
Detection of Security Vulnerabilities Induced by Integer Errors

Salim Yahia Kissi1 a, Yassamine Seladji1 b and Rabéa Ameur-Boulifa2 c

1LRIT, University of Abou Bekr Belkaid, Tlemcen, Algeria
2LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Keywords: Security Vulnerability, Memory Errors, Software Analysis, Satisfiability Analysis, Integer Overflow.

Abstract: Sometimes computing platforms, e.g. storage device, compilers, operating systems used to execute software
programs make them misbehave, this type of issues could be exploited by attackers to access sensitive data
and compromise the system. This paper presents an automatable approach for detecting such security vulner-
abilities due to improper execution environment. Specifically, the advocated approach targets the detection of
security vulnerabilities in the software caused by memory overflows such as integer overflow. Based on analy-
sis of the source code and by using a knowledge base gathering common execution platform issues and known
restrictions, the paper proposes a framework able to infer the required assertions, without manual code anno-
tations and rewriting, for generating logical formulas that can be used to reveal potential code weaknesses.

1 INTRODUCTION

With the aim of classifying the software weaknesses
(types of vulnerabilities) organizations define a huge
number of different data-sources to be used by soft-
ware developers to avoid particular attacks. Data-
sources are generally descriptions and set of charac-
teristics, which require extra effort to interpret, assess
and demonstrate potential risks. In practice, in com-
panies this kind of tasks is being carried out through
review processes and conduct audit sessions compris-
ing a wide range of experiments. However, manual
reviews can be time-consuming and costly to the com-
panies in terms of resources, and they can fall short
in detecting security vulnerabilities. From a software
engineering perspective, finding out security vulnera-
bilities is not a trivial task for several reasons includ-
ing software weaknesses are often written in an in-
formal style, they use various technical information
(concepts), and they require domain expertise to in-
terpret them.

In this work we consider a well known threat to
systems security: integers errors. These errors result
from integer operations, including arithmetic over-
flow, oversized shift, division-by-zero, lossy trunca-
tion and sign misinterpretation, that can be manipu-

a https://orcid.org/0000-0002-9222-0291
b https://orcid.org/0000-0003-2778-7555
c https://orcid.org/0000-0002-2471-8012

lated by malicious users. Our focus here is on arith-
metic overflow within the C standard. One reason
why such errors remain serious source of problems
is that it is difficult for programmers to reason about
integers semantics (Dietz et al., 2015). Importantly,
there are unintentional numerical bugs that are caused
by the execution environment, including the widely-
used applications and libraries, but they can also be
caused by the features of the execution platforms (e.g.
compilers, operating systems). This is not merely a
fringe case, but it is observable already on small pro-
grams. To illustrate the problem, consider the code
snippet shown in Figure 1. The code shows a method

Figure 1: Access Control Sample Code.

which computes the access rights of an user to ser-
vices from his credentials (username and password)
provided as inputs. It specifies that read and write
access rights to services are granted only to a spe-

Kissi, S., Seladji, Y. and Ameur-Boulifa, R.
Detection of Security Vulnerabilities Induced by Integer Errors.
DOI: 10.5220/0010551301770184
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 177-184
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

177

cific user the administrator (its userId has a value of
0) and other users (their userId are different from 0)
should access with reading rights only. Note that the
access right is obtained by multiplying the user iden-
tity and the service identity (line 6). Compiling and
running this code with gcc on Windows operating sys-
tem 32/64 bits using 64 bits CPU (x86 64 such Intel
and AMD processors) produces a program that grants
read and write permissions to an unauthorized user.
This security problem stems from the arithmetic op-
eration, the multiplication overflows resulting in un-
defined behavior.

Detection of computer security vulnerabilities that
are generated inadvertently by runtime platforms is
still an open problem (Hohnka et al., 2019). As a
number of unknown (numerical) bugs in widely used
open source software packages (and even in safe in-
teger libraries) inadvertently create vulnerabilities in
the resulting code. This work presents an approach
to formally detect misbehaviour that can lead to se-
curity concerns. We are able to detect exploits of
C programs induced by an unintentional arithmetic
overflow caused by the execution platform. To al-
low the analysis of programs by integrating execution
platform, we suggest enhancing symbolic execution
models with characteristics of computer system, and
to offer, from the same model, software-specification
and in addition, hardware-specification analyses. The
model gives a fully formal and analyzable semantics
for C code in terms of a logical formula. And the use
of SMT-solvers allows to decide if it is satisfiable.

Contribution. This article presents our approach
that provides the means to formally specify the soft-
ware weaknesses, and to evaluate their potential tech-
nical impact using formal proofs. The approach based
on static analysis is designed to evaluate the security
impact of integer errors, in particular integer over-
flows by analysing memory error exploitations over
programs. Formally speaking, we use symbolic ex-
ecution to generate program constraint (PC), and get
security constraint (SC) from predefined security re-
quirements. In addition, based on a precise knowl-
edge on the execution context of the analysed pro-
gram (EC), we propose to solve the statement: EC `
PC∧¬SC we seek to find out if there is an assignment
of values to program inputs – executed in a certain
context – which could satisfy PC but violates SC.

Although we focus on the integer errors and pro-
grams in C language, we believe that our approach
is quite general. It can be applied to analyze other
sources of problems (e.g. software/hardware excep-
tions, pointer aliasing) but also other programming
languages.

The paper flow is as follows: Section 2 presents a
high level view of memory error, in particular buffer
overflow and integer errors. This section is then fol-
lowed by an overview of the proposed end-to-end ap-
proach for the specification and verification of their
potential security impact (Section 3). In Section 4,
we present existing approaches that dealt with secu-
rity vulnerabilities detection. Section 5 concludes the
paper and discusses possible directions of this work.

2 MEMORY ERRORS

Memory errors in C and C++ programs are probably
the best-known software vulnerabilities (Van der Veen
et al., 2012). These errors include buffer overflows,
use of pointer references, format string vulnerabilities
and arithmetic vulnerabilities. This paper focuses on
a subclass of software vulnerabilities: buffer overflow
and integer errors, which address mainly the memory
corruption errors.

Buffer Overflow. Buffers are areas of memory ex-
pect to hold data. When a variable is declared in a pro-
gram, space is reserved for it and memory is dynam-
ically allocated at run-time. A buffer overflow may
occur when size of data is larger than the buffer size.
Then while writing data into a buffer, the program
overruns the buffer’s boundary and overwrites adja-
cent memory space, which results in unpredictable
program behaviour, including crashes or incorrect re-
sults.

Integer Errors. Most typed programming lan-
guages have fixed memory size for simple data type
that fits with the word size of the underlying machine.
Two kinds of integer errors that can lead to exploitable
vulnerabilities exist: arithmetic overflows and sign
conversion errors. The first occurs when the result
of an arithmetic operation is a numeric value that is
greater in magnitude than its storage location. While
the second occurs when the programmer defines an
integer, it is assumed to be a signed integer but it is
converted to an unsigned integer.

Basically, this kind of memory-safety issues can
yield result far than expected when the impacted
memory space is accessed. Even worse, they could
become security exploits (security vulnerabilities)
(Younan et al., 2004) if the result of the memory ac-
cess is used to perform unauthorized actions and gain
unauthorized access to privileged areas. Erroneous
programs can allow a malicious actor to run code, in-
stall malware, and steal, destroy or modify sensitive
data.

ICSOFT 2021 - 16th International Conference on Software Technologies

178

Nowadays there are more and more software com-
panies, organizations and developers such as Source
Code Analysis Laboratory (SCALe) (Seacord et al.,
2012) and CERN computer security (CER,) shar-
ing good and bad programming practices to develop
higher quality software and avoid bugs. These prac-
tices are generic coding conventions and recommen-
dations which may apply (and not apply) for soft-
ware written with a particular programming language.
However, such coding standards are presented in an
informal style, and are not located in one single place.
Our work proposes a proof-based approach that takes
advantages of these coding conventions and devel-
opers knowledge to discover potential vulnerabilities
that can be hidden in a code. We transform some
safety-related practices that can lead to security ex-
ploits from their informal specification to exploitable
safety-properties that can be automatically verified
over a program. For example, integer overflow is po-
sitioned in the ”Top 25 Most Dangerous Software Er-
rors” (CWE,). On hardware platforms, the range of
two’s complement representation of an n-bit signed
integer is −2n−1 . . .2n−1−1, which is represented in
the computer as depicted in Figure 2.

Figure 2: Signed Magnitude Representation.

where xi ∈{0,1}. If the most significant digit xn−1
is a 0, the number is evaluated as an unsigned (posi-
tive) integer, otherwise the number is a negative inte-
ger. The value of the integer can then be calculated by
the following formula:

−xn−12n−1 +
n−2

∑
i=0

xi2i

Detecting integer overflows is non-trivial because
overflow behaviours are not always bugs. In particu-
lar, some International Standard like C99 imposes no
requirements, the result of evaluating an integer over-
flow in C implementation is an undefined behaviour.

3 APPROACH

We propose an approach that enables the detection
of potential security vulnerability and the formaliza-
tion of security weaknesses. Our approach relies on
formal proofs for the detection of security exploits
caused by intentional or unintentional safety bugs.

By taking an interest in the knowledge about unde-
fined behaviour in programs that can result in poten-
tial security exploits, we focus mainly on verifying
whether those security exploits can occur or not. Fig-
ure 3 illustrates our approach and highlights the rel-
evant phases for the verification of security exploits
over the program to analyze. We aim at separating
the duties and make the distinction between the main
actors in our approach; the specification expert(s) and
the developer(s). In a preliminary phase, the spec-
ification expert(s) carries out the extraction of logi-
cal formulas from software vulnerabilities directories.
This task consists of translating undefined behaviour
into exploitable formulas. It results in a set of generic
logical formulas saved in a database (we refer to as
Safety Knowledge Base) that could be used in differ-
ent analyses.

3.1 Safety Knowledge Base

The key idea of our approach is to build a Safety
Knowledge Base as a centralized repository for gath-
ering formal specifications, which are logical formu-
las so-called safety-properties. The database will be
created from errors and recommendations reported in
software (vulnerabilities) directories. Regarding inte-
ger errors as reported in CERT directory ”INT32-C.
Ensure that operations on signed integers do not re-
sult in overflow” 1, the developers have listed 15 pos-
sible operations among 36 that could lead to overflow.
Based on the reported result we can distinguish sev-
eral patterns binary operations and unary operations
on different data types: signed char, short, int, long,
long long, and also type of stdint library. For each op-
eration with a given type, in the style of what has been
done in Frama-C (Kosmatov and Signoles, 2013).

The advocated approach relies on using logical
formula (assertions) to uncover security vulnerability
due to overflow errors on two signed integers. An
example of logical formula is that used in (Dietz
et al., 2015) to evaluate an n-bit addition operation
on two’s complement integers (s1 and s2) overflows
is the following expression:

((s2 > 0)∧ (s1 + s2 > INT MAX))
∨ ((s2 < 0)∧ (s1 + s2 < INT MIN))

meaning that a signed addition can overflow if and
only if this expression is true.
Regarding the example given in Figure 1, if we con-
sider the conditional statement (line 7), an appropriate
property to analyze this statement would be a formula
that deals with with multiplication on two’s comple-

1https://wiki.sei.cmu.edu/confluence/display/c

Detection of Security Vulnerabilities Induced by Integer Errors

179

Figure 3: End-to-end approach.

ment n-bit signed integers, and also with the compar-
ison with 0. The useful assertion that we propose is:

s1× s2 = 2n× k∧ k > 0⇒ s1× s2 = 0

As pointed out in (Dietz et al., 2015) the result
of an integer multiplication can wrap around many
times. Consequently, a processor typically places the
result of an n-bit multiplication into a location that is
2n bits wide. If we suppose that the result s1× s2 will
occupy the high-order n bits, the integer is then eval-
uated by:

s1× s2 =
2n

∑
i=n

xi2i = xn2n + xn+12n+1 + . . .+ x2n22n

Let m be the first least significant non-zero bit in
this expression, so the result can be written as:

s1× s2 = 2m + . . .+ x2n22n−m

Naturally, if m ≥ n, we have s1× s2 = 0. Moreover,
the result can be rewritten as:

s1× s2 = 2m× (1+ . . .+ x2n22n−m)︸ ︷︷ ︸
k

= 2n×2m−n× (1+ . . .+ x2n22n−m)︸ ︷︷ ︸
k

such that k > 0. More simply, the result of the multi-
plication becomes:

s1× s2 = 2n× k

with k > 0. Therefore, we get the proposed formula:

s1× s2 = 2n× k∧ k > 0⇒ s1× s2 = 0

News feeds will be provided throughout the lifetime
of the database. It will gradually populated by logical
formulas extracted from software vulnerabilities di-
rectories and coding conventions. Basically, this task
requires an expert in logics to build such formulas.

3.2 Model Construction

– The developer(s) provides the source code of the
program to be analyzed. The program written in
a specific programming language, in this work we
focus on programs written in C language.

– He provides both the features about the execution
environment and the platform on which the pro-
gram will be compiled. In other words, all informa-
tion about the targeted execution environment, e.g.
operating system, architecture 32/64 bits and com-
piler. This information should guide the search for
suitable formulas to pick from Knowledge Base.

– He can also provide other specific requirements,
as requirements that specify constraints on the do-
main of variables and on the data structures ap-
pearing in the program. Referring to our example
(given in Figure 1). In addition to the specifica-
tion saying that ”the value of the userId of the ad-
ministrator is equal to 0”, we also add two other
constraints defining the variables domain: userId ∈
[0, . . . ,150×106] and serviceId ∈ [1, . . . ,64].

– The developer(s) or the security expert(s) speci-
fies a security requirement which is a statement
of required security functionality that the program
should satisfy. Often, security requirements are
presented in an informal style, so their interpre-
tation and implementation require some expertise.
We aim at reducing the security expert burden to
a minimum. Static analysis can be used to identify
the program points (data/instruction) that can be af-
fected by the security requirement. Consider the
guideline stating ”Only the administrator user will
access services with read/write privileges”. It rep-
resents a typical security requirement and means
that the access to the secure areas is granted only
to the administrator. By referring to our example it
can be easily noticed that the statement at line 8 is
concerned by this requirement.

We aim at constructing a model including all the
parties involved in the analysis: the program and its
context. The outcome of this modelling step is a log-
ical formula that specifies both the program, the re-
quirements, and the execution environment.
– For this an intermediate representation is built

which in the Program Dependence Graph (PDG)
augmented with information and details obtained
from deep dependency analysis on the program (as
shown in Figure 4). Static analysis tools (as Frama-
C for analysis of program C analysis (Cuoq et al.,
2012) and JOANA (Graf et al., 2013) for program

ICSOFT 2021 - 16th International Conference on Software Technologies

180

Java) can be used to construct such structure that
capture control and (explicit/implicit) data depen-
dencies between program instructions, and which
constitutes a strong basis to perform a precise anal-
ysis. Figure 4 shows the PDG graph for the sample
code given in Figure 1. Strong edges represent the
control flows, the dashed edges refer to explicit and
implicit data flows.

Figure 4: PDG model for the sample code given in Figure
1.

– Based on security requirement and by relying on
the assistance of security expert(s) we get the sensi-
tive data. The exploring of PDG graph and tracking
all dependencies (explicit/implicit) flows, we com-
pute the set of all the sensitive information in a pro-
gram. From a developer perspective, it is tough to
fulfil this task without automatic tool, the complex-
ity of this operation increases with the complexity
and the program size. Referring to our example
(Figure 1), sensitive data are clearly password and
username. The complete exploration and computa-
tion will expand this set and produces a broader set:
{uid sid, serviceId, userId, password, username}.

– Based on this complete set of sensitive data we
identify on the PDG graph the set of critical state-
ments (nodes). These nodes represent all the pro-
gram points that may be potentially impacted by
a security problem, regarding to the requirement
under consideration. Referring to the intermedi-
ate representation of our example (Figure 4) we can
clearly see that the vertex v5 corresponds to a crit-
ical statement node. Indeed, it is the only program
point where administrators can have read/write ac-
cess. From this node, we generate through sym-
bolic execution path conditions. A set of all paths

leading to the execution of the statement at this
node. More specifically, consider π1, . . .πn all pos-
sible paths leading to a node vk the aim is to build a
formula that is a disjunction of all path conditions:
ϕ(vi) = ϕ(π1)∨ . . .∨ ϕ(πn). A path in the PDG
is a sequence from the entry node to a given node
(i.e. π = v0 . . .vk). If we denote by C(vi) the neces-
sary condition for the execution of vi meaning that
the instruction at the node vi can be executed only
if C(vi) is satisfied. So the path condition can be
rewritten as: ϕ(vi) =

∨
1≤i≤n

(∧
0≤ j≤k

C(v j)
)

. Let us

turn to our example, the condition for execution the
statement at the vertex v5 is C(v5) , uid sid = 0.
As the reader can notice, there is only one ex-
ecution path leading to this node (naturally, one
should also consider the control flow). So we get
ϕ(v5) , (userId× serviceId = 0). Afterwards, we
formulate the program constraint that made up of
path conditions formula plus the program require-
ments. We get:
PC, (userId× serviceId = 0)∧ (serviceId ≥ 1 ∧
serviceId≤ 64)∧(userId≥ 0∧userId≤ 150×106)

– Considering the path condition, the next step in-
volves seeking out execution context formula (EC)
from Safety Knowledge Base. It contains a set of
formulas that map software constructors with exe-
cution configurations, including operating systems,
compiler settings, build process tools, etc. The
question is, how to identify the relevant formula to
pick? This is guided by the program constraint and
the target architecture. For instance, for our exam-
ple we clearly identified that the hotspot is the mul-
tiplication operation whose result is 0. By seeking
out formulas that include the multiplication opera-
tion (and possibly concerning the targeted architec-
ture), we will find out the formula already inserted:

EC , s1× s2 = 2n× k∧ k > 0⇒ s1× s2 = 0

Actually, this formula should be instanced by the
target architecture settings, i.e. substituted by 32 or
64 depending on target architecture.

– It remains now only to formulate the security con-
straint. Without a thorough examination and under-
standing of the given security requirement, this can
be reformulated as follows: can a user who is not an
administrator obtain a privileged service? We for-
mulated the fact that a user is not an administrator
with userId 6= 0. So get:

SC , userId = 0

The security problem to be solved is thus formu-
lated as:
(s1× s2 = 2n× k∧ k > 0⇒ s1× s2 = 0) `

Detection of Security Vulnerabilities Induced by Integer Errors

181

(userId × serviceId = 0) ∧ (serviceId ≥
1 ∧ serviceId ≤ 64) ∧ (userId ≥ 0 ∧ userId ≤
150×106)∧ (userId 6= 0)

3.3 Checking Satisfiability

This step aims at verifying the satisfiability of the con-
structed model. We used an SMT (Satisfiability Mod-
ulo Theories) solver that is a powerful tool for check-
ing satisfiability and supports arithmetic and decid-
able theories. We used Z3 prover developed by Mi-
crosoft Research (as shown in Figure 5).

Figure 5: Specification Formula encoded in Z3.

By instantiating our formula by considering archi-
tecture of 32 bit we get the following model (valuation
that satisfies the formula):

sat (model
(define-fun k () Int 2)
(define-fun userId () Int 134217728)
(define-fun serviceId () Int 64))

meaning that the execution of our program on this ar-
chitecture can violate the security requirement. If the
identifier of the user (userId) equals 134217728 re-
quests a service (serviceId) equals 64 we may have
a security problem (take on the role administrator).
In order to get all possible models, we used python
script in which the formula was updated by negating
each model found till the formula became unsatisfied.
So we found all problem cases:

sat [serviceId=32, userId=134217728, k=1]
sat [serviceId=64, userId=67108864, k=1]
sat [serviceId=64, userId=134217728, k=2]

For practical validation of these results, we executed
our example on an Ubuntu 18.04 , 64 bit: we run bi-
nary optimized for both 32 and 64 bit architecture.
The binary optimized for 32 bit architecture can be
obtained by adding a flag ”-m32” while compiling C
source otherwise it is optimized for 64 bit. Figure 6
shows the compilation mode and the output of the ex-
ecution of the resulting program.

So there are no surprises there, experimentation
reinforces the theoretical results. Consequently, we
focused our efforts on studying the effects of vari-
ous architectures (operating systems and compiler op-

tions) on integer error classes, more specifically, on
arithmetic overflow caused by the multiplication op-
eration. The results of the evaluation is summarized
in Table 1. We report the occurrence of security vio-
lation (3) and its absence (7) for each configuration.

Figure 6: Practical validation of theoretical results.

Discussion. Naturally in early stages of this work
we attempted to carry out the analysis by using
Frama-C (Cuoq et al., 2012), which is a pub-
licly available and well-known toolset for analysis
of C programs; which furthermore supports varia-
tion domains for variables by means of Eva plugin.
To encode function getUserId, we used the func-
tion random that returns a value within the domain
[0, . . . ,150× 106]. We encoded function read in a
similar way. To check whether the targeted security
property is satisfied or not, we inserted the following
assertion in the header (requires clauses):

//@ assert userId==0;

indicating that only an authorized user (an adminis-
trator) can execute the first branch. We faced with an
issue, Frama-C uses a constant f c rand max= 32767
that bounds the returned values of random function
call. For circumventing this problem, we encoded the
range of values of the domain in an array. Although,
the tool inserts a clause in the program, the latter is
not relevant, it is not linked to a particular architec-
ture. Indeed, software security analysis in most ex-
isting tools are performed, regardless to a particular
execution architecture. Nowadays, it is known that
vulnerabilities can be inadvertently introduced by the
execution environment for various reasons, typically
they can be induced by compiler settings 2.

4 RELATED WORKS

Assessing security properties of software components
relying on formal approaches is an active area of

2https://software.intel.com/content/www/us/en/develop/
articles/size-of-long-integer-type-on-different-architecture-
and-os.html

ICSOFT 2021 - 16th International Conference on Software Technologies

182

Table 1: Effects of Various Architectures on Arithmetic Overflow.

Target architecture x86 64
Target OS Compiler without flag -m32 with flag -m32

Windows10 64 gcc10.2.0 3
clang11.0.0 3 3

Ubuntu18.04 64 gcc7.5.0
7 3clang6.0.0

Ubuntu 14.04 32 gcc4.8.2 3 3
OS X 64 clang11.0.0 7 3

research. In contrast, to model-driven engineering
(or security by design) approach offering methodolo-
gies for designing secure system e.g. (Ameur-Boulifa
et al., 2018), in this paper we focus on the security by
certification approach, we described how security vul-
nerabilities and architectural features might be cap-
tured by security experts and verified formally by de-
velopers. We focus on errors induced by integer over-
flow.

Several works, e.g. (Wagner et al., 2000; Dietz
et al., 2015) aim to a better understanding integer
overflow in programming language, and extract as-
sertions from a source code. In (Dietz et al., 2015),
authors have demonstrated that the analysis of inte-
ger can be driven by using logical expressions as pre-
condition tests to include in the C/C++ source code
and following the code execution check whether post-
condition CPU flags are set appropriately. An ac-
tive research is done to improve software security as-
pect by identifying potential vulnerabilities vulner-
abilities. Some of them are based on static analy-
sis (Han et al., 2019; Aggarwal and Jalote, 2006), dy-
namic analysis (Aggarwal and Jalote, 2006) and sym-
bolic execution (Zhang et al., 2010; Li et al., 2013;
Boudjema et al., 2019).

In (Zhang et al., 2010), authors present a security
testing approach based on symbolic execution. The
efficiency of this approach depends on the relevancy
of the set of test cases given as entries. An improved
approach is proposed in (Li et al., 2013), without tak-
ing into account test cases. A forward and backward
analysis are performed to detect vulnerable instruc-
tions and construct data flow trees based on sensitive
data. The path exploration problem is controlled by
considering only execution paths related to vulnera-
bilities. The approach presented in this paper is the
closest to our approach. However the approach pre-
sented in this paper does not consider vulnerabilities
that may be induced by the execution environment.

Some work focused on binary code. Specifically
in (Boudjema et al., 2019), authors detect exploits by
combining concrete and symbolic execution with sen-
sitive memory zones analysis. A fixed-length execu-
tion traces annotated by sensitive memory zones are

considered, based on a limit execution time of the
given code, so vulnerabilities that arise after a long
execution time are not detected. The approach pro-
posed in (Wang et al., 2008) to detect vulnerabilities
caused by buffer overflow on binary code relies on
symbolic execution and satisfiability analysis. It uses
also a technique for automatically bypassing some
security protections. In (Han et al., 2019), vulner-
abilities are checked considering only those match-
ing given behaviour patterns. A control flow graph is
computed, then the corresponding vulnerability exe-
cutable path set is defined considering only paths with
vulnerability nodes. This method strongly depends
on the relevancy of the patterns used, while in our ap-
proach all predicates saved in the knowledge database
can be used to catch vulnerabilities.

From the perspective of tools, several have been
developed to detect vulnerabilities on source or bi-
nary code e.g. in (Wang et al., 2008; Boudjema
et al., 2019; Han et al., 2019; Ognawala et al., 2016).
For example, the tool developed in (Ognawala et al.,
2016) combines symbolic executions and path explo-
ration to detect exploits on binary code. It is also able
to assign severity levels to reported vulnerabilities.

5 CONCLUSION AND FUTURE
WORK

The security aspect of critical programs can be im-
proved by eliminating vulnerability bugs, it helps to
increase the system robustness against attacks. In this
paper, we proposed a formal-based approach to detect
security vulnerability induced by integer errors. One
major advantage of our approach, it relies on models
describing both, a system’s architecture and software
in integrated formulas. Furthermore, security anal-
ysis is conducted via combination of symbolic ex-
ecution and satisfiability analysis to check vulnera-
bility bugs caused by an unsafe programs, and even
those introduced inadvertently by the execution envi-
ronment. We analyzed program source code to iden-
tify the critical instructions or operations, which can

Detection of Security Vulnerabilities Induced by Integer Errors

183

be exploited to cause an unsafe memory behaviour.
For that, a safety knowledge base is constructed using
a formal representation of errors and recommenda-
tion reports and also requirement that can provided by
users. The created safety knowledge base is used to
improve the obtained formulas by adding safety con-
straints. The latter are checked by an SMT solver to
detect vulnerability bugs. We illustrate our approach
through an example. Definitely the efficiency of our
approach depends strongly on the relevancy of the
used safety knowledge base. The current work ad-
dresses the problem of extracting and using knowl-
edge of attack and software vulnerabilities directo-
ries to build safety properties patterns. An alterna-
tive solution would be to use interactive annotation
through an interface for the tool as it has been done
in (Thomas, 2015). The aim of our ongoing and fu-
ture work is to formalize more unsafe predicate in-
cluding pointer references, cast operations and more.
By expanding the knowledge data base, we can treat
a broader class of bugs, and can then identify more
vulnerabilities.

REFERENCES
2019 CWE Top 25 Most Dangerous Software Errors.

https://cwe.mitre.org/top25/archive/2019/2019 cwe
top25.html.

CERN Computer Security. https://security.web.cern.ch.
Aggarwal, A. and Jalote, P. (2006). Integrating static and

dynamic analysis for detecting vulnerabilities. In 30th
Annual International Computer Software and Appli-
cations Conference, volume 01, pages 343–350, USA.
IEEE Computer Society.

Ameur-Boulifa, R., Lugou, F., and Apvrille, L. (2018).
SysML model transformation for safety and secu-
rity analysis. In ISSA 2018:International workshop
on Interplay of Security, Safety and System/Software,
Spain. ACM IPCS.

Boudjema, E. H., Verlan, S., Mokdad, L., and Faure, C.
(2019). VYPER: Vulnerability detection in binary
code. volume 3. Wiley.

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Sig-
noles, J., and Yakobowski, B. (2012). Frama-C - A
software analysis perspective. In 10th International
Conference, SEFM 2012, Greece, October 1-5, 2012.
Proceedings, volume 7504 of Lecture Notes in Com-
puter Science, pages 233–247. Springer.

Dietz, W., Li, P., Regehr, J., and Adve, V. (2015). Un-
derstanding Integer Overflow in C/C++. ACM Trans.
Softw. Eng. Methodol., 25(1).

Graf, J., Hecker, M., and Mohr, M. (2013). Using JOANA
for Information Flow Control in Java Programs -
A Practical Guide. In Software Engineering 2013,
Aachen, volume P-215 of LNI, pages 123–138. .

Han, L., Zhou, M., Qian, Y., Fu, C., and Zou, D. (2019). An
optimized static propositional function model to de-

tect software vulnerability. IEEE Access, 7:143499–
143510.

Hohnka, M. J., Miller, J. A., Dacumos, K. M., Fritton,
T. J., Erdley, J. D., and Long, L. N. (2019). Evalu-
ation of compiler-induced vulnerabilities. Journal of
Aerospace Information Systems, 16(10):409–426.

Kosmatov, N. and Signoles, J. (2013). A lesson on run-
time assertion checking with Frama-C. In 4th Inter-
national Conference Runtime Verification RV 2013,
France, September 24-27, 2013. Proceedings, volume
8174 of Lecture Notes in Computer Science, pages
386–399. Springer.

Li, H., Kim, T., Bat-Erdene, M., and Lee, H. (2013).
Software vulnerability detection using backward trace
analysis and symbolic execution. In International
Conference on Availability, Reliability and Security,
ARES 2013, Germany, September 2-6, 2013, pages
446–454. IEEE Computer Society.

Ognawala, S., Ochoa, M., Pretschner, A., and Limmer,
T. (2016). Macke: Compositional analysis of low-
level vulnerabilities with symbolic execution. In 31st
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, page 780–785,
USA. Association for Computing Machinery.

Seacord, R., Dormann, W., McCurley, J., Miller, P., Stod-
dard, R., Svoboda, D., and Welch, J. (2012). Source
Code Analysis Laboratory (SCALe). Technical Re-
port CMU/SEI-2012-TN-013, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

Thomas, T. (2015). Exploring the usability and effective-
ness of interactive annotation and code review for
the detection of security vulnerabilities. In 2015
IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2015, USA, October 18-
22, 2015, pages 295–296. IEEE Computer Society.

Van der Veen, V., Dutt-Sharma, N., Cavallaro, L., and Bos,
H. (2012). Memory Errors: The Past, the Present, and
the Future. In Research in Attacks, Intrusions, and
Defenses, pages 86–106, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A.
(2000). A first step towards automated detection of
buffer overrun vulnerabilities. In Network and Dis-
tributed System Security Symposium, pages 3–17.

Wang, L., Zhang, Q., and Zhao, P. (2008). Automated de-
tection of code vulnerabilities based on program anal-
ysis and model checking. In 8th International Work-
ing Conference on Source Code Analysis and Manip-
ulation (SCAM 2008), 28-29 September 2008, China,
pages 165–173. IEEE Computer Society.

Younan, Y., Joosen, W., and Piessens, F. (2004). Code
injection in C and C++:A survey of vulnerabilities
and countermeasures. Technical report, Department
Computer Wetenschappen, Katholieke Universiteit NI
Leuven.

Zhang, D., Liu, D., Lei, Y., Kung, D. C., Csallner, C., and
Wang, W. (2010). Detecting vulnerabilities in C pro-
grams using trace-based testing. In IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works, DSN 2010, USA, June 28 - July 1 2010, pages
241–250. IEEE Computer Society.

ICSOFT 2021 - 16th International Conference on Software Technologies

184

