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Abstract: Data privacy legislation and the growing number of security violation incidents in the media, have played
a key role in consumer awareness of data protection. Furthermore, the digital trail left by activities such
as online purchases, websites browsed, and/or clicked advertisements yield behavioural information that is
useful for various data analytics operations. Analysing such information in a privacy-preserving way is useful
both in satisfying service level agreements and complying with privacy regulations. Pseudonymisation and
anonymisation have been widely advocated as a means of generating privacy-preserving datasets. However,
each approach poses drawbacks in terms of composing privacy-preserving datasets from multiple distributed
data sources. The issue is made worse when the owners of the datasets co-exist in an untrusted environment.
This paper presents a novel method of generating privacy-preserving datasets composed of distributed data
in an untrusted scenario. We achieve this by combining cryptographically secure pseudonymisation with
data obfuscation and sanitisation. The pseudonymisation and compartmentation are outsourced to a central
but fully oblivious entity that can blindly compose datasets based on distributed sources. Controlled non-
transitive join operations are used to ensure that the published datasets do not violate the contributing parties’
privacy properties. As a further step, the service provider will employ obfuscation and sanitisation to identify
and break functional dependencies between attribute values that hold the risk of inferential disclosures. Our
empirical model shows that the overhead due to cryptographic pseudonymisation is negligible and can be
deployed in large datasets in a scalable manner. Furthermore, we are able to minimise information loss, even
in large datasets, without impacting privacy negatively.

1 INTRODUCTION

In various domains, such as personalised healthcare,
the notion of secure data sharing has become ever
more tightly intertwined with privacy. Legislation
such as Europe’s General Data Protection Regulation
and the US Consumer Privacy Act bring the issue of
data privacy to the fore, with violation penalties being
set to as high as EUR 20 million or 4% of the annual
turnover of the preceding financial year depending on
which is higher. Yet, as mainstream media stories in-
dicate, providing firm guarantees of data privacy re-
mains a challenging problem.

1.1 Context and Motivation

Access to personal data, has and continues to play
an important role in the software services industry in
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general. For instance, access personal data is useful
in supporting data analytics tasks that support service
delivery in the marketing and healthcare domains.
Data is as such, increasingly crucial to providing de-
pendable services.

Pseudonymisation and anonymisation are typi-
cally advocated as methods of transforming data to
protect user privacy. Pseudonymisation holds the ad-
vantage of generating datasets that can be easily re-
verted to the original form to crosscheck the valid-
ity of results from data analytics processes. How-
ever, pseudonymisation has been criticised for result-
ing in datasets that are vulnerable to re-identification
attacks (Sweeney, 2000; Sweeney, 2002a). Further-
more, simply removing attributes that are likely to
identify an individual directly does not protect against
re-identification (Sweeney, 2002a; Sweeney, 2002b).
A plethora of solutions have been proposed in re-
cent years to address this problem (Sweeney, 2002a;
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Machanavajjhala et al., 2007; Li et al., 2007a; Dwork
et al., 2009; Podlesny et al., 2019a). These so-
lutions address various limitations centered around
the Sweeney et al. (Sweeney, 2002a) approach to
anonymising data. However, as Lehmann (Lehmann,
2019) pointed to these solutions are not well adapted
to generating privacy-preserving datasets based on
combinations of subsets of data drawn from multiple
distributed sources.

Successfully anonymising subsets of data drawn
from data sets such as these that contain a high
proportion of sensitive data are impractical because
any guarantees of privacy would come at the cost
of high levels of information loss (Podlesny et al.,
2018; Podlesny et al., 2019a). High information loss
negatively impacts query result accuracy and verac-
ity, and this can impede research that is dependent
on data analytics (e.g. drug trials, personalised pre-
scriptions, ...). A further issue is supporting privacy
with cryptographic operations, guaranteeing security,
is computationally intensive for large high dimen-
sional datasets (Lehmann, 2019).

1.2 Problem Statement

The problem with which we are faced is generating
privacy-preserving subsets of data from datasets con-
taining a high degree of sensitive information in an
untrusted distributed environment (i.e. the data own-
ers do not trust each other). The central premise here
is to do this both a-priori, to create generic data sub-
sets, or on-demand (a-posteriori) - to tailor the gener-
ated subset of data to a specific request.

1.3 Contributions

We propose a solution for generating low information
loss privacy-preserving datasets that involves main-
taining as much information from the original dataset
as possible without creating vulnerabilities to re-
identification. To do this, we combine elements from
unlinkable pseudonymisation (Lehmann, 2019) and
attribute compartmentation (Podlesny et al., 2019a).
We employ three (3) components namely, an Obfus-
cator, a Converter and a Santizer, to ensure that the
data remains private.

The Obfuscator plays the role of transforming
the dataset to prevent re-identifications due to infer-
ences drawn from functional dependencies between
attribute values. As a further step, the Obfuscator
analyses the dataset to discover all quasi-identifiers
(functional dependencies) that are likely to result in
inferences.

The Converter is a central service that handles the

output from the Obfuscator. Its job is to derive and
convert pseudonyms, and create a joined version of
attributes based on the request or usage scenario of
the data. The Converter performs these transforms
blindly in that it stores no knowledge of the data sets.
To create a subset of data, the Converter transform
the Chameleon Pseudonyms, associated with the at-
tributes that are to place in the requested data subset,
to ensure that pseudonyms associated with the same
record are mapped to the same value.

The Sanitiser serves as an internal validator or ver-
ifier to test the data that is to be shared with the data
processor to ensure that it is free of elements that can
be exploited for inferences.

1.4 Outline of the Paper

The rest of the paper is structured as follows. We dis-
cuss related work in Section 2, focusing on anonymi-
sation, and pseudonymsation concerning generating
privacy-preserving datasets from distributed sensitive
data. In Section 3, we briefly present background
notions on how unlinkable pseudonymisation and at-
tribute compartmentation work, and then proceed to
present our proposed mechanism for generating low
information loss privacy-preserving datasets from dis-
tributed sensitive data. We discuss results from our
empirical model in Section 4 and offer conclusions as
well as avenues for future work in Section 5.

2 RELATED WORK

A plethora of work exists on the subject of trans-
forming data for privacy. One of the first approaches,
namely pseudonymisation, consisted of replacing per-
sonally identifying information in shared published
datasets with a pseudonym. In Europe for instance,
the Data Protection Working Party as an independent
advisory body to the European Commission has out-
lined various data sanitisation methods for protect-
ing individuals’ data (Party, 2014). Pseudonymisation
and anonymisation have as such been promoted as a
means of generating privacy-preserving datasets (Mc-
Callister et al., 2010).

In the naive form, pseudonymisation consists of
replacing an attribute’s real value with a false or
pseudonymous value. The idea is to use values
that are difficult to link back to the original val-
ues. As Sweeney (Sweeney, 2000) pointed out,
simply pseudonymising the data or eliminating di-
rect identifying attributes (e.g. name and ID num-
ber) is not to prevent re-identification. Furthermore,
applying pseudonymisation in the context of dis-

On Chameleon Pseudonymisation and Attribute Compartmentation-as-a-Service

705



tributed databases is impractical in providing firm as-
surances of meeting the cooperation parties’ privacy
service level agreements of the cooperating parties
(Camenisch and Lehmann, 2015). Camenisch and
Lehmann (Camenisch and Lehmann, 2015) proposed
alleviating this issue with an (un)linkabe pseudonym
system that overcomes these limitations. Addition-
ally, it enables controlled privacy-friendly exchange
of distributed data in untrusted environments yet.
However, as mentioned before, the issue that remains
is how to generate and provision the pseudonyms se-
curely.

In recent work, Lehmann (Lehmann, 2019) ad-
dresses the issue of generating and provisioning
pseudonyms securely. To do so, Lehmann (Lehmann,
2019) proposed the notion of unlinkable pseudonymi-
sation (ScrambleDB) as a method of providing
pseudonymisation-as-a-service in distributed settings,
where multiple players contribute data to a shared
pool. Generated pseudonyms protect the data from
the attribute values and only combined through con-
trolled as well as non-transitive JOIN operations to
form data subsets on a per-request basis. This ap-
proach provides a secure method for pseudonymising
data, but does not provide a mechanism for obfus-
cating the data. In settings involving highly sensitive
data, this can become an issue since there is no way of
preventing re-identifications due to inferences drawn
from attribute values.

Obfuscating data can be achieved by techniques
such as anonymisation. One of the first works in this
direction was proposed by Sweeney (Sweeney, 2000;
Sweeney, 2002a; Sweeney, 2002b). In order to enable
anonymisation, a variety of data transformation meth-
ods such as generalisation (Sweeney, 2002a; Sama-
rati and Sweeney, 1998; Ciglic et al., 2014), suppres-
sion (Samarati, 2001), and perturbation(Rubinstein
and Hartzog, 2015), have been studied as a mean
of transforming data for privacy, with low informa-
tion loss. Sweeney’s k-anonymisation approach, for
instance, is basically a method of transforming data
for privacy. In k-anonymity, a dataset is transformed
to ensure that records are grouped into equivalence
classes of size k such that every record in the given
equivalence class is similar (indistiguishable) from
the other k− 1 records. Privacy in this case, rests on
the principle of record similarity. Subsequent works
such as l-diversity (Machanavajjhala et al., 2007;
Meyerson and Williams, 2004; Bayardo and Agrawal,
2005), t-closeness (Li et al., 2007b; Fredj et al.,
2015), dealing with minimality attacks (Wong et al.,
2006; Wong et al., 2007a; Wong et al., 2007b; Wong
et al., 2009; Wong et al., 2011), and differential pri-
vacy (Dwork et al., 2009; Dwork et al., 2006; Dwork,

2008; Dwork, 2011; Islam and Brankovic, 2011; Mc-
Sherry and Talwar, 2007; Koufogiannis et al., 2015;
Kifer and Machanavajjhala, 2011) have been stud-
ied quite extensively in a bid to answer the question
of preventing disclosures of sensitive personal data
in anonymised datasets (Sakpere and Kayem, 2014;
Ghosh et al., 2012).

Data transformation algorithms offer the advan-
tage of modifying attributes values in ways that make
it hard to discover the original value. This is useful
when the attribute-values are unique or present some
property (e.g. distribution similarity, etc.) that might
make it easier to draw inferences that result in dis-
covering the original value and eventually the record
(tuple).

However, as Aggrawal et al.(Aggarwal, 2005)
have shown, applying generalisation and suppression
to high dimensional data results in high information
loss, thereby rendering the data useless for data an-
alytics. This is made worse when the data must be
formed from multiple distributed high-dimensional
datasets.

High information loss can be addressed, to some
degree, by perturbation. Perturbation modifies the
original value to the closest similar findable value.
This includes using an aggregated value or a close-
by (approximate) value that is employed in a way
that requires modifying only one value (or a very
few values) instead of multiple ones to build clusters
(equivalence classes). One drawback of perturbation
is efficiently finding such values since finding such a
value can take longer due to the effect of having to
recheck the newly created value(s) iteratively. This
affects performance negatively and so further work
has sought to find alternatives that optimise the search
time (Fienberg and Jin, 2012; Vaidya and Clifton,
2003; Vaidya et al., 2008).

Podlesny et al. (Podlesny et al., 2018; Podlesny
et al., 2019c; Podlesny et al., 2019a; Podlesny et al.,
2019b) proposed attribute compartmentation as a
method of transforming high-dimensional datasets to
offer privacy but at the same time minimise infor-
mation loss. Attribute compartmentation ensures that
the data is obfuscated, but assumes a trusted environ-
ment and so, is not designed to handle compositions
of data from multiple distributed belonging to par-
ties that co-exist in an untrusted environment. Fur-
thermore, as is the case with all anonymisation ap-
proaches, a large proportion of information loss is in-
curred due to the necessity of having to eliminate per-
sonally identifying information. In datasets such as
genome data which contain several unique identifiers
having to eliminate these values reduces (negatively
impacts on) the usefulness of the data for analytics
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operations.
Therefore, having a method of retaining such at-

tribute values and at the same time being able to
prevent linkages that can be exploited for inference
and re-identification, can make an important contri-
bution to enabling privacy-preserving data sharing in
untrusted environments. In the following section, we
describe our approach to address this problem.

3 ENABLING OBFUSCATION
AND SANITISATION

Addressing the issue of re-identification can be han-
dled by obfuscation (Lehmann, 2019), in which case
some form of transformation (e.g. generalisation,
and/or suppression) is applied to the subset of data
that is to be shared. In this regard, attribute com-
partmentation (Podlesny et al., 2019a) can be used
to complement ScrambleDB. Attribute compartmen-
tation provides data anonymity by identifying all
personal identifiers and eliminating these from the
dataset. The remainder of the dataset is then anal-
ysed to identify and eliminate or transform quasi-
identifiers to prevent re-identification. Attribute com-
partmentation however, results in high information
loss for datasets with high-level sensitive information
(such datasets contain a high level of personal infor-
mation like genomic mutations). Since high informa-
tion loss impacts query result accuracy, having a so-
lution that minimises information loss is beneficial.

Combining the ScrambleDB and Compartmenta-
tion, can serve as a mechanism for addressing the is-
sue of preserving data utility without negatively im-
pacting on data privacy. In this case, we need a
method of ensuring that the different components of
the data can be combined securely and in a way that
ensures unlinkability. This is because while com-
partmentation eliminates the risk of re-identification
attacks by breaking inter-attribute value functional
dependencies, combining compartmented data with
pseudonymous data JOIN operations could become
transitive. So, in certain cases, the joined data could
enable or result in re-identification. Furthermore, the
data needs to be joined to preserve the utility of the
data by minimising information loss.

3.1 Preliminaries

We now describe the privacy setting and database
structure to serve as building blocks for ScrambleDB
and Compartmentation.
Privacy Setting. The privacy scenario in which
ScrambleDB and Compartmentation operate is one in

which a central service exists to either anonymise or
pseudonymise data. Multiple distributed data owners
provide data and it is the job of the central service to
render a pseudonymised or anonymised version of the
data. At this stage, we assume that all the data owners
trust the central service. The data owners are assumed
not to trust each other.
Database Specification. In addition, we assume that
the data is structured in the using a relational model,
where T m×n denotes a table in the database that con-
sists of n rows (records /tuples), and m columns (at-
tributes). Each record in the table is uniquely identifi-
able via a primary key (uid) and a table is uniquely
identifiable by a table identifier (tid). An attribute
value falls in the cell at the intersection between an
attribute (column) and the associated record. For in-
stance, T m×n[i, j] contains a value vali, j which de-
notes the value attribute attr j holds for record reci.
We note that 1≤ i≤ n and 1≤ j ≤ m.

3.2 Shared Data Eco-System

The architecture of our privacy-preserving shared
data ecosystem is captured in Figure 1. As shown
in Figure 1, our architecture is comprised of a set of
N distributed data owners D = D1, ...,DN . Each data
owner owns and/or controls S= S1, ...,SM a set of data
sources. Hypothetically, both N and M are infinitely
large; however, we will assume that both variables are
bounded for practical reasons. So, N ≥ 1 and M ≥ 1.
In addition, a data owner can be both an owner and
a processor P. Data processor, is an entity that re-
quests a dataset, typically a concatenation of subsets
of data emanating from various disjoint data sources.
As is the case with D and S, P ≥ 1 and we assume
that |P| is finite and bounded. We make the following
assumptions with respect to the interactions between
D,S, and P:

• Assumption #1. The data sources S are indepen-
dent. That is a data owner, N(x) who owns of
controls dataset, S(x) has no access to S(x′) that
owned by N(x′).

• Assumption #2. A data processor, P, can be ei-
ther a data owner N (i.e. P ≡ N) or can be an
external (i.e. outside of the data management / ar-
chitectural ecosystem) requester (Pext ). So P(D)
accesses a joined dataset D composed from sub-
sets of data such that:

D← S(1), ...,S(i), ...,S(n)

where i denotes the ith data owner that contributes
to the formation of D and n is the total number of
data owners involved.
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Figure 1: Data Sharing Architecture: Overview.

• Assumption #3. Data processors are not allowed
to share datasets. That is, a collusion prevention
strategy must be implemented to prevent this.

3.3 Privacy and Trust Setting

Trust Set-up. In the trust setup for our data sharing
ecosystem, we consider that the data owners do not
trust each other, but trust the central authority (CA).
Furthermore, the central authority and data proces-
sors are honest-but-curious in that they have a vested
interest in ensuring that the ecosystem works well,
but would like to gain some advantage by learning
or inferring hidden information. In the next section
therefore, we formalise the security and privacy prop-
erties required to ensure data consistency and non-
transitivity of joined datasets against both the CA and
P. We now consider the structure of the data, in S as
this is important is describing the method in which L
is formed.

3.4 Data Source Structure

We employ a relational database model in which a
database S is comprised of a set of tables represented
by T m×n where n denotes the number of rows (records
/tuples), and m columns (attributes). The set of at-
tributes A ∈ S is such that A = a1, ...,ai, ...,an where
ai is the ith attribute. Likewise the set of tuples R ∈ S
is such that R = r1, ..,r j, ...,rm where r j is the jth tu-
ple. Typically, n ≥ m, however we note that in high-
dimensional datasets m can be quite high (m≥ 100).

• Assumption #4. All data owners have the same
data structure for the datasets they own. Like-
wise, all the datasets in the data-sharing ecosys-

tem, have the same relational structure or a means
of obtaining a relational version from the data
available.

The data lake can be composed and stored in antici-
pation of data processor requests. The management
of join requests is handled by a central authority (CA)
that is comprised of three components namely the Ob-
fuscator, Converter, and Sanitizer.

3.5 Pseudonymisation and
Compartmentation-as-a-Service

Essentially we have a data lake L that is created by
contributions of data from distributed sources. In
a manner similar to that in ScrambleDB (Lehmann,
2019), the Obfuscator transforms a dataset for
pseudonymity, by binding each attribute value to a
pseudonym. That is for every table T m×n in the
dataset, where m is the number of attributes and n the
number of records (rows), m pseudonymous tables are
created, each containing n pseudonymous values. The
pseudonym is generated securely to prevent linkabil-
ity.

The Obfuscator plays the role of transforming
the dataset to prevent re-identifications due to infer-
ences drawn from functional dependencies between
attribute values. As a further step, the Obfuscator
analyses the dataset to discover all quasi-identifiers
(functional dependencies) that are likely to result in
inferences.

For flexibility, the Obfuscator employs
Chameleon pseudonyms to handle the data when it
is collected. The Chameleon pseudonyms are useful
in that they allow for the data collected and the
associated attribute values to be stored in a manner
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that is fully unlinkable. In the data lake, the data is
stored as a set of unlinkable attribute tables. This
guarantees that the data is secure at rest and offers
the flexibility of allowing the Converter to bind
unlinkable secure-pseudonyms to data at runtime
when a secure and private subset of data is required.

As a further step, the Obfuscator analyses
the dataset to discover all quasi-identifiers (func-
tional dependencies) that are likely to result in re-
identification. To do this, the Obfuscator classifies
attributes as either 1st-class or 2nd-class identifiers.
Attributes classified as 1st-class identifiers explic-
itly identify an individual, while 2nd-class identifiers
identify an individual if a “correct” attribution com-
bination is found. The Obfuscator evaluates differ-
ent combinations of attributes based on the risk of re-
identification when placed together in the same subset
of data. We use a uniqueness constraint to determine
the entropy level required to classify an attribute or
attribute value as prone to provoking re-identification.
Additionally, at this stage, data transformation opera-
tions (such as generalisation and suppression) can be
applied to guarantee privacy further.

Anonymising data via attribute compartmentation
requires that we proceed in two steps. The first
step involves identifying attributes that qualify as 1st
class-identifiers (explicit identifiers). Since these at-
tributes are eliminated from the dataset to prevent per-
sonal information disclosure when the data is shared,
this can result in high information loss in datasets that
contain a high proportion of sensitive data. We ad-
dress this issue by using unlinkable pseudonymisa-
tion to replace the attribute values with an equivalent
pseudonym. In this way, the levels of information loss
due to eliminations of 1st class-identifiers is reduced
significantly.

The Converter is a central service that handles the
output from the Obfuscator. Its job is to derive and
convert pseudonyms, and create a joined version of
attributes based on the request or usage scenario of
the data.

The Converter performs these transforms blindly
in that it stores no knowledge of the data sets. To
create a subset of data, the Converter transform
the Chameleon Pseudonyms, associated with the at-
tributes that are to placed in the requested data subset,
to ensure that pseudonyms associated with the same
record are mapped to the same value.

We suppose that we have several distributed data
sources S, that contribute data to a shared pool (data
lake) L. A set of users (data processors) P periodically
request access to the data L. All such accesses must
be handled in a privacy-preserving manner, so that the
snapshot of L that is shared with P is secure and un-

linkable. The snapshot of L is created by joining a
subset of the table’s output from the pseudonymsa-
tion and anonymisation operations. Snapshots of data
are created when the data lake receives a request for
a given dataset. For simplicity, we assume that the
snapshot is created in anticipation of a set of queries
or a series of data analytics operations rather than on-
demand.

In order to create a data snapshot (JOIN the ta-
bles), the data lake interacts with two entities namely:
the Obfuscator and the converter. The Obfuscator
uses attribute compartmentation to support or validate
permissible join operations (non-transitive joins) and
handles the data transformations (e.g. generalisation
and suppression) needed to create privacy-preserving
data. The converter transforms the data output from
the Obfuscator by mapping attribute values to unlink-
able pseudonyms but in a consistent manner. That is,
pseudonyms belonging to the same record are mapped
to the same unlinkable pseudonym.

If a data processor P requires a snapshot of the
data containing certain attributes, or if a generic data
set containing certain attributes need to be created,
a joined copy of the data (snapshot) is created and
shared following coordination between the Obfusca-
tor and the Converter. The Converter takes care of
blindly transforming the unlinkable pseudonyms into
a consistent form and preserves privacy by prevent-
ing linkability. The JOIN operation is strictly non-
transitive in that every transformation cannot be cor-
related with data received in previous or other snap-
shots requested.

The Sanitiser serves as an internal validator or ver-
ifier to test the data that is to be shared with the data
processor to ensure that it is free of elements that can
be exploited for inferences.

To support the Sanitiser, we employ the com-
partmentation procedure that essentially checks each
dataset to be shared to ensure that no quasi-identifiers
remain therein. If quasi-identifiers are discovered in
the dataset, the Sanitiser transforms the data using
standard procedures such as generalisation and sup-
pression (Sweeney, 2002a). Since data transforma-
tion loss procedures, by necessity, imply information
loss, the Sanitiser employs an optimisation model to
evaluate the cost-benefit ratio of information loss to
privacy disclosure risk and usability.

In so doing, we have an internal verification model
to ensure that joined attributes in the dataset to be
shared do not raise re-identification vulnerabilities
due to quasi-identifiers in the dataset; and we control
information loss on the discovered quasi-identifiers to
ensure a high-degree of usability of the shared dataset.
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3.6 Formation of the Data Lake

For simplicity, we will consider for now that the
joined data is formed according to Assumption #2.
The data processors wishing to access a subset of the
data shared by N interact with the data lake L. For in-
stance, when P contacts L to request a subset of data
containing attributes a1, ...,al , L produces a joined
version of data from a set of tables T 1×m

1 , ...,T 1×m
l .

To ensure that the joined dataset is free of infer-
ence, vulnerable attribute values the Sanitiser sup-
ports L, by analysing the attribute combinations. For
each combination of attributes, the Sanitiser maps
the attributes unto an attribute-combination graph G :
(V,E) where V denotes the attributes (nodes) and E
denotes the attribute-combination (edge). Each edge
is weighted by the cardinality (or entropy) associated
with the attribute-value combination. For example,
A←→ B represents the attribute combination AB, and
A←→ (10)B indicates the degree of uniqueness (en-
tropy) in attribute-combination values is 10.

To obtain ensure that the combined (joined)
dataset is privacy-preserving, standard transformation
measures such as local suppression, generalisation
and perturbation are first applied to reduce the car-
dinality (uniqueness) of the attribute-value combina-
tions (Sweeney, 2002a). This ensures that we reduce
the degree of inference due to the attribute-values as-
sociated with the attribute-combination. This is sim-
ilar to how standard anonymisation approaches work
to generate privacy, preserving datasets.

As a further measure, and to break the func-
tional dependencies that enable inferences, we com-
pute maximal cliques of G to determine which at-
tributes can be placed together within a compartment
without posing a risk of inference. These cliques
guide the formation of feature sets (compartments)
that can be published together safely (joined) with-
out the risk of inference. Finally, as a post-processing
measure, all feature sets are tested to ensure no infer-
ence causing attribute-combination values to existing
therein.

Figure 2 provides a real-world example of how
compartmentation is applied to datasets. Figure 2(a.)
has a tightly connected graph representing the at-
tribute combinations that can be exploited for disclo-
sure. Based on this graph, we can compute several
cliques, as shown in Figure 2(b.). These cliques can
then be combined in different ways to form feature
sets of attribute combinations that can be published
together safely without the risk of disclosure (see Fig-
ure 2(c.)). In the following section, we present results
from our empirical model.

(a) Attribute tuples forming QIDs to be compart-
mentalized

(b) Inversed tuple edges as allowed attribute com-
binations

(c) Maximal cliques within inverse graphs
Figure 2: Attribute Compartmentation as max cliques in
real-world.

4 EVALUATION

To validate our hypothesis, we have conducted a se-
ries of experiments along with key metrics. To assess
the practicability, we delineate the runtime as an indi-
cator of the time complexity, degree of information-
loss and risk of privacy exposure through remaining
quasi-identifiers.
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4.1 Experimental Setup

For transparency and repeatability, we briefly out-
line the used experimental hardware and the compo-
sition of the dataset used. Dataset. A larger dataset
based on semi-synthetic PII data1 was compiled for
the experiments. The information from these pro-
files has been combined with information from the
genome (Clarke et al., 2012; Project, ). As a result,
the dataset resembles a traditional multi-party setup
in the Digital Health market, with its existing difficul-
ties in data privacy-preserving publishing and sharing
(Schadt and Chilukuri, 2015; Aue et al., 2015). Hard-
ware. Our analysis uses a GPU-accelerated high-
performance computing cluster with 160 CPU cores
(E5-2698 v4), 760GB RAM, and 10 dedicated Tesla
V100 units. Each GPU instance has 5120 CUDA
cores and 1120 TFlops of combined Tensor perfor-
mance. For GPU-related experiments, the execution
area will be limited to ten CPU core and a single ded-
icated Tesla V100 GPU2. The compute cluster’s run-
time area is limited to ten dedicated cores for CPU-
related experiments.

We briefly implemented a proof-of-concept model
of a scrambleDB setup with the support of attribute
compartmentation. Further, experiments have been
conducted to evaluate the degree of information loss
on per row and column and per-table basis as well
as the risk of privacy exposure through the remaining
quasi-identifier tuples. Finally, we also look at prac-
tical hashrates that can be achieved with state-of-the-
art hardware and runtime constraints for large-scale
datasets.

4.2 Practical Hashrates for Real-time
Obfuscation

Our initial concern originated around the possibilities
of the generated large amount of collision-free hashes
in a reasonable time window. Especially in the con-
text of stream data a proper throughput must be en-
sured. To assess this, we have run several benchmarks
on state-of-the-art hardware, where Figure 3 delin-
eates the results as hash-rates per second. Depend-
ing on the hashing method, these GPU-accelerated
frameworks enable up to 39.9 GH/s, so 39 billion
NTLM hashes per second. Figure 4a depicts a break-
down of the runtime composition, comparing a tu-
ple length of 2 attributes against 80 attributes. With
a growing number of attributes, QID discovery’s ef-
fort significantly increases while the spin-up time re-

1https://www.fakenamegenerator.com/
2https://images.nvidia.com/content/technologies/volta/

pdf/volta-v100-datasheet-update-us-1165301-r5.pdf

mains and the time required for hashing only frac-
tional increases. This confirms the feasibility of cre-
ating collision-free hashes for large-scale datasets.

4.3 Degree of Information-loss

To measure the degree of the information-loss suf-
fered from the data anonymisation processing, we
start from the untreated dataset’s diversity where each
unique attribute value receives points and penalises
alternations in the sanitized dataset. For the com-
plete suppression, none points remain. For falsi-
fied numeric values, negative points are given and
for alternated attribute values, we subtract points ac-
cordingly to the generalisation steps. Figure 6 de-
lineates the evolution over growing dataset dimen-
sions by columns and rows to indicate the trend of
each anonymisation technique. Ultimately, the more
describing attributes are available, the more infor-
mation is present, yet more attribute values are be-
ing sanitized. Figure 5 depicts the information-loss
over the same evolution of increasing describing at-
tributes broken down by anonymisation approach.
Here, it becomes transparent that the novel technique
of combined scrambleDb and compartmentation be-
haves similarly to compartmentation while generali-
sation achieves the highest scores with the remark on
significant – almost impractical – runtime costs.

4.4 Risk of Privacy Exposure

To evaluate the remaining risk of private data ex-
posure, we re-run the quasi-identifier discovery to
validate that given each anonymisation technique no
unique attribute value tuples remain that serve aux-
iliary data attackers to draw conclusions and derive
private information by linking external datasets. Fol-
lowing k-anonymity constraints, for all approach no
quasi-identifiers have been found. So, in effect, the
Sanitizer module is able to offer strong guarantees of
data privacy in the combined data that is released or
shared publicly.

4.5 Runtime

The execution time is an important metric to evalu-
ate the practicality of each data anonymisation tech-
nique. As we know, generalisation is a really strong
method that promises outstanding anonymisation re-
sults on numeric data for a known hierarchy, yet
for high-dimensional data non-heuristic generalisa-
tion quickly becomes impractical due to its NP-hard
runtime. For this purpose, Figure 7 compares the
established syntactic data anonymisation techniques
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Figure 3: GPU-accelerated hashrates for obfuscation.
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Figure 4: Runtime breakdown for scrambleDB combined
with compartmentation.
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against the novel scrambleDB combined with com-
partmentation approach. All methods suffer signifi-
cant runtime growth, yet given the introduced nature
of scrambleDB a lot of workloads can be shifted from
a-priori to adhoc at runtime combined with the sound-
ness of k-anonymity requirements. They become ap-
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parent particularly for large attribute amounts where
the curve flattens quicker than alternative syntactic
data anonymisation methods.

4.6 Discussion

ScrambleDB combined with attribute compart-
mentation offers interesting insights for the se-
curity perspective, as it upgrades the original
Pseudonymisation-as-a-Service to ensure the absence
of any quasi-identifier in its results set. Establish eval-
uation metrics evince no significant improvements
over existing syntactic data anonymisation techniques
regarding runtime or information-loss for traditional
settings. Yet, the novel approach does enable a new
angle, especially for distributed data environments.
These distributed environments are often present in
medical settings acting as data ecosystems where
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multiple players have subsets of data repositories and
want to share information privacy-conform with pri-
vate data exposure risk.

5 CONCLUSIONS

This paper has shown that by combining crypto-
graphically secure pseudonymisation and compart-
mentation, we can generate privacy-preserving high-
dimensional datasets. Furthermore, this can be done
safely (in that the participating parties’ privacy ser-
vice level agreements can be adhered to) in an un-
trusted distributed environment. In such environ-
ments, each data owner holds a dataset and the com-
posed data must be formed by joining subsets of data
belonging to parties who co-exist in an untrusted en-
vironment. The pseudonymisation and compartmen-
tation are outsourced to a central but fully oblivious
entity that can blindly compose datasets based on dis-
tributed sources. Controlled non-transitive join oper-
ations are used to ensure that the published datasets
do not violate the contributing parties’ privacy prop-
erties. As a further step, the service provider will em-
ploy obfuscation and sanitisation to identify and break
functional dependencies between attribute values that
hold the risk of inferential disclosures. Results from
our empirical model indicated that the overhead due
to cryptographic pseudonymisation is negligible and
can be deployed in large datasets in a scalable man-
ner. Furthermore, we succeed in minimising infor-
mation loss, even in large datasets, without impacting
privacy negatively.

As future work, it would be interesting to consider
how joined datasets can be formed even in the pres-
ence of active adversaries amongst the data owners.
It would also make sense to consider cases in which
data owners wish to contribute data to the data lake
and control how the data is merged or shared. For
instance, we could consider cases in which the data
owners are able to upload or influence the join poli-
cies and, by extension, what impact this will have on
the privacy of the joined data, particularly in the pres-
ence of active adversaries.
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