧തതതതതതത  ,  
ሾ𝑑ሿതതതത = 𝑑𝜀(଼) × ൣ𝜀ప(଼)൧തതതതതതത 

Encryption Phase. 
1. User 𝑈,  compute 𝑏,൫𝑎, + 1൯＝𝑏, × ൫𝑎, +1൯  in regard to its input 𝑎,  and send to all 

servers. (𝑔 = 1,2,3)． 

Online Phase. 
1. All servers 𝑆 compute the following. 
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ቈ𝑑  ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ തതതതതതതതതതതതതതതതതതതതതതതതതതതത
=  ൝𝑏ଵ,൫𝑎ଵ, + 1൯ୀଵ× 𝑏ଶ,൫𝑎ଶ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത

− 𝑏ଵ,൫𝑎ଵ, + 1൯ × 𝑏ଶ,൫𝑎ଶ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଶ,పതതതതതതതതതതത
− 𝑏ଵ,൫𝑎ଵ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଷ,పതതതതതതതതതതത
− 𝑏ଶ,൫𝑎ଶ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതത
 + 𝑏ଵ,൫𝑎ଵ, + 1൯ × ቈ 𝑑𝑏ଵ,పതതതതതതത

+ 𝑏ଶ,൫𝑎ଶ, + 1൯ × ቈ 𝑑𝑏ଶ,పതതതതതതത
+ 𝑏ଷ,൫𝑎ଷ, + 1൯ × ቈ 𝑑𝑏ଷ,పതതതതതതത
 − ሾ𝑑ሿതതതതൡ 

Reconstruction Phase. 

1. The player collects ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 from 𝑘  servers 𝑆 , reconstructs 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ , 𝑑 , 
and computes the following. 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ 𝑑 =  ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ  

3.1 Security of the TUS 4 Method 

In the proposed method of computation with 𝑡(=∑ 𝑚ୀଵ ) inputs and one output, if 𝑡 − 1 inputs and 
the output are leaked to the adversary, the remaining 
input can also be leaked. Similarly, when all 𝑡 inputs 
are known to the adversary, the output can also be 
leaked to the adversary. Therefore, we consider only 
the following two types of adversaries: 
Adversary 1 has information on 𝑡 − 2 inputs and one 
output. Adversary 1 has information on the inputs 
(and the random number used to encrypt them) and 
the information needed to reconstruct the output. In 
addition, the adversary also has knowledge of 
information from 𝑘 − 1 server and attempts to learn 
the remaining two inputs. 
Adversary 2 has information on the 𝑡 − 1  inputs. 
Adversary 2 has information on the inputs (and the 
random numbers used to encrypt them). In addition, 
the adversary also has knowledge of information from 

𝑘 − 1 servers and attempts to learn the remaining one 
input or output of the computation. 

Proof of Security of the Preprocessing Phase. 
Because our proposed method assumes a semi-honest 
adversary, Dealer 𝐷 performs Steps 1–3 correctly and 
privately, and sends it to each server and user. Server 𝑆 (𝑗 = 0, … , 𝑘 − 1)  reconstruct 𝜀,()  (which is used 
to construct 𝜀() ) in Step 4; however, 𝜀()  will not 
leak from 𝑘 − 1 servers. In Step 5, server 𝑆 sends its 
computed values to server 𝑆; however, Adversaries 
1 and 2 cannot decompose each individual random 
number from this information. Therefore, 
Adversaries 1 and 2 will not be able to learn 𝑑, 𝑏ଵ,, 𝑏ଶ,, 𝑏ଷ,, 𝜀(ଵ), … , 𝜀(଼) . In Step 6, Server 𝑆 
multiplied all values and broadcast the result; 
however, Adversaries 1 and 2 cannot decompose the 
information to learn each individual random number. 
Moreover, because the random number unknown to 
the adversary shown in Condition (3) is used to 
compute shares in Step 7, the shares held by each 
server can be computed securely. 

Therefore, for example, the following statement 
is true. The same is true for the remaining shares. 
Here, 𝐻(𝑥) represents the entropy of 𝑥. 

