
Secure Computation by Secret Sharing using Input Encrypted with
Random Number

Keiichi Iwamura and Ahmad Akmal Aminuddin Mohd Kamal
Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan

Keywords: Secure Computation, Multiparty Computation, Secret Sharing, n<2k-1, Information-theoretical Security, Fast
Computation.

Abstract: Typically, unconditionally secure computation using a (𝑘, 𝑛) threshold secret sharing is considered
impossible when 𝑛 < 2𝑘 − 1. Therefore, in our previous work, we first took the approach of finding the
conditions required for secure computation under the setting of 𝑛 < 2𝑘 − 1 and showed that secure
computation using a (𝑘, 𝑛) threshold secret sharing can be realized with a semi-honest adversary under the
following three preconditions: (1) the result of secure computation does not include 0; (2) random numbers
reconstructed by each server are fixed; and (3) each server holds random numbers unknown to the adversary
and holds shares of random numbers that make up the random numbers unknown to the adversary. In this
paper, we show that by leaving condition (3), secure computation with information-theoretic security against
a semi-honest adversary is possible with 𝑘 ≤ 𝑛 < 2𝑘 − 1. In addition, we clarify the advantage of using secret
information that has been encrypted with a random number as input to secure computation. One of the
advantages is the acceleration of the computation time. Namely, we divide the computation process into a
preprocessing phase and an online phase and shift the cost of communication to the preprocessing phase.
Thus, for computations such as inner product operations, we realize a faster online phase, compared with
conventional methods.

1 INTRODUCTION

Recently, with advancements in big data and the
Internet of Things (IoT), there has been a high
anticipation regarding technology that could make
use of an individual’s information. However, there is
still concern among individuals about the privacy,
security, and confidentiality of their information.
Therefore, to solve this problem, there is a need for a
technology that allows their information to be used
without infringing their privacy. One of the available
technologies that could permit this is called secure
computation, wherein a set of parties with private
inputs wish to compute a joint function of their inputs,
without revealing anything but the output. There are
two main approaches for constructing secure
computation protocols:
─ Secret sharing (Araki et al, 2016; Ben-Or et al,

1988; Cramer et al., 2000; Kamal et al., 2017;
Shingu et al., 2016; Tokita et al., 2018)

─ Homomorphic encryption (Bendlin et al., 2011;
Brakerski et al., 2012; Damgård et al., 2012;
Damgård et al., 2013; Smart et al., 2010; van Dijk
et al., 2010)

However, homomorphic encryption is known to
be expensive in terms of computational cost, and
therefore it requires a much longer computation time.
Therefore, approaches with lower computational cost
are preferable to homomorphic encryption, when
considering the utilization of big data and IoT data.

Secret sharing is a method in which a single input
is divided into multiple shares, which are then
distributed to multiple users. A known example of a
secret sharing is the (𝑘, 𝑛) threshold secret sharing,
where an input 𝑠 is divided into 𝑛 number of shares.
The original input 𝑠 can only be reconstructed or
retrieved from a threshold 𝑘 number of shares, but
any 𝑘 − 1 or smaller number of shares reveals
nothing about the original input. Therefore, when 𝑛 > 𝑘, a (𝑘, 𝑛) threshold secret sharing can realize
resistance toward loss of at most 𝑛 − 𝑘 servers.

However, secure computation using a secret
sharing can perform secure addition and subtraction
easily, but this is not so in the case of multiplication.
For example, in the (𝑘, 𝑛) threshold secret sharing
proposed by Shamir (Shamir, 1979), the degree of a
polynomial changes from 𝑘 − 1 to 2𝑘 − 2 for each
multiplication of polynomials. To restore the

540
Iwamura, K. and Kamal, A.
Secure Computation by Secret Sharing using Input Encrypted with Random Number.
DOI: 10.5220/0010552305400547
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 540-547
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

multiplication result, the number of shares required
increases from 𝑘 to 2𝑘 − 1 . Typically,
unconditionally secure computation is considered
impossible when 𝑛 < 2𝑘 − 1 . Therefore, for most
information-theoretically secure computations using
a secret sharing, it is assumed that 𝑛 ≥ 2𝑘 − 1.

Conversely, there is little research on secure
computation using a secret sharing with 𝑘 ≤ 𝑛 <2𝑘 − 1 . Methods such as the SPDZ method
(Damgård et al., 2012) have been proposed to
combine secret sharing with homomorphic
encryption to solve this problem. However, this
approach only realizes computational security, not
information-theoretic security. Our research focuses
on realizing secure computation of secret sharing with 𝑘 ≤ 𝑛 < 2𝑘 − 1; however, we took an approach of
first finding the conditions required to realize
information-theoretic security against semi-honest
adversaries, and then find another method for easing
the conditions required. The result is that we proposed
a secure computation known as the TUS (Tokyo
University of Science) methods (Shingu et al., 2016;
Kamal et al., 2017; Tokita et al., 2018) with the
following three conditions.
(1) The computation result does not include 0.
(2) Random numbers reconstructed by each server

are fixed.
(3) Each server holds random numbers unknown to

the adversary, and the shares of random
numbers that make up the random numbers
unknown to the adversary.

