
Armored Twins: Flexible Privacy Protection for Digital Twins through
Conditional Proxy Re-Encryption and Multi-Party Computation

Felix Hörandner a and Bernd Prünster b

Graz University of Technology, Graz, Austria

Keywords: Digital Twin, Proxy Re-Encryption, Fine-Grained Access Control, Multi-Party Computation, Recovery.

Abstract: Digital twins, i.e., up-to-date digital copies of a physical object maintained in the cloud, make it possible to
conveniently review a physical object’s state, indirectly interact with the physical object, or perform computa-
tions on the object’s state and history – also in combination with data from other digital twins. The concept of
digital twins has seen wide uptake in Internet of Things use cases, e.g., in manufacturing to monitor a product’s
lifecycle, or precision medicine to provide personalized treatment. Besides these benefits, challenges arise,
especially if the involved data producers, clouds and data consumers are not in the same trusted domain: Who
owns and controls the data? Are the parties (e.g., cloud) sufficiently trusted to handle privacy-sensitive data?
In this work, we propose ARMOREDTWINS, i.e., a system for digital twins that protects the confidentiality
of digital twin data while providing flexible and fine-grained sharing by employing key-policy conditional
proxy re-encryption to enable processing on subsets of the data. Alternatively, to support computation on very
sensitive data, our system integrates secure multi-party computation, which does not reveal the data items to
the individual nodes performing the computation. Benchmarks of our implementation highlight the system’s
feasibility and practical performance.

1 INTRODUCTION

The concept of a digital twin (Barricelli et al., 2019)
has gained significant traction over recent years, also
being listed in Gartner’s strategic technology trends
for 20191. Such a digital twin is the constantly
updated, electronic representation of a physical ob-
ject, e.g., a product in a manufacturing process, per-
sonal and identity data of a citizen, or medical mea-
surements of a patient. The object’s properties are
recorded by one or more devices (e.g., phones, wear-
ables, medical devices, or industry sensors) and syn-
chronized to a cloud service. Instead of interacting
with the physical objects directly, users and devices
engage with the digital twin on the cloud service to
review the twin’s state and history, as well as to trig-
ger state changes and actions at the physical object.

The collected data of one or more digital twins en-
ables computations for various use cases, as surveyed
by Barricelli et al. (2019) and Fuller et al. (2020).
Digital twins of products or a production line can

a https://orcid.org/0000-0001-8591-3463
b https://orcid.org/0000-0001-7902-0087
1https://www.gartner.com/en/documents/3904569/top-

10-strategic-technology-trends-for-2019-digital-twin

be used to monitor the manufacturing process, de-
tect failures, and compute optimized solutions (Qi and
Tao, 2018). In an open domain such as a smart city en-
vironment, digital twins of cars allow managing traf-
fic, connecting cars, and providing real-time feedback
for drivers with the aim to improve safety (Chen et al.,
2018). Medical digital twins of patients can be built
from health data by wearables and in-house sensors
to monitor the health status and predict problems (Liu
et al., 2019). Also, digital twins of citizens could
include location data, which is highly sensitive, but
would be very valuable in contact-tracing scenarios,
as vigorously discussed in many countries during the
COVID-19 pandemic.
Challenge: Privacy. Privacy, security and trust
are central challenges for the deployment of digital
twins (Fuller et al., 2020), as sensitive digital twin
data are valuable targets for (insider) attackers, e.g.,
to spy on manufacturing details, health status, and be-
havior. Previous research has focused on closed do-
mains, where the objects and devices as well as their
data and the cloud are under the control of the same
entity (e.g., a manufacturing company) or assumed to
be fully trusted. However, challenges arise in open
domains, where separate entities own the digital twins

Hörandner, F. and Prünster, B.
Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation.
DOI: 10.5220/0010543301490160
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 149-160
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