𝐻 ൭ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത
൱ = 𝐻 ൭ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,ప൨തതതതതതതതതതതതതതത อ 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ)൱ 

Proof of Security of the Encryption Phase. 
Since the input is less than 𝑝 − 2, even if one is added 
to the input, it will not become 0. In addition, a 
random number generated by the dealer is secure. 
Therefore, the following statement is true and 
remains true for the remainder of the inputs. 𝐻(𝑎,) = 𝐻(𝑎,|𝑏,൫𝑎, + 1൯) 

Proof of Security of the Online Phase. 
Security against Adversary 1 
Assume that the adversary has information on all 
inputs except 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. He/she also has information 
from 𝑘 − 1 servers and the result of the computation. 
Furthermore, Adversary 1 has information from Step 
5 of the preprocessing phase, and also learns 𝑏,൫𝑎, + 1൯  from the online phase. In addition, 
Adversary 1 learns 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ , 𝑑 , and ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ   from the reconstruction phase. 
Consequently, Adversary 1 has the following 
information (however, 𝑔′, 𝑖′  excludes 1,1 and 2,1;  𝜀ଵ(,)  means that it relates to the same value; 𝜀∗()  is 
used when 𝑖 > 1  ). By using this information, 
Adversary 1 tries to learn about inputs 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. 
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𝐵 = ൝𝑑, 𝑎ᇲ,ᇱ, 𝑏ᇲ,ᇱ, 𝑏ଵ,ଵ൫𝑎ଵ,ଵ + 1൯, 𝑏ଶ,ଵ൫𝑎ଶ,ଵ+ 1൯, 1𝑏ଵ,ଵ𝑏ଶ,ଵ𝜀ଵ(ଵ,ଶ) , 1𝑏ଵ,ଵ𝜀ଵ(ଷ,ହ) ,1𝑏ଶ,ଵ𝜀ଵ(ସ,) , 𝜀ଵ(,଼), 𝜀∗()ൡ 

However, because each 𝜀()  is independent, 𝑏ଵ,ଵ, 𝑏ଶ,ଵ will not leak. In addition, because 𝜀() is not 
used in the computation, it does not affect the 
computation. Therefore, Adversary 1 will not be able 
to learn 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. Therefore, the following are true: 𝐻൫𝑎ଵ,ଵ൯  =  𝐻൫𝑎ଵ,ଵห𝐵൯, 𝐻൫𝑎ଶ,ଵ൯  =  𝐻൫𝑎ଶ,ଵห𝐵൯ 

The same argument remains valid even for 
combination of inputs other than 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. 

In addition, in the aforementioned protocol, we 
assumed 𝑚 = 3 for ease of understanding. However, 
even in the case other than 𝑚 = 3, values that are not 
leaked are not included in B; therefore, the same is 
true for any 𝑚 . Therefore, the TUS 4 method is 
information-theoretical secure against Adversary 1. 
Security against Adversary 2 

Assume that the adversary has information on all 
inputs except 𝑎ଵ,ଵ  in addition to information from 𝑘 − 1  servers. Furthermore, Adversary 2 has 
information from Step 5 of the preprocessing phase, 
and also learns 𝑏,൫𝑎, + 1൯ from the online phase. 
In addition, Adversary 2 learns 𝑘 − 1  number of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑  from the reconstruction 
phase. As a result, Adversary 2 has the following 
information (however, 𝑔′, 𝑖′  exclude 1,1;  𝜀ଵ(,)  is 
used to show that it relates to the same value, and  𝜀∗() 
is used when 𝑖 > 1 ). However, 𝑗′ is less than 𝑘 − 1. 
By using this information, Adversary 2 tries to learn 
about input 𝑎ଵ,ଵ and output ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ . 𝐶= ൝𝑎ᇱ,ᇱ, 𝑏ᇱ,ᇱ, 𝑏ଵ,ଵ൫𝑎ଵ,ଵ + 1൯, 𝑑𝑏ଵ,ଵ𝜀ଵ(ଵ,ଶ,ଷ,ହ) ,𝑑𝜀ଵ(ସ,,,଼) , 𝜀∗(), 𝑑  ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൨തതതതതതതതതതതതതതതതതതതതതതതതതതത

ᇱ , 𝑑ᇱൡ 

However, since each 𝜀() is independant, 𝑏ଵ,ଵ and 
input 𝑎ଵ,ଵ will not be leaked. Moreover, Adversary 2 
learns 𝑘 − 1  number of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 . 
However, reconstruction is impossible with 𝑘 − 1 
shares. Therefore, Adversary 2 will not be able to 
learn the result of the computation. 