The characteristics of all TUS methods are that
the input of secure computation is first encrypted with
a random number before being used for secure
computation. However, the TUS methods incur high
computational costs and cannot realize fast
computation.

Therefore, in this study, we introduce a method to
improve the TUS methods to provide information-
theoretic security against a semi-honest adversary in
a particular condition with a faster computation
speed. Namely, we divide the computation process
into preprocessing and online phases and shift all
computations related to random numbers to the
preprocessing phase. Thus, we propose a method in
which the communication cost can be totally
eliminated from the online phase (known as the TUS
4 method). Next, we reduce the conditions required in
the TUS methods and show that the TUS methods can
be realized securely with only Condition (3). In
addition, we also discuss the merits and demerits of
the TUS methods.

Our proposed secure computation model is based
on a client/server model where any number of clients

can send shares of their inputs to 𝑛 servers that
perform the computation for the clients and return the
results to them without learning anything.

The remainder of this paper is organized as
follows: in Section 2, we present related works; in
Section 3, we explain the TUS 4 method, in Section 4
we explain the discussion on the merits and demerits
of encrypting inputs with random numbers and
discuss each conditions of the TUS methods. Finally,
in Section 5, we perform an experimental evaluation
and show that the TUS 4 method can realize an
overwhelmingly fast computation speed.

2 RELATED WORKS

2.1 SPDZ Method

Damgård et al. proposed a secure multiparty
computation called SPDZ methods (Damgård et al.,
2012; Damgård et al., 2013) that utilizes a somewhat
homomorphic encryption and is secure against a
dishonest majority with 𝑛 = 𝑘. SPDZ consists of a
preprocessing and an online phase. SPDZ ensures the
confidentiality of the inputted secrets by using an
additive secret sharing. Moreover, multiplication is
based on Beaver’s circuit randomization (Beaver,
1991), where shares of random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉,
called a multiplicative triple, that satisfy 𝑎 ∙ 𝑏 = 𝑐 are
used. However, the construction of a multiplication
triple requires a fully homomorphic encryption
(Gentry, 2010) where the computation cost is high,
thus significantly increasing the overall process time.
Please refer to Section 2.1 in (Iwamura et al., 2021)
for the detailed protocol of SPDZ method.

2.2 Araki et al.’s Method

Typically, in a secure multiparty computation, the
cost of communication between servers can affect the
overall processing speed more than the actual cost of
computation. Therefore, Araki et al. proposed a
method for rapid secure computation under the
parameters 𝑛 = 3, 𝑘 = 2 , which requires only one
communication per multiplication (Araki et al.,
2016). Please refer to Section 2.2 in (Iwamura et al.,
2021) for the detailed multiplication protocol.

Note that it is usually not considered a problem,
even if communication is required in the
preprocessing phase. In addition, secure computation
of addition in Araki et al.’s method is performed
locally, where the shares are added together.

Secure Computation by Secret Sharing using Input Encrypted with Random Number

541

2.3 (𝒌, 𝒏) Threshold Secret Sharing

A (𝑘, 𝑛) threshold secret sharing satisfies both the
conditions stated below:
 Any 𝑘 − 1, or less, number of shares will reveal

nothing about the input 𝑠.
 Any 𝑘 and above number of shares will allow

for the reconstruction of the input 𝑠.
The classic methods of the (𝑘, 𝑛) threshold secret

sharing are Shamir’s (𝑘, 𝑛) threshold secret sharing
(Shamir’s method) proposed in (Shamir, 1979) and
the XOR-based method (XOR method) proposed in
(Kurihara et al., 2008). In our protocol, Shamir’s
method was used, and all computations were
performed in modulus 𝑝. The shares of input 𝑠, are
represented by ሾ𝑠ሿതതതത.
2.4 The TUS Methods

Shingu et al. proposed a 2-inputs-1-output
computation called the TUS 1 method (Shingu et al.,
2016), where the input is first encrypted with a
random number. The encrypted input is momentarily
restored as a scalar value, and multiplication is
realized using the scalar value × polynomial
approach to prevent an increase in the polynomial
degree. However, the TUS 1 method is not capable of
coping with computations that require a combination
of addition/subtraction and multiplication/division.

Kamal et al. introduced an improved method
called the TUS 2 method, where the computation
involving a combination of addition/subtraction and
multiplication/division can also be performed
securely (Kamal et al., 2017). This method was
proven to be secure under the three aforementioned
conditions. However, the TUS 2 method incurs
significantly more computational cost.

Therefore, Tokita et al. realizes a more efficient
method for computation, known as the TUS 3 method
(Tokita et al., 2018), where XOR method of secret
sharing is used. The TUS 3 method also proposed a
way to ease one of the conditions (known as the TUS
3’ method), wherein there are no longer limitation for
the inputs of computation; however, the three
conditions still remain.

Moreover, information in Condition (3) is defined
as follow, where 𝜀 = ∏ 𝜀ିଵୀ is defined as a random
number unknown to the adversary. ሾ𝜀ሿ = ൫ሾ𝜀ሿതതതത, ሾ𝜀ሿതതതതത, … , ሾ𝜀ିଵሿതതതതതതതത൯

Here, ሾ𝜀ሿതതതത is a share of 𝜀 and ሾ𝜀ሿ is a set of share
containing shares of 𝜀 and 𝜀 (used to compute 𝜀).

3 THE TUS 4 METHOD

By dividing the computation process into the
preprocessing phase and online phase, it allows us
to shift parts of the computation that require
communication to the preprocessing phase. This
significantly reduce the cost of communication in the
online phase and speed up the entire process.

Here, instead of the simple product-sum operation
of 𝑎𝑏 + 𝑐, we present a solution for computing the
following extended product-sum operation: ൫𝑎ଵ,𝑎ଶ, … 𝑎,൯ୀଵ

This allows multiple computations to be
performed at once instead of only one computation of 𝑎𝑏 + 𝑐 each time. However, a single product-sum
operation can also be realized by setting the
parameters 𝑙 = 2, 𝑚ଵ = 2, 𝑚ଶ = 1.

Typically, because Equations (1) and (2) hold,
any computation of (𝑎ଵ𝑎ଶ … 𝑎) can be computed
from (𝑎ଵ + 1), (𝑎ଶ + 1), … , (𝑎 + 1).

 𝑎ଵ𝑎ଶ = (𝑎ଵ + 1)(𝑎ଶ + 1) − (𝑎ଵ + 1) − (𝑎ଶ + 1) + 1 (1)

 𝑎ଵ𝑎ଶ … 𝑎 = (𝑎ଵ … 𝑎ିଵ)(𝑎 + 1) − (𝑎ଵ … 𝑎ିଵ) (2)

In addition, extending Equation (2) will result in
the following. 𝑎1𝑎2 … 𝑎𝑚 = (−1)𝑖 ෑ ൬𝑎𝑗′ + 1൰𝑚−𝑖𝑗′=1𝑚𝐶𝑚−𝑖𝑖=0

However, 𝑗ᇱ is an element of the combination of
choosing the 𝑚 − 𝑖 number from 𝑚 number of ൫𝑎 +1൯. For example, the following holds when 𝑚 = 3,4. 𝑎1𝑎2𝑎3 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)− {(𝑎1 + 1)(𝑎2 + 1)+ (𝑎1 + 1)(𝑎3 + 1)+ (𝑎2 + 1)(𝑎3 + 1)} + {(𝑎1 + 1)+ (𝑎2 + 1) + (𝑎3 + 1)} − 1 𝑎1𝑎2𝑎3𝑎4 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)− {(𝑎1 + 1)(𝑎2 + 1)(𝑎4 + 1)+ (𝑎1 + 1)(𝑎3 + 1)(𝑎4 + 1)+ (𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)+ (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)}+ {(𝑎1 + 1)(𝑎2 + 1)+ (𝑎1 + 1)(𝑎3 + 1)+ (𝑎1 + 1)(𝑎4 + 1)+ (𝑎2 + 1)(𝑎3 + 1)+ (𝑎2 + 1)(𝑎4 + 1)+ (𝑎3 + 1)(𝑎4 + 1)} − {(𝑎1 + 1)+ (𝑎2 + 1) + (𝑎3 + 1) + (𝑎4 + 1)}+ 1

Therefore, when 𝑙 = 2, 𝑚ଵ = 3, 𝑚ଶ = 4, 𝑎ଵ𝑎ଶ𝑎ଷ
will be 𝑎ଵ,ଵ𝑎ଶ,ଵ𝑎ଷ,ଵ , and 𝑎ଵ𝑎ଶ𝑎ଷ𝑎ସ will be

SECRYPT 2021 - 18th International Conference on Security and Cryptography

542

𝑎ଵ,ଶ𝑎ଶ,ଶ𝑎ଷ,ଶ𝑎ସ,ଶ , thus allowing the following to be
computed. 𝑎1,1𝑎2,1𝑎3,1 + 𝑎1,2𝑎2,2𝑎3,2𝑎4,2

In the TUS 4 method, inputs 𝑎ଵ,, 𝑎ଶ,, … . 𝑎,
must be within the modulus 𝑝 and be a number under 𝑝 − 2. In addition, all random numbers used were
uniformly distributed and did not include the value 0.
Moreover, all other values belong to 𝐺𝐹(𝑝), and all
computations are performed with the modulus 𝑝 .
Moreover, we assume that communication between
players and servers is secure. In addition, random
numbers not known to the adversary shown in
Condition (3) are assumed to be 𝜀()(ℎ = 1, … 8) ,
and shares of all random numbers 𝜀,() used to
construct 𝜀() are prepared and stored in the servers
in advance. Moreover, 𝑘 servers in Steps 4 and 5
shown in the preprocessing phase are chosen in
advance from 𝑛 servers. Below, for ease of
understanding, we show our protocol for 𝑚 = 3 ;
however, it can also be extended to any 𝑚.
Preprocessing Phase.
1. Dealer 𝐷 generates 𝑘 random numbers 𝑏(ଵ,),, 𝑏(ଵ,),ଵ, … , 𝑏(ଵ,),ିଵ with respect to inputs 𝑎ଵ,(𝑖 = 1, … , 𝑙) , computes 𝑏ଵ, = ∏ 𝑏(ଵ,),ିଵୀ ,