149

(i.e., the physical object’s sensitive data), operate the
storage service in the cloud, and perform computa-
tions on that data. For sensitive data, there is a need
for a multi-user system that (a) protects the data of
digital twins, so that the cloud does not learn them,
and (b) enables owners to control which entities are
authorized to access specified subsets of their data.
Challenge: Flexibility. Flexibility in the digital twin
system and the data protection mechanisms is also es-
sential, as trust in data receivers and processing ser-
vices change over time and new services emerge that
would benefit from re-using previously collected data.
Unfortunately, designing a system for digital twins
that both protects the digital twins’ data as well as
provides flexibility is not a trivial task. Of course,
it is possible to naively use symmetric or asymmet-
ric cryptographic mechanisms to encrypt the digital
twins’ data before uploading them to the cloud. How-
ever, this naive approach is inflexible, as it requires
configuring each device to encrypt its data or vari-
ous subsets for multiple receivers, e.g., for services
that should process the data. These sharing configu-
rations have to be updated on each device every time
data should be shared with new receivers or the extend
of shared subsets changes. Thus, such approaches
require significant maintenance effort and hinder the
opportunistic reuse of data for new services.
Our Contribution. We propose ARMOREDTWINS:
a flexible protection-layer for digital twins, which
(1) protects the digital twins’ data, (2) gives owners
control over their digital twins, (3) retains the func-
tionality and benefits of digital twins, i.e., enables in-
teraction with other devices, and supports processing
of digital twin data, and (4) provides dynamic mainte-
nance of sharing permissions, as well as a convenient
recovery and replacement strategies after device loss.

Protecting Digital Twins. Our ARMOREDTWINS

system integrates key-policy conditional proxy re-
encryption (KP-CPRE) (Zhao et al., 2010) to achieve
flexible end-to-end secure data-sharing. Devices col-
lect data about physical objects to build digital twins
and encrypt it with KP-CPRE for the owner accord-
ing to a set of attributes that describes the data (e.g.,
location data, blood-pressure data). With KP-CPRE,
the owner can then authorize sharing of specified
data subsets with others by generating a re-encryption
key with a fine-grained policy over the ciphertext at-
tributes. This re-encryption key enables the cloud to
transform the digital twin data for the receiver with-
out learning the underlying plaintext. Additionally,
the sharing mechanism can also be applied to encrypt
requests by external entities to protect the request’s
confidentiality while enabling to route these requests
to a designated device where they can be decrypted.

Our system protects the confidentiality of the digital
twin data but remains flexible and gives owners con-
trol over which data subsets should be made available
to processing services for their computations.

Maintenance & Recovery. Our approach also
proves useful when reacting to changed trust rela-
tionships or new services. With KP-CPRE, owners
can revoke access by removing re-encryption keys
from the cloud or establish new sharing permissions
for previously collected data by generating new re-
encryption keys, which enable the opportunistic re-
use of data as new data processing services emerge.
Additionally, our system offers a convenient recov-
ery strategy if a defective device needs to be replaced:
Even through the protection layers, the system can
seamlessly shift the old device’s information (stored
as digital twin in the cloud) as well as incoming re-
quests to the replacement device.

Processing without Revealing Data. While the se-
lective sharing presented before enables processing
for data subsets the owners feel comfortable to dis-
close, owners may refrain from exposing data of very
sensitive nature to processing services. To tackle this
challenge, our system also integrates secure multi-
party computation (MPC) (Yao, 1982) as an alterna-
tive to also support processing on privacy-sensitive
data. In this approach, the devices split the digital
twin data into multiple shares, which are encrypted
with KP-CPRE and shared with separate processing
nodes. These processing nodes use MPC to compute
a function on the shares of multiple digital twins from
various owners without ever learning the plain data or
result. Only the final receiver obtains the result.

Implementation & Evaluation. Finally, we im-
plemented our proposed ARMOREDTWINS system to
highlight its feasibility and practical performance.
Our benchmarks of the involved cryptographic mech-
anisms make it possible to derive the computational
effort of our system’s individual phases. Further, we
implemented privacy-preserving contact tracing on
privacy-sensitive location data as an example use case
to evaluate the effort of computing a function with-
out revealing the involved data. Our results show a
low performance overhead for KP-CPRE-based data
sharing in general and linear scalability of the MPC
computation in the contact-tracing use case.

2 RELATED WORK

Early work on digital twins focused on their features,
e.g., convenient, up-to-date access to data and simula-
tions, mainly in closed domains with static trust rela-
tionships. While security, privacy and trust have been

SECRYPT 2021 - 18th International Conference on Security and Cryptography

150

neglected, they were recently identified as main chal-
lenges for the use of digital twins (Fuller et al., 2020)
and have started to gain attention in the research com-
munity.
Twins to Enhance Security. The digital twin con-
cept has the power to enhance security. Communica-
tion exclusively through the cloud enables protection
against denial-of-sleep attacks, while the data col-
lected in digital twins allows performing security and
safety analyses as well as intrusion detection without
disrupting live systems (Eckhart and Ekelhart, 2018).
Security for Twins. In open domains, where multiple
actors are involved, who are not fully trusted, the con-
fidentiality of sensitive digital twin data has to be en-
sured, e.g., to protect company secrets or the privacy
of involved people. In a first step, it is possible to en-
force access control at the cloud before sharing data
with others (Kern and Anderl, 2020). Gehrmann and
Gunnarsson (2020) propose a security architecture for
digital twins that integrates security testing and intru-
sion detection based on digital twins, enforces access
control, and uses secure communication channels.
Concrete Security Mechanisms. For digital twin
systems were introduced by Dietz et al. (2019);
Huang et al. (2020); Putz et al. (2021). They pro-
pose to build upon distributed ledger technology to
protect against modifications and integrate symmetric
as well as public key encryption to ensure the confi-
dentiality of digital twin data. These approaches are
best suited for scenarios with a limited amount of ac-
tors, as sharing and maintaining decryption keys in
the face of many devices, owners and receivers be-
comes a complex task. Generally, encryption layers
remain an obstacle for digital twin functionality, as
reviewing and processing digital twin data requires to
share decryption keys, and strategies to recover after
loss of devices and keys need to be developed.
Our Contributions. Complement the related work
by introducing flexible and fine-grained data shar-
ing into the digital twin ecosystem without sacrific-
ing digital twin functionality, while enabling dynamic
maintenance, replacement of devices, and processing
on subsets. Furthermore, we introduce processing on
highly-sensitive digital twin data even without reveal-
ing that data in the computation process.

3 CRYPTOGRAPHIC BUILDING
BLOCKS

This section explains two fundamental building
blocks of our system: key-policy conditional proxy
re-encryption and secure multi-party computation.

Key-policy Conditional Proxy Re-Encryption.
Proxy Re-Encryption (PRE) (Ateniese et al., 2006;
Blaze et al., 1998) extends asymmetric encryption by
enabling a semi-trusted proxy to transform cipher-
text encrypted for one user into ciphertext then en-
crypted for another user, without learning the under-
lying plaintext in any intermediate step. For this trans-
formation, the proxy requires a re-encryption key,
which is generated based on the private key of the data
owner and the public key of the intended recipient (in
non-interactive schemes).

Key-policy conditional proxy re-encryption
(KP-CPRE) (Zhao et al., 2010) enables more
fine-grained access control. Senders attach a set
of attributes A during encryption. The resulting
ciphertext can only be re-encrypted successfully if
the used re-encryption key has been generated for a
sufficiently strong policy P of AND/OR logic gates,
i.e., where P(A) = 1. We focus on schemes that are
unidirectional, single-hop, and non-interactive. The
algorithm definition below has been adapted from
Zhao et al., where we made the ability to specify
attributes public, i.e., removed AKeyGen.

Definition 1 (KP-CPRE) A fine-grained key-policy
conditional proxy re-encryption (KP-CPRE) scheme
consists of the following algorithms:

KeyGen()→ (sk,pk): This algorithm generates a se-
cret and public key (sk,pk).

RKGen(skA,P,pkB)→ rkA→B;P: Given a secret key
skA of user A, the public key of user B, and a pol-
icy P, this algorithm creates a re-encryption key
rkA→B;P.

Encl(pk,A,M)→CA: Given a public key pk, a mes-
sage M, and an attribute set A, this algorithm out-
puts a level-l ciphertext Cl . A first-level ciphertext
C1 can be re-encrypted, while a second-level ci-
phertext C2 cannot be (further) re-encrypted.

ReEnc(rkA→B;P,C1
A)→C2

B: Given a first-level ci-
phertext C1

A with attribute set A and a re-
encryption key rkA→B;P for policy P, this algo-
rithm translates the ciphertext for the other user,
iff the attributes satisfy the policy, i.e., P(A) = 1.

Decl(sk,Cl)→M: Given the secret key sk of a user
and a ciphertext Cl for the same user, the algo-
rithm returns the underlying message M or fails.