The same is true even for inputs other than 𝑎ଵ,ଵ. In 
addition, even in the case other than 𝑚 = 3, values 
that are not leaked are not included in C; therefore, 
the same can be said for any 𝑚 .Therefore, the 
following statements are true, and the TUS 4 method 
is information-theoretical secure against Adversary 2. 𝐻൫𝑎ଵ,ଵ൯  =  𝐻൫𝑎ଵ,ଵห𝐶൯ 𝐻 ቆ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ ቇ  =  𝐻൫∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ ห𝐶൯ 

Proof of Security of the Reconstruction Phase. 
Even if ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ   is equal to 0, because 
nothing is leaked from 𝑘 or fewer number of shares 
of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 , Adversary 2 will not 
able to learn about the result of the computation. 

From the above, because the preprocessing phase 
only processes information that does not depend on 
any of the inputs, it can be performed in advance. 
However, communication is required during the 
preprocessing phase. Inputs are introduced in the 
encryption phase, and the result is sent to all the 
servers. All processes up to this stage are considered 
the preprocessing of information. The online phase 
uses all the computed values to perform 
computations, and no communication is required. 
Finally, in the reconstruction phase, the player 
collects ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑  from 𝑘  servers  𝑆 . 
From this, we learn that communication only occurs 
in the preprocessing, encryption, and reconstruction 
phases, and no communication occurs in the online 
phase. 

In addition, when 𝑛 > 𝑘 , Steps 4 and 5 of the 
preprocessing phase can be performed by 𝑘 servers, 
but Step 7 and onwards must be performed by all 𝑛 
servers. Therefore, the TUS 4 method is also 
realizable when 𝑛 ≥ 𝑘 . However, when the player 
who wishes to reconstruct the result wants to collect 
information from any 𝑘 servers in the reconstruction 
phase, each server must distribute the values 𝑑 in the 
preprocessing phase so that it can be reconstructed 
from any 𝑘 servers. 

4 DISCUSSION 

4.1 Features of the TUS Methods 

The TUS methods realize secure computation of 
secret sharing by using inputs that has been encrypted 
with random numbers. This is a combination of an 
encryption with a random number and computation 
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using secret sharing, and the merits of this approach 
are shown below. Please refer to Section 4 in 
(Iwamura et al., 2021) for further details on each 
feature. Here, Features I and II are realized in all the 
TUS methods, but Feature III is realized in this study. 
Therefore, we can state that the TUS 4 method 
realized all the merits below. 
Feature I: Input encrypted with random number can 
be made public. In the TUS methods, the encrypted 
input can be made public because the input is 
encrypted with a random number. However, 𝑘 
random numbers that make up the random number 
need to be concealed.  
Feature II: Secure computation with 𝑛 < 2𝑘 − 1 is 
possible. Because the inputs are not distributed, but 
are encrypted by multiplying with random numbers, 
direct multiplication of these encrypted inputs will 
not cause any increase in the polynomial degree. 
Therefore, we could realize secure computation with 
minimal server resources (minimum 𝑛 = 𝑘 = 2). 
Feature III: Processes involving random numbers 
can be computed in advance. Because the processes 
in the encryption phase can be separated into multiple 
processes such as multiplication with random 
numbers, it is possible to realize an additional 
preprocessing phase, where only processes related to 
random numbers are performed in advance.  
Demerit: The disadvantage of encrypting an input 
with a random number is that when the input or the 
result of the computation is equal to 0, information of 
the input or output will be leaked. Therefore, 
Condition (1) is required.  

4.2 Discussion 

Condition (1) is solved using the TUS 4 method, 
where the reconstruction of the multiplication result 
is only performed by the player that is allowed to 
know the result. 

Condition (2) is required when 𝑛 > 𝑘 . If the 
server or dealer distributes the random number using 
secret sharing to all 𝑛 servers, even if 𝑛 − 𝑘 servers 
are broken or lost, a substitute server can reconstruct 
the random number that was handled by the broken 
server and continue the computation. Thus, realizing 
the server loss resistance of secret sharing. However, 
it is important that the new server must handle the 
same random number as the server that it is 
substituting. This can be realized by implementing it 
in the algorithm (assuming a semi-honest adversary).  

Finally, Condition (3) can be solved depending on 
the application considered. For example, when 
considering implementation in searchable encryption 

(Kamal et al., 2017), because the owner of secret 
information will not be the adversary, Condition (3) 
can be realized by requesting the owner to generate 
random numbers that satisfy Condition (3). Moreover, 
the use of a trusted execution environment such as 
Intel’s Software Guard Extensions (SGX) (Intel 
Corporation, 2015) can also help with the realization of 
Condition (3). In future studies, we will consider the 
most suitable approach for realizing Condition (3). 

Therefore, the TUS 4 method only requires 
Condition (3) to realizes secure computation against 
a semi-honest adversary. 

4.3 Qualitative Comparison 

The SPDZ method is limited to the setting 𝑛 = 𝑘 , 
and Araki et al.’s method is limited to the setting 𝑛 =3, 𝑘 = 2. Only the TUS methods allow for 𝑛, 𝑘 to be 
set at any value and can realize resistance toward 
server loss. Araki et al.’s method uses the setting of 𝑛 = 3, 𝑘 = 2; however, the computation cannot be 
continued even if one server is lost; therefore, it is not 
robust against server loss.  

However, SPDZ method can accommodate 
malicious adversaries. Moreover, Araki et al. 
proposed two protocol versions: a protocol with 
information-theoretic security and a protocol with 
computational security. 

5 PERFORMANCE EVALUATION 

The evaluation is performed by computing 𝑙 =1, 100, 10000 -times of inner-product computation 
and parameters 𝑛, 𝑘 set at 𝑛 = 𝑘 = 2 for the TUS 4 
method. Inner-product computation is often used in 
statistical calculations such as distribution and sum of 
squared deviation, meaning that it can be applied to 
areas such as searching for gene sequences. In 
addition, in the computation of the inner product, no 
communication is required in the online phase of the 
TUS 4 method. The detailed protocol used is the same 
as that of the TUS 4 method when 𝑚 = 2. 

Tables 1 shows the results of the implementation 
of the online phase using Amazon Web Service with 
a maximum number of three servers. In particular, we 
uses the t2.micro instance with 1 vCPU @ 2.5GHz 
and 1GiB of RAM. Because the preprocessing and 
encryption phases can be computed in advance, we 
did not include a comparison of the processing time 
in our evaluation. From Table 1, the TUS 4 method 
with no communication in the online phase shows an 
overwhelming increase in the computation speed. 
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Table 1: Comparison with conventional methods (for 𝑙 = 1, 100, 10000). 

 TUS 4 Method SPDZ Method Araki et al.’s Method 
 𝑙=1 𝑙=100 𝑙=10000 𝑙=1 𝑙=100 𝑙=10000 𝑙=1 𝑙=100 𝑙=10000 

Computation [ms] 0.03 0.72 88.9 0.04 0.87 86.4 0.03 1.16 105
Connection 
establishment [ms] 0 0 0 2.06 2.08 2.06 1.99 2.03 2.01 

Communication [ms] 0 0 0 1.71 4.54 278 1.36 2.61 73.3
Total time [ms] 0.03 0.72 88.9 3.81 7.49 367 3.38 5.80 181

 

6 CONCLUSION 

In this paper, we provide a method for easing the 
conditions of the TUS methods that realize 
information-theoretic security against a semi-honest 
adversary when 𝑘 ≤ 𝑛 < 2𝑘 − 1 , and show that it 
can be realized by using only one condition. In 
addition, we showed that the acceleration of the 
computation time is possible by using the property 
that processes related to random numbers can be 
separated. In addition, we discussed the properties in 
detail and showed that our proposed method is also 
suitable for use in IoT. We also showed that our 
proposed method is the only method that allows for 
any 𝑛, 𝑘 to be chosen for  𝑛 ≥ 𝑘.  

In a future study, we will consider the most 
suitable methods to solve Condition (3) and consider 
a secure computation against malicious adversaries. 
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