and sends 𝑏(ଵ,), to server 𝑆.
2. Dealer 𝐷 performs Step 1. On 𝑎ଶ,, 𝑎ଷ,.
3. Dealer 𝐷 sends 𝑏, to User 𝑈, (𝑔 = 1,2,3).
4. Server 𝑆 (𝑗 = 0, … , 𝑘 − 1) collects each ൣ𝜀ప,ఫ()൧തതതതതതത௨(𝑢 = 0, … , 𝑘 − 1, ℎ = 1, … ,8) and

reconstructs 𝜀,().
5. Server 𝑆 generates 𝑑 , computes the following,

and sends it to one of the servers (Here, we assume
the server to be server 𝑆). 𝑑𝑏(ଵ,),𝑏(ଶ,),𝑏(ଷ,),𝜀,(ଵ) , 𝑑𝑏(ଵ,),𝑏(ଶ,),𝜀,(ଶ) , 𝑑𝑏(ଵ,),𝑏(ଷ,),𝜀,(ଷ),

𝑑𝑏(ଶ,),𝑏(ଷ,),𝜀,(ସ) , 𝑑𝑏(ଵ,),𝜀,(ହ) , 𝑑𝑏(ଶ,),𝜀,() , 𝑑𝑏(ଷ,),𝜀,() , 𝑑𝜀,(଼)
6. Server 𝑆 computes the following and sends to all

servers. (𝑖 = 1, … , 𝑙). 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଶ,),𝑏(ଷ,),𝜀,(ଵ)ିଵୀ ,
𝑑𝑏ଵ,𝑏ଶ,𝜀(ଶ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଶ,),𝜀,(ଶ)ିଵୀ ,

𝑑𝑏ଵ,𝑏ଷ,𝜀(ଷ) = ෑ 𝑑𝑏(ଵ,),𝑏(ଷ,),𝜀,(ଷ)ିଵୀ ,
𝑑𝑏ଶ,𝑏ଷ,𝜀(ସ) = ෑ 𝑑𝑏(ଶ,),𝑏(ଷ,),𝜀,(ସ)ିଵୀ ,

𝑑𝑏ଵ,𝜀(ହ) = ෑ 𝑑𝑏(ଵ,),𝜀,(ହ)ିଵୀ ,
𝑑𝑏ଶ,𝜀() = ෑ 𝑑𝑏(ଶ,),𝜀,()ିଵୀ ,

𝑑𝑏ଷ,𝜀() = ෑ 𝑑𝑏(ଷ,),𝜀,()ିଵୀ ,

𝑑𝜀(଼) = ෑ 𝑑𝜀,(଼)ିଵୀ
7. All servers 𝑆 compute and hold the following. ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ) × ൣ𝜀ప(ଵ)൧തതതതതതത ,
ቈ 𝑑𝑏ଵ,ప𝑏ଶ,పതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଶ,𝜀(ଶ) × ൣ𝜀ప(ଶ)൧തതതതതതത ,
ቈ 𝑑𝑏ଵ,ప𝑏ଷ,పതതതതതതതതതതത

 = 𝑑𝑏ଵ,𝑏ଷ,𝜀(ଷ) × ൣ𝜀ప(ଷ)൧തതതതതതത ,
ቈ 𝑑𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതത

 = 𝑑𝑏ଶ,𝑏ଷ,𝜀(ସ) × ൣ𝜀ప(ସ)൧തതതതതതത ,
ቈ 𝑑𝑏ଵ,పതതതതതത

 = 𝑑𝑏ଵ,𝜀(ହ) × ൣ𝜀ప(ହ)൧തതതതതതത ,
ቈ 𝑑𝑏ଶ,పതതതതതതത

 = 𝑑𝑏ଶ,𝜀() × ൣ𝜀ప()൧തതതതതതത ,
ቈ 𝑑𝑏ଷ,పതതതതതതത

 = 𝑑𝑏ଷ,𝜀() × ൣ𝜀ప()൧തതതതതതത ,
ሾ𝑑ሿതതതത = 𝑑𝜀(଼) × ൣ𝜀ప(଼)൧തതതതതതത

Encryption Phase.
1. User 𝑈, compute 𝑏,൫𝑎, + 1൯＝𝑏, × ൫𝑎, +1൯ in regard to its input 𝑎, and send to all

servers. (𝑔 = 1,2,3)．

Online Phase.
1. All servers 𝑆 compute the following.

Secure Computation by Secret Sharing using Input Encrypted with Random Number

543

ቈ𝑑 ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ തതതതതതതതതതതതതതതതതതതതതതതതതതതത
= ൝𝑏ଵ,൫𝑎ଵ, + 1൯ୀଵ× 𝑏ଶ,൫𝑎ଶ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത

− 𝑏ଵ,൫𝑎ଵ, + 1൯ × 𝑏ଶ,൫𝑎ଶ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଶ,పതതതതതതതതതതത
− 𝑏ଵ,൫𝑎ଵ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଵ,ప𝑏ଷ,పതതതതതതതതതതത
− 𝑏ଶ,൫𝑎ଶ, + 1൯ × 𝑏ଷ,൫𝑎ଷ, + 1൯× ቈ 𝑑𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതത
 + 𝑏ଵ,൫𝑎ଵ, + 1൯ × ቈ 𝑑𝑏ଵ,పതതതതതതത

+ 𝑏ଶ,൫𝑎ଶ, + 1൯ × ቈ 𝑑𝑏ଶ,పതതതതതതത
+ 𝑏ଷ,൫𝑎ଷ, + 1൯ × ቈ 𝑑𝑏ଷ,పതതതതതതത
 − ሾ𝑑ሿതതതതൡ

Reconstruction Phase.

1. The player collects ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 from 𝑘 servers 𝑆 , reconstructs 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ , 𝑑 ,
and computes the following. 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ 𝑑 = ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ

3.1 Security of the TUS 4 Method

In the proposed method of computation with 𝑡(=∑ 𝑚ୀଵ) inputs and one output, if 𝑡 − 1 inputs and
the output are leaked to the adversary, the remaining
input can also be leaked. Similarly, when all 𝑡 inputs
are known to the adversary, the output can also be
leaked to the adversary. Therefore, we consider only
the following two types of adversaries:
Adversary 1 has information on 𝑡 − 2 inputs and one
output. Adversary 1 has information on the inputs
(and the random number used to encrypt them) and
the information needed to reconstruct the output. In
addition, the adversary also has knowledge of
information from 𝑘 − 1 server and attempts to learn
the remaining two inputs.
Adversary 2 has information on the 𝑡 − 1 inputs.
Adversary 2 has information on the inputs (and the
random numbers used to encrypt them). In addition,
the adversary also has knowledge of information from

𝑘 − 1 servers and attempts to learn the remaining one
input or output of the computation.

Proof of Security of the Preprocessing Phase.
Because our proposed method assumes a semi-honest
adversary, Dealer 𝐷 performs Steps 1–3 correctly and
privately, and sends it to each server and user. Server 𝑆 (𝑗 = 0, … , 𝑘 − 1) reconstruct 𝜀,() (which is used
to construct 𝜀()) in Step 4; however, 𝜀() will not
leak from 𝑘 − 1 servers. In Step 5, server 𝑆 sends its
computed values to server 𝑆; however, Adversaries
1 and 2 cannot decompose each individual random
number from this information. Therefore,
Adversaries 1 and 2 will not be able to learn 𝑑, 𝑏ଵ,, 𝑏ଶ,, 𝑏ଷ,, 𝜀(ଵ), … , 𝜀(଼) . In Step 6, Server 𝑆
multiplied all values and broadcast the result;
however, Adversaries 1 and 2 cannot decompose the
information to learn each individual random number.
Moreover, because the random number unknown to
the adversary shown in Condition (3) is used to
compute shares in Step 7, the shares held by each
server can be computed securely.

Therefore, for example, the following statement
is true. The same is true for the remaining shares.
Here, 𝐻(𝑥) represents the entropy of 𝑥.

𝐻 ൭ቈ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,పതതതതതതതതതതതതതതത
൱ = 𝐻 ൭ 𝑑𝑏ଵ,ప𝑏ଶ,ప𝑏ଷ,ప൨തതതതതതതതതതതതതതത อ 𝑑𝑏ଵ,𝑏ଶ,𝑏ଷ,𝜀(ଵ)൱

Proof of Security of the Encryption Phase.
Since the input is less than 𝑝 − 2, even if one is added
to the input, it will not become 0. In addition, a
random number generated by the dealer is secure.
Therefore, the following statement is true and
remains true for the remainder of the inputs. 𝐻(𝑎,) = 𝐻(𝑎,|𝑏,൫𝑎, + 1൯)

Proof of Security of the Online Phase.
Security against Adversary 1
Assume that the adversary has information on all
inputs except 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. He/she also has information
from 𝑘 − 1 servers and the result of the computation.
Furthermore, Adversary 1 has information from Step
5 of the preprocessing phase, and also learns 𝑏,൫𝑎, + 1൯ from the online phase. In addition,
Adversary 1 learns 𝑑 ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ , 𝑑 , and ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ from the reconstruction phase.
Consequently, Adversary 1 has the following
information (however, 𝑔′, 𝑖′ excludes 1,1 and 2,1; 𝜀ଵ(,) means that it relates to the same value; 𝜀∗() is
used when 𝑖 > 1). By using this information,
Adversary 1 tries to learn about inputs 𝑎ଵ,ଵ, 𝑎ଶ,ଵ.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

544

𝐵 = ൝𝑑, 𝑎ᇲ,ᇱ, 𝑏ᇲ,ᇱ, 𝑏ଵ,ଵ൫𝑎ଵ,ଵ + 1൯, 𝑏ଶ,ଵ൫𝑎ଶ,ଵ+ 1൯, 1𝑏ଵ,ଵ𝑏ଶ,ଵ𝜀ଵ(ଵ,ଶ) , 1𝑏ଵ,ଵ𝜀ଵ(ଷ,ହ) ,1𝑏ଶ,ଵ𝜀ଵ(ସ,) , 𝜀ଵ(,଼), 𝜀∗()ൡ

However, because each 𝜀() is independent, 𝑏ଵ,ଵ, 𝑏ଶ,ଵ will not leak. In addition, because 𝜀() is not
used in the computation, it does not affect the
computation. Therefore, Adversary 1 will not be able
to learn 𝑎ଵ,ଵ, 𝑎ଶ,ଵ. Therefore, the following are true: 𝐻൫𝑎ଵ,ଵ൯ = 𝐻൫𝑎ଵ,ଵห𝐵൯, 𝐻൫𝑎ଶ,ଵ൯ = 𝐻൫𝑎ଶ,ଵห𝐵൯

The same argument remains valid even for
combination of inputs other than 𝑎ଵ,ଵ, 𝑎ଶ,ଵ.

In addition, in the aforementioned protocol, we
assumed 𝑚 = 3 for ease of understanding. However,
even in the case other than 𝑚 = 3, values that are not
leaked are not included in B; therefore, the same is
true for any 𝑚 . Therefore, the TUS 4 method is
information-theoretical secure against Adversary 1.
Security against Adversary 2

Assume that the adversary has information on all
inputs except 𝑎ଵ,ଵ in addition to information from 𝑘 − 1 servers. Furthermore, Adversary 2 has
information from Step 5 of the preprocessing phase,
and also learns 𝑏,൫𝑎, + 1൯ from the online phase.
In addition, Adversary 2 learns 𝑘 − 1 number of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 from the reconstruction
phase. As a result, Adversary 2 has the following
information (however, 𝑔′, 𝑖′ exclude 1,1; 𝜀ଵ(,) is
used to show that it relates to the same value, and 𝜀∗()
is used when 𝑖 > 1). However, 𝑗′ is less than 𝑘 − 1.
By using this information, Adversary 2 tries to learn
about input 𝑎ଵ,ଵ and output ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ . 𝐶= ൝𝑎ᇱ,ᇱ, 𝑏ᇱ,ᇱ, 𝑏ଵ,ଵ൫𝑎ଵ,ଵ + 1൯, 𝑑𝑏ଵ,ଵ𝜀ଵ(ଵ,ଶ,ଷ,ହ) ,𝑑𝜀ଵ(ସ,,,଼) , 𝜀∗(), 𝑑 ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൨തതതതതതതതതതതതതതതതതതതതതതതതതതത

ᇱ , 𝑑ᇱൡ

However, since each 𝜀() is independant, 𝑏ଵ,ଵ and
input 𝑎ଵ,ଵ will not be leaked. Moreover, Adversary 2
learns 𝑘 − 1 number of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 .
However, reconstruction is impossible with 𝑘 − 1
shares. Therefore, Adversary 2 will not be able to
learn the result of the computation.

The same is true even for inputs other than 𝑎ଵ,ଵ. In
addition, even in the case other than 𝑚 = 3, values
that are not leaked are not included in C; therefore,
the same can be said for any 𝑚 .Therefore, the
following statements are true, and the TUS 4 method
is information-theoretical secure against Adversary 2. 𝐻൫𝑎ଵ,ଵ൯ = 𝐻൫𝑎ଵ,ଵห𝐶൯ 𝐻 ቆ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ ቇ = 𝐻൫∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ ห𝐶൯

Proof of Security of the Reconstruction Phase.
Even if ∑ ൫𝑎ଵ,𝑎ଶ,𝑎ଷ,൯ୀଵ is equal to 0, because
nothing is leaked from 𝑘 or fewer number of shares
of ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 , Adversary 2 will not
able to learn about the result of the computation.

From the above, because the preprocessing phase
only processes information that does not depend on
any of the inputs, it can be performed in advance.
However, communication is required during the
preprocessing phase. Inputs are introduced in the
encryption phase, and the result is sent to all the
servers. All processes up to this stage are considered
the preprocessing of information. The online phase
uses all the computed values to perform
computations, and no communication is required.
Finally, in the reconstruction phase, the player
collects ൣ𝑑 ∑ ൫𝑎ଵ,ప𝑎ଶ,ప𝑎ଷ,ప൯పୀଵ ൧തതതതതതതതതതതതതതതതതതതതതതതതത, 𝑑 from 𝑘 servers 𝑆 .
From this, we learn that communication only occurs
in the preprocessing, encryption, and reconstruction
phases, and no communication occurs in the online
phase.

In addition, when 𝑛 > 𝑘 , Steps 4 and 5 of the
preprocessing phase can be performed by 𝑘 servers,
but Step 7 and onwards must be performed by all 𝑛
servers. Therefore, the TUS 4 method is also
realizable when 𝑛 ≥ 𝑘 . However, when the player
who wishes to reconstruct the result wants to collect
information from any 𝑘 servers in the reconstruction
phase, each server must distribute the values 𝑑 in the
preprocessing phase so that it can be reconstructed
from any 𝑘 servers.

4 DISCUSSION

4.1 Features of the TUS Methods

The TUS methods realize secure computation of
secret sharing by using inputs that has been encrypted
with random numbers. This is a combination of an
encryption with a random number and computation

Secure Computation by Secret Sharing using Input Encrypted with Random Number

545

using secret sharing, and the merits of this approach
are shown below. Please refer to Section 4 in
(Iwamura et al., 2021) for further details on each
feature. Here, Features I and II are realized in all the
TUS methods, but Feature III is realized in this study.
Therefore, we can state that the TUS 4 method
realized all the merits below.
Feature I: Input encrypted with random number can
be made public. In the TUS methods, the encrypted
input can be made public because the input is
encrypted with a random number. However, 𝑘
random numbers that make up the random number
need to be concealed.
Feature II: Secure computation with 𝑛 < 2𝑘 − 1 is
possible. Because the inputs are not distributed, but
are encrypted by multiplying with random numbers,
direct multiplication of these encrypted inputs will
not cause any increase in the polynomial degree.
Therefore, we could realize secure computation with
minimal server resources (minimum 𝑛 = 𝑘 = 2).
Feature III: Processes involving random numbers
can be computed in advance. Because the processes
in the encryption phase can be separated into multiple
processes such as multiplication with random
numbers, it is possible to realize an additional
preprocessing phase, where only processes related to
random numbers are performed in advance.
Demerit: The disadvantage of encrypting an input
with a random number is that when the input or the
result of the computation is equal to 0, information of
the input or output will be leaked. Therefore,
Condition (1) is required.

4.2 Discussion

Condition (1) is solved using the TUS 4 method,
where the reconstruction of the multiplication result
is only performed by the player that is allowed to
know the result.

Condition (2) is required when 𝑛 > 𝑘 . If the
server or dealer distributes the random number using
secret sharing to all 𝑛 servers, even if 𝑛 − 𝑘 servers
are broken or lost, a substitute server can reconstruct
the random number that was handled by the broken
server and continue the computation. Thus, realizing
the server loss resistance of secret sharing. However,
it is important that the new server must handle the
same random number as the server that it is
substituting. This can be realized by implementing it
in the algorithm (assuming a semi-honest adversary).

Finally, Condition (3) can be solved depending on
the application considered. For example, when
considering implementation in searchable encryption

(Kamal et al., 2017), because the owner of secret
information will not be the adversary, Condition (3)
can be realized by requesting the owner to generate
random numbers that satisfy Condition (3). Moreover,
the use of a trusted execution environment such as
Intel’s Software Guard Extensions (SGX) (Intel
Corporation, 2015) can also help with the realization of
Condition (3). In future studies, we will consider the
most suitable approach for realizing Condition (3).

Therefore, the TUS 4 method only requires
Condition (3) to realizes secure computation against
a semi-honest adversary.

4.3 Qualitative Comparison

The SPDZ method is limited to the setting 𝑛 = 𝑘 ,
and Araki et al.’s method is limited to the setting 𝑛 =3, 𝑘 = 2. Only the TUS methods allow for 𝑛, 𝑘 to be
set at any value and can realize resistance toward
server loss. Araki et al.’s method uses the setting of 𝑛 = 3, 𝑘 = 2; however, the computation cannot be
continued even if one server is lost; therefore, it is not
robust against server loss.

However, SPDZ method can accommodate
malicious adversaries. Moreover, Araki et al.
proposed two protocol versions: a protocol with
information-theoretic security and a protocol with
computational security.

5 PERFORMANCE EVALUATION

The evaluation is performed by computing 𝑙 =1, 100, 10000 -times of inner-product computation
and parameters 𝑛, 𝑘 set at 𝑛 = 𝑘 = 2 for the TUS 4
method. Inner-product computation is often used in
statistical calculations such as distribution and sum of
squared deviation, meaning that it can be applied to
areas such as searching for gene sequences. In
addition, in the computation of the inner product, no
communication is required in the online phase of the
TUS 4 method. The detailed protocol used is the same
as that of the TUS 4 method when 𝑚 = 2.

Tables 1 shows the results of the implementation
of the online phase using Amazon Web Service with
a maximum number of three servers. In particular, we
uses the t2.micro instance with 1 vCPU @ 2.5GHz
and 1GiB of RAM. Because the preprocessing and
encryption phases can be computed in advance, we
did not include a comparison of the processing time
in our evaluation. From Table 1, the TUS 4 method
with no communication in the online phase shows an
overwhelming increase in the computation speed.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

546

Table 1: Comparison with conventional methods (for 𝑙 = 1, 100, 10000).

 TUS 4 Method SPDZ Method Araki et al.’s Method
 𝑙=1 𝑙=100 𝑙=10000 𝑙=1 𝑙=100 𝑙=10000 𝑙=1 𝑙=100 𝑙=10000

Computation [ms] 0.03 0.72 88.9 0.04 0.87 86.4 0.03 1.16 105
Connection
establishment [ms] 0 0 0 2.06 2.08 2.06 1.99 2.03 2.01

Communication [ms] 0 0 0 1.71 4.54 278 1.36 2.61 73.3
Total time [ms] 0.03 0.72 88.9 3.81 7.49 367 3.38 5.80 181

6 CONCLUSION

In this paper, we provide a method for easing the
conditions of the TUS methods that realize
information-theoretic security against a semi-honest
adversary when 𝑘 ≤ 𝑛 < 2𝑘 − 1 , and show that it
can be realized by using only one condition. In
addition, we showed that the acceleration of the
computation time is possible by using the property
that processes related to random numbers can be
separated. In addition, we discussed the properties in
detail and showed that our proposed method is also
suitable for use in IoT. We also showed that our
proposed method is the only method that allows for
any 𝑛, 𝑘 to be chosen for 𝑛 ≥ 𝑘.

In a future study, we will consider the most
suitable methods to solve Condition (3) and consider
a secure computation against malicious adversaries.

REFERENCES

Araki T., Furukawa J., Lindell Y., Nof A., Ohara K., 2016.
High throughput semi-honest secure three-party
computation with an honest majority. In CCS 2016, pp.
805-817. ACM, New York, NY, USA.

Beaver D., 1991. Efficient multiparty protocols using circuit
randomization. In CRYPTO 1991. LNCS, vol 576, pp.
420-432. Springer, Berlin, Heidelberg.

 Ben-Or M., Goldwasser S., Wigderson A., 1988.
Completeness theorems for non-cryptographic fault-
tolerant distributed computation.” In STOC 1988, pp. 1-
10. ACM, New York, NY, USA.

Bendlin R., Damgård I., Orlandi C., Zakarias S., 2011. Semi-
homomorphic encryption and multiparty computation.”
In EUROCRYPT 2011. LNCS, vol. 6632, pp. 169-188.
Springer, Berlin, Heidelberg.

Brakerski Z., Gentry C., Vaikuntanathan V., 2009. (Leveled)
fully homomorphic encryption without bootstrapping. In
ITCS 2012, pp. 309-325. ACM, New York, NY, USA.

Cramer R., Damgård I., Maurer U., 2000. General secure
multi-party computation from any linear secret-sharing
scheme. In EUROCRYPT 2000. LNCS, vol 1807, pp.
316-334. Springer, Berlin, Heidelberg.

Damgård I., Pastro V., Smart N., Zakarias S., 2012.
Multiparty computation from somewhat homomorphic
encryption. In CRYPTO 2012. LNCS, vol 7417, pp. 643-
662. Springer, Berlin, Heidelberg.

Damgård I., Keller M., Larraia E., Pastro V., Scholl P., Smart
N.P., 2013. Practical covertly secure MPC for dishonest
majority – Or: Breaking the SPDZ Limits. In ESORICS
2013. LNCS, vol. 8134, pp. 1-18. Springer, Berlin,
Heidelberg.

Gentry C., 2010. A fully homomorphic encryption scheme.”
Ph.D Thesis, Stanford University, Stanford, CA, USA.

Intel Corporation. Intel SGX Evaluation SDK, User’s Guide
for Windows* OS, 2015. https://software.intel.com/sites/
products/sgx-sdk-usersguide-windows/Default.htm.

Iwamura K., Kamal A.A.A.M., 2021. Secure computation by
secret sharing using input encrypted with random
number (full paper). In Cryptology ePrint Archive,
Report 2021/548.

Kamal A.A.A.M., Iwamura K., 2017. Conditionally secure
multiparty computation using secret sharing scheme for
n<2k-1. In PST 2017, pp. 225-230. IEEE, Calgary, AB,
Canada.

Kamal A.A.A.M., Iwamura K., Kang H., 2017. Searchable
encryption of image based on secret sharing scheme. In
APSIPA ASC 2017. IEEE, pp. 1495-1503, Kuala
Lumpur, Malaysia.

Kurihara J., Kiyomoto S., Fukushima K., Tanaka T., 2008. A
new (k,n)-threshold secret sharing scheme and its
extension. In ISC 2008, pp. 455-470, Springer, Berlin,
Heidelberg.

Shamir A., 1979. How to share a secret. Communications of
the ACM, Vol. 22, Issue 11, pp. 612-613. ACM, New
York, NY, USA.

Shingu T., Iwamura K., Kaneda K., 2016. Secrecy
computation without changing polynomial degree in
Shamir’s (k, n) secret sharing scheme. In ICETE 2016,
pp.89-94. Lisbon, Portugal.

Smart N.P., Vercauteren F., 2010. Fully homomorphic
encryption with relatively small key and ciphertext sizes.
In PKC 2010. LNCS, vol. 6056, pp. 420-443. Springer,
Berlin, Heidelberg.

Tokita K., Iwamura K., 2018. Fast secure computation based
on secret sharing scheme for n<2k-1. In MobiSecServ
2018, pp. 1-5. IEEE, Miami Beach, FL.

 van Dijk M., Gentry C., Halevi S., Vaikuntanathan V., 2010.
Fully homomorphic encryption over the integers.” In
EUROCRYPT 2010. LNCS, vol. 6110, pp. 24-43.
Springer, Berlin, Heidelberg.

Secure Computation by Secret Sharing using Input Encrypted with Random Number

547