Secure Multi-Party Computation. (MPC) (Yao,
1982) enables a set of nodes to compute a function
without revealing their input data to the other nodes.
Two main directions have evolved: (1) schemes based
on garbled circuits (Yao, 1982) and (2) schemes based
on secret sharing techniques (Bogdanov et al., 2012).
We focus on secret sharing-based MPC. Given shares

Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

151

of the input data set, n processing nodes are able
to jointly compute a function f on the input data
set, without learning their plaintext, and create out-
put shares that can be combined to the function’s re-
sult. During this process, the processing nodes neither
learn the plain input data nor the result, as long as not
more than a threshold t of the nodes collude.

Definition 2 (MPC) A secure multi-party computa-
tion (MPC) protocol based on secret sharing for a
function f on a set of inputs (Mi)i∈I , where not more
that t of n processing nodes may be corrupted, con-
sists of the following algorithms:

Split(M, t,n)→ (is j) j∈[n]: The algorithm applies a
secret sharing technique to split the message M
into n input shares (is j) j∈[n] with a threshold t.

Compute((isi, j)i∈I ,(nk)∀k 6= j)→ os j: The processing
node n j engages in an interactive protocol with
the other nodes (nk)∀k 6= j. Each n j applies its in-
put shares (isi, j)i∈I from multiple messages Mi, so
that they jointly compute a function f . Each node
outputs an output share os j of the result.

Combine((os j)∀ j)→ res: This algorithm combines
the output shares os j from each node n j to the
function’s result res← f ((Mi)i∈I) or fails.

4 SYSTEM MODEL

This section gives a high-level introduction of our AR-
MOREDTWINS system, its actors, as well as their inter-
actions and trust assumptions (cf. Figure 1).
Setup and Access Control. The owner has one or
more devices that create a digital twin of a physical
object at their cloud account. This owner uses their
management device to initially set up the device (c.f.
1) and to intermittently manage access to the digital
twin data collected at the cloud (c.f. 2). The owner is
only sporadically online, at a time of their choosing.
Synchronization. One or more devices gather in-
formation about the physical object, which they fre-
quently synchronize to digital twin in the cloud (c.f.
3). For example, a smart watch might contribute to
building the digital twin of a patient, while manufac-
turing equipment might create a digital twin about it-
self (as physical object). Changes to the digital twin
in the cloud can also propagate to devices (c.f. 4).
Highly constrained devices may also rely on a gate-
way for connectivity and computation resources.
External Interaction. Requesters may wish to inter-
act with the physical object (c.f. 5). This interac-
tion is directed at the digital twin in the cloud, which
forwards the requests at appropriate times to the de-
vices that are associated with the physical object. The

Figure 1: ARMOREDTWINS System Model.

cloud filters requests (e.g., based on plain metadata
or results of a processing service) and negotiates with
the device on the delivery of the requests (e.g., de-
liver immediately or periodically in bulk, or let device
fetch requests). The cloud routes (and re-encrypts)
the requests to the appropriate set of devices. These
requests may trigger the device to interact with the
physical object, change its state, and/or respond.
Processing of Data. The digital representation
of physical objects as up-to-date digital twins en-
ables powerful computation, such as simulations of
behavior (Chen et al., 2018; Qi and Tao, 2018),
maintenance predictions (Kraft, 2016), and precision
medicine (Liu et al., 2019). Given the owner’s per-
mission, the cloud forwards a subset of relevant digi-
tal twin data to a processing service, upon which com-
putations can be performed (c.f. 6). For more sensi-
tive data, the data may also be split across a network
of processing nodes that engage in a secure multi-
party computation protocol to compute a result for
a processing service without ever learning the digital
twin’s data or the function’s result (c.f. 6+). Finally,
the processing service is able to act upon the result,
e.g., block an external request, or notify the owner of
predicted maintenance needs.
Trust. The owner trusts the other actors as follows:
(1) The owner’s device is trusted to correctly han-
dle the data of the physical object and interact with
it. (2) The cloud is honest-but-curious, i.e., tries to
learn about the physical object’s data, while correctly
following the protocols, without acting actively ma-
licious, e.g., by withholding data or requests, or by
trying to inject malicious data. (3) The owner’s man-
agement device is fully trusted, as it holds the main
private keys. (4) Sufficiently trusted processing ser-
vices are selected by the owner so that they may
learn user-specified subsets of the digital twins’ data.
(5) The processing nodes are trusted to not collude
with each other and to compute the function correctly,
while refusing privacy-invasive functions.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

152

Figure 2: Setup, Access Control, Synchronization, Interaction, and Processing (on Subsets) in our ARMOREDTWINS System.

5 CONCEPT

This section introduces our ARMOREDTWINS security
architecture for digital twins as well as the main in-
teractions between the involved actors. Initially, we
present the main interactions, as illustrated in Figure 2
and specified in Protocol 1: 1 - 4 the general setup to
securely synchronize the characteristics of a physical
object to a digital twin in the cloud, 5 interactions
triggered by external requesters towards the physical
object via the digital twin and attached devices, and
6 processing of data from digital twins, which may
belong to various owners. Next, as specified in Pro-
tocol 2, we elaborate on performing secure computa-
tions on the encrypted data of multiple digital twins
without revealing the involved data (6+) and de-
scribe required extensions to previous processes (2+
and 3+). Finally, we review maintenance processes
to adjust access permissions and recover in case of
device loss (c.f. M1 - M3).

5.1 Synchronization

As detailed in phases 1 to 4 of Protocol 1, our AR-
MOREDTWINS employ key-policy conditional proxy
re-encryption (KP-CPRE) to protect the synchronized
data with end-to-end encryption, enforce fine-grained
access control, and simplify the maintenance of ac-
cess control rules. Generally, the devices record the

physical object’s characteristics and encrypt them for
the owner before uploading them to the cloud. To
later use the digital twin’s data, a network of end-to-
end encryption links between multiple data sources
(device and requester) and data receivers (processing
service and device) needs to be set up and maintained
over time. With public key encryption, owners would
need to explicitly configure each sender to encrypt the
same data with various keys of multiple receivers and
re-configure these senders upon future changes. In-
stead, our system uses KP-CPRE, where the device
attaches a set of attributes A to the data in the en-
cryption process, e.g., that describe the content. To
enable read access for others, the owner generates re-
encryption keys from their private key, the receiver’s
public key, and an access control policy P. These re-
encryption keys enable the cloud to transform cipher-
text of the digital twin (encrypted for the owner) into
ciphertext that can be decrypted by the selected recip-
ient, given the key’s policy matches the ciphertext’s
attributes, i.e., P(A) = 1. Therefore, owners can de-
fine sharing rules at a later point in time without hav-
ing to re-configure the devices and requesters.
Synchronized Data. Data on the digital twin is pop-
ularly defined as a state model in related work (Eck-
hart and Ekelhart, 2018), where the final state is con-
structed by successively applying state changes. Such
a state model can be applied rigidly in the form of a fi-
nite state machine, or interpreted loosely, where state

Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

153

changes are, e.g., attaching documents to an entity.
Given this flexibility, we use a state model for the dig-
ital twins’ data in our system. As our system enables
to share subsets of the state changes, it is beneficial
if the state changes are also meaningful on their own,
i.e., if a state change sufficiently describes an aspect
of the state. Further, we assume that the state infor-
mation carries metadata that identifies the digital twin
to facilitate processing of data from multiple twins.
Authenticity of State Data. While some external en-
tities may be authorized to write state changes, e.g.,
owners or processing services, it is necessary to pre-
vent unauthorized actors from inject state data. Our
system employs digital signatures to tackle this chal-
lenge. Each device, owner, and processing service
generates their own signature key pairs. The device
obviously accepts state data that is signed either by
the device itself or by its owner, whose signature key
was marked as trustworthy during setup. For autho-
rized processing services, our system uses a dynamic
delegation mechanism, where the owner issues write
tokens. Such a write token states that the owner suf-
ficiently trusts the processing service identified by its
signature verification key to write to the digital twin’s
state, possibly along with further restrictions, e.g., a
time period. A write token has to be presented along-
side new state data that is signed by the processing
service. Finally, the device verifies the signature on
the state data and the write tokens against its trusted
keys before accepting a state change. Alternatively or
in addition, the database storing the state data could
be modeled with distributed ledger technology (Dietz
et al., 2019).
Attributes and Policies. Our system distinguishes
between state data and request data, so that re-
encryption keys cannot be reused for unintended pur-
poses. For state data, the ciphertext’s attributes con-
tain sync as well as further attributes that the device
derives from the content. For requests, the requester
attaches req as well as attributes identifying the dig-
ital twin iddt. