
Optimization-based Trajectory Prediction Enhanced with Goal
Evaluation for Omnidirectional Mobile Robots

Wei Luo a and Peter Eberhard b

Institute of Engineering and Computational Mechanics,
University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany

Keywords: Goal Intention Evaluation, Monte-Carlo Sampling, Optimization, Trajectory Prediction, Complementary
Progress Constraint, Mobile Robot.

Abstract: In this paper, an optimization-based trajectory prediction enhanced with goal evaluation for omnidirectional
mobile robots is proposed. The proposed approach tries to predict the mobile platform’s trajectory based on
its previous positions. A two-stage strategy is introduced. At the first stage, the likely goal of the robot in the
scenario is evaluated based on an improved Bayesian framework, which also predicts the possible waypoints
in a discrete roadmap based on Monte-Carlo sampling in the future. Then, based on the predicted waypoints,
an optimization problem is formulated based on the complementary progress constraints, the system dynam-
ics, and the model constraints. After solving the proposed optimization problem, a more reasonable predicted
trajectory can be generated. At the end, an experimental scenario is set up, and it is verified with the experi-
mental data, whether the trajectories can be predicted well.

1 INTRODUCTION

Nowadays, robots are widely applied in different ap-
plications, such as logistic transport, industrial pro-
duction (Qian et al., 2017), and disaster relief (Su
et al., 2015). In most cases, the robots in the field
are organized decentralized. Furthermore, in an en-
vironment with humans, the human beings’ potential
actions cannot be known to robots. Therefore, one of
the critical capabilities for these robots is the trajec-
tory prediction of the other robots or human beings
in the same working environment. Of course, such a
prediction assumes a reasonable ‘predictable’ behav-
ior and cannot consider sudden changes in the inten-
tion. One can increase the cooperation efficiency with
the predicted trajectory. For example, if the poten-
tial trajectory can be forecasted well, the navigation
method can consider this in the own motion planning
and avoid likely collisions. The collision probability
will be reduced once the trajectory of the other agents
can be predicted in advance. This ability is also inter-
esting in the application of autonomous systems, e.g.,
autonomous driving systems. The trajectory predic-
tion of the other vehicles and also the pedestrians on
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the street can help autonomous cars to make a rea-
sonable decision and generate safer paths (Li et al.,
2019).

Let us describe the investigated scenario. A flying
quadcopter is observing a scene with obstacles and
one or several robots on the ground and is recording
current position data for future use. The quadcopter
wants to approach one of the moving mobile robots
on the ground and for the purpose has to complete
and permanently update its own trajectory such that
at contact time the position and velocity of the quad-
copter and mobile ground robot agree. However, this
trajectory planning is not part of this paper. In this pa-
per it is considered, how the quadcopter predicts the
unknown but most likely path of the mobile ground
robot just based on information about its past mo-
tion. Of course, this has to assume that the mobile
ground robot behaviour in a ‘reasonable’ way and has
a certain intention which should be predicted. Nat-
urally, e.g., a pure random path would not follow an
intention and then no prediction would be possible.
When the quadcopter collects more and more infor-
mation about the mobile ground robots past motion
and where it approaches him, the prediction will be-
come more and more precise. Note that the quad-
copter can neither know the intention future path of
the mobile ground robot nor can it influence its mo-
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tion or trajectory planning. The trajectory planning
for the mobile ground robot computed on the quad-
copter only serves the purpose to make the best, most
likely prediction. The scenario is very similar to the
one described in (Best and Fitch, 2015), difference
will be commented later. Technically, we introduce
a two-stage trajectory prediction strategy for omni-
directional mobile robots, only utilizing the previous
observable robot positions in a known environment.
The proposed approach tries to identify the movement
intention of the observed mobile robot, and predicts
its potential trajectory within the reasonable time al-
location, see Fig. 1.
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Figure 1: Trajectory prediction based on the previous robot
positions marked with red circles in a known environment.
The grey squares are the predicted path waypoints, which
are based on the sampling results from the shaded traces.
The final predicted most likely trajectory is connected by
blue circles.

The proposed strategy consists of an improved
goal evaluation-based Bayesian framework and an
optimization-based trajectory generator. At the first
stage, the proposed framework evaluates the likely
goal of the observed robot in the known environ-
ment and creates a cursory path, which is only com-
posed of several key waypoints that have a relatively
high inferential probability. At the second stage,
given the estimated most likely path waypoints, an
optimization-based framework is formulated based
on the complementary progress constraints (CPC),
which handles the progress over the predicted way-
points, and the model constraints that are observed in
the past positions. Then, the optimization framework
is applied for generating a reasonable trajectory pre-
diction for the omnidirectional mobile robot.

Our main contributions for the proposed two-stage
trajectory prediction strategy are:

• An improved goal evaluation-based Bayesian path
waypoint predictor is introduced, which uses only
the previous robot positions, and guesses the
likely motion. A momentum parameter is uti-
lized, which significantly improves the efficiency
of the trajectory sampling. Furthermore, a motion
tendency-based goal intention probability func-
tion is applied for evaluating the robot’s potential
goal according to its recent positions.

• Instead of using a velocity distribution to predict
the trajectory of the observed robot along the lin-
ear sample paths in the map graph in (Best and
Fitch, 2015), here an optimization-based solution
is proposed, to guess an optimized path with a rea-
sonable time-allocation passing through the esti-
mated waypoints under the observable robot con-
straints based on CPC.

The paper is organized as follows. Section 2 gives
an overview of the state-of-the-art in related works.
In Section 3, the proposed two-stage approach is de-
scribed. Finally, the experimental results are illus-
trated in Section 4, and conclusions are presented in
Section 5.

2 RELATED WORK

Trajectory Model-based Method. Trajectory
model-based approaches utilize some pre-defined
model assumptions to assist the prediction of the
possible poses of the observed agent in the future.
In (Acuna et al., 2018), the observed agent’s tra-
jectory was assumed as being polynomial, and the
observer only needs to find a fitting parameter set
for the polynomial trajectory based on the previous
trace of the observed agent. In (Schöller et al., 2020),
the research showed that even a constant velocity
model could make a good prediction of the pedestrian
motion compared with state-of-the-art approaches.

Neural Network-based Method. With the rapid
development of neural network technology, several
researchers utilized neural networks to predict the se-
quential trajectory of the observed agent. One of
the typical network structures, recurrent neural net-
works (RNN), exhibit the ability to handle time se-
ries problems with data-driven techniques. The long
short-term memory (LSTM), which is a variation of
RNN, was utilized to predict the trajectory of vehi-
cles on the street in (Dai et al., 2019). Some ap-
proaches used generative models to predict the trajec-
tory. In (Gupta et al., 2018), the generative adversar-
ial networks (GANs) were first successfully applied
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to predict a course of the pedestrian with a recurrent
sequence-to-sequence model.

Goal-Conditional-based Method. In some recent
works, instead of directly predicting the trajectory of
the observed agent, the procedure of the prediction is
divided into two or multiple stages. At the first stage,
the goal of the observed agent will be evaluated, and
then the trajectory will be predicted based on the past
data and the evaluated goal. In (Best and Fitch, 2015),
a Bayesian mathematical formulation is used to esti-
mate the agent’s intention, and the resulting probabil-
ity distribution was used to generate the trajectory in
the future. In (Dendorfer et al., 2020) the goal con-
dition was combined with the GANs, the proposed
method showed a better performance than the typical
generative models. However, the physical limitations
of the observed agent are ignored, and the predicted
trajectory is lack of time information in these works.

3 APPROACH

The task of this paper is to predict the future trajec-
tory of the omnidirectional robot on the 2D ground
plane. Note that a trajectory in this work is defined
as a path combined with a corresponding time alloca-
tion. The past trajectory is available from measure-
ments, and will be utilized as input of the proposed
algorithm of this work. At each time step ti, the pro-
posed algorithm will predict a sequence of the om-
nidirectional robot positions marked with XXX i+1:i+k :=
{xxxi+ j = (xi+ j,yi+ j) ∈ R2| j = 1, . . . ,k} ∈ X for the
next time points ti+1, . . . , ti+k given the past observa-
tion set XXX1:i, where X denotes the continuous space
of the whole scenario.

3.1 Goal Evaluation-based Bayesian
Path Waypoint Prediction

At the first stage of the proposed approach, based on
the already stored trajectory, the potential goal of the
observed robot is evaluated based on the goal inten-
tion evaluation, and the future potential path is esti-
mated based on the Bayesian framework. The process
of this stage is shown in Algorithm 1.

3.1.1 Goal Intention Evaluation

The proposed method in this work focuses on pre-
dicting a likely trajectory for the robot with a certain
destination in the known environment. Although the
exact goal of the observed robot cannot be known in
advance, we assume that the set of all potential goal

Algorithm 1: Bayesian Goal Evaluation-based Path Way-
point Prediction Approach.

1: // pre-computation
2: /∗ generate roadmap based on k-PRM* ∗/
3: DB(·, ·),X̂ ← k-PRM*(X ,nnodes)
4: // main while loop
5: while mission in process do
6: /∗ get the current robot position from sensor

and find the closed vertex in roadmap X̂ ∗/
7: x̂xxi← xxxi
8: /∗ goal intention update∗/
9: Pr(θη|XXX1:i)← Eq. 1

10: /∗ trajectory waypoint prediction ∗/
11: the counting map MMMc(θη, x̄xx, j) ∈ Rnt×cx×cy×k

12: for each θη ∈Θ do
13: Nη← N×Pr(θη|XXX1:i)
14: for each n ∈ Nη do
15: X̂XX i+1:i+k←MC-sampling(x̂xxi,θη)
16: end for
17: for each j ∈ [1,k] do
18: /∗ sum-pooling ∗/
19: x̄xx j← Pooling(x̂xx j ∈ X̂XX i+1:i+k)
20: MMMc(x̄xx, j) = MMMc(x̄xx, j)+1
21: end for
22: end for
23: /∗ waypoint generation∗/
24: for each θη ∈Θ do
25: for each j ∈ [1,k] do
26: xxxpred

j ← argmaxx̄xx MMM(θη,max, x̄xx, j)
27: end for
28: end for
29: end while

regions Θ := {θη|η∈ [1, . . . ,nt]} is feasible and finite,
where the number of goal regions is defined as nt . For
instance, a potential goal could be the exit of the sce-
nario, the working station, or the shelves in logistics
warehouses, etc.

In this work, we use the probability distribution
to describe the intention of the mobile robot to each
goal region. Then, a motion tendency-based goal in-
tention probability function is introduced, which only
takes the l latest robot positions to evaluate the robot’s
motion intention. In each step, given the new coming
observation xxxi, the goal intention can be estimated by

Pr(θη|XXX1:i) ∝

i

∏
j=i−l

(exp( fd(xxx j−1,θη)− fd(xxx j,θη))

· ( fr(xxx j−1,xxx j,θη)+1)),
(1)

where the function fd indicates the shortest path dis-
tance between two given positions, and the function fr
describes the cosine of the angle between three given
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positions in 2D, which is defined as

fr(aaa,bbb,ccc) =
(bbb−aaa) · (ccc−bbb)
‖bbb−aaa‖‖ccc−bbb‖

. (2)

First, the proposed goal intention function evaluates
the path distance changes to every evaluating goal re-
gion θη observing the l latest robot positions. The
target could be deemed to be the most likely goal of
the robot, if its path distances to the robot in the last
l positions are most reduced. Additionally, the goal
region which is located behind the direction of mo-
tion should have a lower probability of being selected.
Hence, a component with the cosine of the angle be-
tween the previous robot motion direction and the po-
tential motion direction from the robot’s current posi-
tion to a candidate goal region is multiplied.

3.1.2 Discrete Roadmap

Instead of working on the continuous 2D space, which
has infinite possible states to describe the mobile
robot, we utilize a discrete roadmap X̂ at the first
stage to represent the robot’s position and the po-
tential path between the its current position and the
goal region. The discrete roadmap is a graph data
structure, which is composed of several randomly dis-
tributed nodes and the edges that represent collision-
free paths between nodes. The total number of nodes
nnodes on the roadmap should be specified balancing
the computational time and the coverage rate by the
user. The paths through the roadmap are utilized
to approximate the potential route of the observed
robot. Besides, based on the nodes and the edges
on the roadmap, the shortest path between two arbi-
trary nodes is determined by the A* algorithm. In this
work, the k-nearest optimal probabilistic roadmap (k-
PRM*) is utilized to create an offline roadmap (Kara-
man and Frazzoli, 2011).

rPRM =(
√

6(Afree-space/π)0.5 +1)

(log(nnodes)/nnodes)
0.5,

kPRM =2e log(nnodes),

(3)

where the free area of the scenario is marked with
Afree-space. To improve the real-time computing per-
formance, the shortest paths between nodes and their
corresponding path distances will be calculated of-
fline and stored in the database DB(aaa,bbb), where the
nodes aaa and bbb are two arbitrary nodes on the roadmap.

3.1.3 Improved Probabilistic Dynamics Model

To determine the next position xxxi+1 based on its prob-
ability distribution, a probabilistic dynamic model is
introduced given the previous position xxxi and the goal

region. Instead of only considering the path distance
as in (Best and Fitch, 2015), the probabilistic dynamic
model in this work introduces a new parameter β to
demonstrate the effect of the linear momentum on the
probability distribution. The improved probabilistic
dynamics model is defined as

Pr(xxxi+1|xxxi,θη) ∝

exp(−α( fd(xxxi,xxxi+1)+ fd(xxxi+1,θη)− fd(xxxi,θη)))β.
(4)

Note that it is unnecessary to estimate the probability
for every node on the roadmap, and one only needs
to consider the nodes in the area X̃i ∈ X̂ that can be
reached within next time step, see Fig. 2.

xxxi−1

xxxi

X̃i

xxxi−2 X̂
Figure 2: Illustration for the probabilistic dynamic model.
The dotted circle illustrates the candidate area X̃i, and the
nodes, that the robot can arrive within next time step, are
marked with brown circles. On the contrary, nodes which
are out of range, are marked with blue circles.

In Eq. 4, the parameter α is non-negative and
needs to be specified by the user. When α→ 0, the
probability for each node in X̃i will be almost iden-
tical when the effect of parameter β is ignored. On
the contrary, if α→ +∞, the assumption is that the
robot always takes the shortest path to the goal posi-
tion. However, the choice of the parameter α could
be tricky since it is challenging to balance the explo-
ration and the exploitation when only considering the
distance relationship with parameter α, especially for
the scenarios with multiple goal regions. Therefore,
the linear momentum parameter β is introduced

β = max{1e−6, fr(xxxi−1,xxxi, x̃xxi+1)‖xxxi− xxxi−1‖}. (5)

In Eq. 5, if a candidate x̃xxi+1 in next step has a re-
markable moving direction difference compared with
the last observed motion, the result of the momentum
parameter will be set close to zero, which dominates
the candidate’s probability of being chosen. For in-
stance, given the past course XXX i−2:i marked with red
circles in Fig. 2, the candidates, which are located in
the shadow region, are less likely to be chosen as the
potential path waypoint of the mobile robot, based on
the proposed probabilistic dynamics model in Eq. 4.
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3.1.4 Bayesian Path Waypoint Prediction

Based on the improved probabilistic dynamic model
in Eq. 4 and the goal intention evaluation from Eq. 1,
one can estimate the next possible position x̂xxi+1 ∈ X̂
considering a candidate goal region through

Pr(xxxi+1|XXX1:i,θη) = Pr(xxxi+1|xxxi,θη)×Pr(θη|XXX1:i).
(6)

Intuitively, one can further, based on Eq. 6, recur-
sively estimate the position of the robot xxxi+ j in the
coming time horizon

Pr(xxxi+ j+1|XXX1:i,θη) = ∑
xxxi+ j∈X̃XX i+ j

[Pr(xxxi+ j+1|xxxi+ j,θη)

×Pr(xxxi+ j|XXX1:i,θη)].
(7)

However, as mention in (Best and Fitch, 2015), the
analytical evaluation of Eq. 7 is difficult due to the
branching factor of the roadmap. Therefore, the
trajectory waypoints will be estimated through the
Monte-Carlo sampling approach.

Based on the evaluated goal intention probability
distribution in Eq. 1, Nη trajectories will be sampled
from current position xxxi to the goal region θη. In
each sampling, the next possible position node x̂xxi+ j

in the region X̃XX i+ j−1 is chosen based on the probabil-
ity given the improved probabilistic dynamic model
in Eq. 4.

Rather than greedily choosing the most sampled
nodes at each prediction time step, a sum-pooling pro-
cedure in this work is utilized to generate the final
predicted waypoints. Each visited node in X̂XX i+1:i+ j
at the time step j will be pooled and converted into
a grid graph X̄ ∈ Rcx×cy , where the parameters cx
and cy are the number of grids in x-/y-coordinate of
X̄ , respectively. Then, for each goal region, the vis-
iting times of each grid on the graph will be summed
into a counting map MMMc at each prediction time step,
which indicates the grid’s frequency of being visited.
The sum-pooling process sacrifices the prediction ac-
curacy to reduce the distribution unbalance of the gen-
erated nodes on the roadmap X̂ and eliminate the
prediction of too short paths, especially when a rel-
atively small α in Eq. 4 is chosen. At the end, for
each goal region, the most visited grid to the goal re-
gion at each prediction time step will be recorded and
formulated as the predicted waypoint of the observed
robot as XXXpred

i+1:i+k := {xxxpred
i+ j ∈ R2| j ∈ [1, . . . ,k],θη}.

3.2 Optimization-based Trajectory
Prediction

The proposed method in Section 3.1 can effectively
provide a rough path based on the goal intention eval-

uation and Monte-Carlo sampling approach. How-
ever, the predicted path is discontinuous and only
composed of several key waypoints. Besides, the def-
inition of the available area X̃XX i is based on the param-
eters rPRM and kPRM in Eq. 3. These two parameters
concern the probabilistic completeness of the gener-
ated roadmap, and the physical limitations of the ob-
served robot are neglected. Therefore, the time step
mentioned in last section cannot provide a precious
time allocation of the predicted paths. At the second
stage, instead of using a velocity model to estimate
the time allocation along the predicted line segments
in (Best and Fitch, 2015), an optimization-based tra-
jectory prediction in this work is proposed to predict a
more reasonable trajectory in the future based on the
previously indicated path waypoints.

The proposed optimization formulation will deter-
mine an optimized trajectory that fulfils several rea-
sonable constraints. First, the robot’s dynamics func-
tion and some observable physical limitations need to
be satisfied. For instance, the observed maximal ab-
solute velocity and the acceleration can be estimated
given the robot’s previous trajectory, and they are uti-
lized to bound the predicted state of the mobile robot
in the optimization problem. Besides, since the robot
has its certain motion intention, the robot is unlikely
to linger about the scenario. Therefore, the estimated
total travel time and the optimized trajectory distance
should be minimized as possible. Furthermore, the
predicted trajectory should pass through the previ-
ously estimated path waypoints in sequence. To that
end, the complementary progress constraints (CPC)
are introduced in the proposed optimization problem,
which will be detailed in the next section.

3.2.1 Complementary Progress Constraints

At this stage, an optimized trajectory with a fixed
time interval will be generated to present the most
likely trajectory of the observed omnidirectional mo-
bile robots in the future. The time interval dt is de-
fined as tN/np, where the number of the new gen-
erated optimized trajectory nodes is marked as np,
and tN is the total travel time of the optimized tra-
jectory. To handle the predicted path waypoints, a
progress variable set ΛΛΛ := {λλλp ∈Rnw |p = [1, . . . ,np]}
is introduced to indicate whether the optimized tra-
jectory passes through the desired waypoints in a se-
quence (Foehn and Scaramuzza, 2020). Here, nw is
the number of path waypoints estimated from last sec-
tion, which satisfies np > nw obviously. Due to the
sum-pooling procedure in last section, the number of
the waypoints nw meets nw ≤ k, since the predicted
waypoint at different time step j may stay at the same
grid on the counting map MMMc.
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The progress variable λw
p in ΛΛΛ indicates the re-

lationship between the w-th waypoint xxxpred
w and the

optimized trajectory node x̆xxp at the time step p. If
x̆xxp has passed through the given the waypoint xxxpred

w ,
the progress variable λw

p will become zero; other-
wise it will keep its inertial value. To ensure the op-
timized trajectory passes through the predicted path
waypoints in order, the following condition should be
fulfilled

λ
w
p ≤ λ

w+1
p , ∀w ∈ [1,nw−1] and p ∈ [1,np], (8)

which ensures the optimized x̆xxp passes the waypoint
xxxpred

w earlier than the next waypoint xxxpred
w+1. Besides,

each element λw
p is initialized as one at the begin-

ning of the optimization, and it has the following basic
characters further:

0≤ λw
p ≤ 1

λw
1 = 1 ∀w ∈ [1,nw] and p ∈ [1,np]

λw
np = 0

. (9)

Instead of introducing a new progress change pa-
rameter in (Foehn and Scaramuzza, 2020) to handle
the state switch of the progress variable that may in-
crease the burden of solving the optimization prob-
lem, the complementary progress constraints (CPC)
in this work are formulated as

fprog(xxxpred
w , x̆xxp,ΛΛΛ)

=[(λw
p −λ

w
p+1)︸ ︷︷ ︸

P1

( fl(xxxpred
w , x̆xxp)−ν

w
p )︸ ︷︷ ︸

P2

]
!
= 0, (10)

where the function fl estimates the Euclidean distance
between two given positions. Furthermore, it is not a
wise strategy to force the optimized trajectory X̆XX pass-
ing all the predicted waypoints XXXpred

i+1:i+k exactly. On
the one hand, the predicted waypoints may have some
outliers, which will strongly impact the result of the
optimized trajectory. On the other hand, the accuracy
of the predicted waypoints is limited by the grid size
(cx,cy) from last stage. Therefore, in Eq. 10, a relax-
ation parameter νw

p is introduced, which satisfies

0≤ ν
w
p ≤ dtolerance,∀p ∈ [1,np−1], (11)

where dtolerance indicates the maximum acceptable
offset to the predicted waypoint. The complemen-
tary progress constraint defined in Eq. 10 consists of
two components, P1 and P2. If an optimized trajec-
tory waypoint x̆xxp gets closed enough to one of the
predicted waypoint xxxpred

w , which satisfies the area de-
fined in Eq. 11, the component P2 will become zero.
In this case, the next progress variable λw

p+1 for the
same waypoint can be reduced to zero to meet the

constraint definitions in Eq. 9. Otherwise, the com-
ponent P1 should always stay zero to meet the com-
plementary constraint in Eq. 10.

Ideally, a predicted path waypoint should attract
only one optimized trajectory waypoint. For instance,
in Fig. 3a, once an optimized trajectory waypoint
x̆xx3 fulfills the tolerance condition to the predicted
path waypoint xxxpred

2 , the rest progress variables λ2
4:np

should go to zeros. However, the constraint defined in
Eq. 10 alone cannot prevent a non-optimal trajectory
waypoint distribution, see Fig. 3b. Since the posi-
tion of the x̆xx4 fulfills all constraints in Eqs. 10-11, the
progress variable λ2

4 has not been restrained at all. In
this case, a predicted path waypoint could attract more
than one optimized trajectory waypoints, which may
result in an unbalance waypoint distribution. Further-
more, the unbalance waypoint distribution may cause
an inappropriate estimation of the total travel time.
Since the proposed optimized trajectory has a fixed
time interval, the total travel time is depended on the
maximum track length between every two adjacent
optimized trajectory waypoints and the physical lim-
itations of the observed robot. If a non-ideal way-
point distribution occurs, an unexpected long trajec-
tory track may be predicted, which results in an un-
necessary long total travel time. To prevent the non-
ideal distribution, the sum of all process variables will
be minimized in the proposed optimization formula-
tion.

λ2
1 = 1

xxxpred
2

λ2
2 = 1

λ2
3 = 1

λ2
4 = 0

ν2
3

x̆xx3x̆xx2

x̆xx1

x̆xx4

ν2
4

x̆xx5

λ2
5 = 0

(a) An ideal waypoint distribution.

λ2
1 = 1

xxxpred
2

λ2
2 = 1

λ2
3 = 1

0≤ λ2
4 ≤ 1

ν2
3

x̆xx3x̆xx2

x̆xx1

x̆xx4

ν2
4

x̆xx5

λ2
5 = 0

(b) A non-ideal waypoint distribution.

Figure 3: Illustration for different waypoint distributions
with the progress variables. Under the non-ideal way-
point distribution, the trajectory track between x̆xx4 and x̆xx5
in Fig. 3b is longer than the one in Fig. 3a, which may lead
to errors in the total travel time estimation.
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3.2.2 Optimization Formulation

To implement the optimization formulation for the
trajectory prediction, the state of the mobile robot and
its dynamics will be defined first. Note that, in this
work an omnidirectional mobile robot is utilized as
the observed target; however, the proposed approach
also can be applied to other robots, for which one
should just specify the appropriate state definition and
dynamic limitations accordingly.

The state of the omnidirectional mobile robot is
described as x̆xx := [x̆, y̆, ˙̆x, ˙̆y]T, and the control input for
the robot is assumed to be ŭuu := [F,φ]T, where F is the
unknown applied control force on the omnidirectional
mobile robot, and the angle between the applied force
and the x-axis of the global system is defined as φ.
Although we cannot know the robot’s exact mass, we
still can assume that the input force is mass normal-
ized, which is proportional to the robot acceleration.
Therefore, the dynamic of the omnidirectional mobile
robot can be described as

fdyn =
[
ẋ, ẏ,F cos(φ),F sin(φ)

]T
. (12)

The full optimization state set of the optimization
problem XXXopt consists of the robot states x̆xxp and the
control inputs ŭuup of the robot, the progress parameter
λw

p and the relaxation parameter νw
p at every time step

p. Besides, the total travel time tN is also introduced
as one of the optimization states.

The cost function of this optimization problem is
composed of three components. First, the total travel
time should be short under some observable physi-
cal limitations. Then, the total traveled trajectory dis-
tance is to be minimized, which makes optimizer pre-
fer a non-aggressive trajectory given the same total
travel time. The third component is the sum of all
progress variables, which prevents the non-ideal way-
point distribution. Based on the introduction above,
the optimization problem is formulated as

min
XXXopt

γ1tN + γ2

np−1

∑
l=1

(‖x̆l+1− x̆l , y̆l+1− y̆l‖2
2)

+ γ3

np

∑
p=1

nw

∑
w=1

λ
w
p

s.t.
dt = tN/np,

x̆xx1 = xxxi

x̆xxp+1 = x̆xxp +dt fRK4(x̆xxp, ŭuup),∀p ∈ [1,np−1]
xxxmin ≤ x̆xxp ≤ xxxmax,∀p ∈ [1,np]

uuumin ≤ ŭuup ≤ uuumax,∀p ∈ [1,np−1]
and further constraints based on Eqs. 8−11,

(13)

where fRK4 is the 4th-order Runge-Kutta approxima-
tion of the system dynamic from Eq. 12, and the
parameters γ1/2/3 determine the weights of the to-
tal travel time, the trajectory length and the sum of
the progress variable set, respectively. Furthermore,
the constraints of the control input uuumax,min, and the
system state xxxmax,min can be determined relying on
the previous robot positions. By implementing of
the optimization problem, CasADi (Andersson et al.,
2019) is utilized with the solver IPOPT (Wächter and
Biegler, 2005).

4 EXPERIMENTAL VALIDATION

To verify the performance of the proposed two-stage
approach in this work, a scenario is set up in the sim-
ulation platform Gazebo, where the blocks indicate
the obstacles which the omnidirectional mobile robot
will avoid, see Fig. 4. In the simulation experiment,
total of 500 nodes are randomly generated to create a
k-PRM∗ roadmap. Among them, 469 nodes present
the possible positions of the omnidirectional mobile
robot, and the rest nodes are randomly distributed in
the goal regions. So, there are 14539 path connections
in total, and the path between each node and its travel
distance are estimated offline. The whole offline pro-
cedure is processed on a machine with Intel i9 CPU,
and the calculation time is less than 5.7 seconds.

Figure 4: An experimental simulated scenario in Gazebo.
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Figure 5: Previously unknown path of the mobile robot.
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Figure 6: Path waypoint prediction at stage one. Figures 6a- 6d illustrate all predicted paths for the next k = 8 prediction steps
at the given simulation time step. The corresponded path waypoint estimations are shown in Fig. 6e- 6h.

4.1 Path Waypoint Prediction
In the experiment, the omnidirectional mobile robot
goes to the goal region 4© while avoiding the obsta-
cles in the scenario. The ground truth trajectory of
the mobile robot is marked with red circles, which are
sampled by 1 Hz, as illustrated in Fig. 5.

In each step, the newly measured pose of the robot
will be taken, and the potential path waypoints in the
future will be evaluated based on Algorithm 1. In this
experiment, 8 time steps (k = 8) in the future will be
estimated, and in each iteration, N = 200 samplings
will be processed. The calculation time for the path
waypoint prediction in each iteration requires 0.04
seconds on average using the Numba library (Lam
et al., 2015).

In Fig. 6, the predicted path waypoints at four
different simulation time steps are illustrated. Fig-
ures 6a-6d show the sampled paths in the next eight
time steps in the future based on the Monte-Carlo
sampling method. By utilizing the proposed prob-
abilistic dynamics model, the sampling efficiency
is improved significantly. In Fig. 7, the proposed
method is compared with the model in (Best and
Fitch, 2015) under same sampling conditions (N =
200, α = 1.5). The proposed model has more con-
centration on sampling the nodes in front of motion
direction due to the linear momentum parameter in
Eq. 5, instead of wasting the sampling with the nodes
behind the current motion tendency, especially on the

areas marked in Fig. 7. Based on the sampling results,
the predicted path waypoints at given simulation time
steps are illustrated in Figs. 6e-6h, respectively. Note
that only the predicted paths to the goal region with
a goal intention over 30% will be drawn. The finally
predicted path waypoints after the sum-pooling pro-
cedure are illustrated with grey squares.

During the experiment, the evaluated goal in-
tention changes for all four goal regions are illus-
trated in Fig. 8. The proposed goal intention model
is compared with the model in (Best and Fitch, 2015)
with two different parameter α setups. As expected,
the estimated intentions based on the model in (Best
and Fitch, 2015) are highly depended on the choice
of parameter α. If the parameter α is set to a large
value, the evaluated goal intention will increase or
decrease drastically. On the contrary, the model will
become unresponsive given a small value of α. The
proposed goal intention evaluation function provides
a relatively stable performance and it can response to
the robot moving tendency fleetly. For instance, be-
tween the simulation steps t18 and t20, the robot may
tend to move in the upper-left direction, see Figs. 6c
and 6g. In theory, given previous robot positions, both
region 1© and region 4© should have a similar goal in-
tension to the observed robot during this time. How-
ever, compared with the model from (Best and Fitch,
2015), only the proposed model shows a significant
response to the potential change of robot’s intention.
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(a) Model in (Best and Fitch, 2015).

(b) Proposed model.
Figure 7: Sampling efficiency comparison.
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Figure 8: Evaluated goal intention changes during the ex-
periment. The result of the proposed goal intention func-
tion in red is compared with the intention inference model
in (Best and Fitch, 2015) with α = 0.5/5.0, which are
marked with black and blue, respectively.

4.2 Trajectory Estimation

Once the path waypoints are predicted, the guessed
future trajectory of the omnidirectional mobile robot
will be estimated by solving the proposed optimiza-
tion approach. Each trajectory estimation can be ac-
complished within 0.24 seconds. To quantitatively

verifying the performance, only the predicted trajec-
tories to the goal region 4© are taken in the compar-
ison. In Fig. 9, the predicted trajectories at four dif-
ferent simulation time steps are presented. Although,
the future ground-truth trajectory marked with pink
circles is not yet known, the proposed method can es-
timate the potential trajectory based on the sampling
results, which does not stay far away from the ground-
truth trajectory. Besides, compared with the predicted
path waypoints, the predicted trajectories are smooth
and continuous, which are more reasonable for the
mobile robots.

A further advantage of solving the proposed opti-
mization problem is that one obtains not only the pre-
dicted trajectory in the future, but also the total travel
time tN of the predicted trajectory. Compared with the
vague time step definition for the predicted path way-
points, the optimized trajectory has a fixed time in-
terval between each predicted robot positions. There-
fore, every optimized trajectory waypoint has its own
estimated arrival time, which is essential for the ap-
plications, such as navigation planning and the colli-
sion avoidance. In Fig. 10, the predicted trajectories
at different simulation time steps (t10, t14, t19 and t23)
are compared with the ground truth trajectory of the
mobile robot. The results on both coordinates show a
good prediction, and the maximal error along the pre-
diction time horizon is less than 0.5 m. Considering
the grid size of the counting map and the optimiza-
tion constraint dtolerance that both are set to 0.5 m, the
predicted results are acceptable.

5 CONCLUSION

In this paper, a novel two-stage strategy is proposed
for predicting the potential trajectory of an omnidi-
rectional mobile robot given its past trajectory. The
effectiveness and efficiency of the proposed strategy
are verified in the simulation experiment. The results
show that the proposed method can identify goal in-
tentions of the observed robot based on its latest posi-
tions, and the errors of the finally predicted trajectory
and its allocated time stay in the acceptable range. In
future work, one may consider applying the proposed
algorithm to hardware experiments in more scenarios.
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Figure 9: Results of the optimization-based trajectory prediction. The grey squares are the predicted path waypoints. The
final predicted trajectory is marked with blue circles.
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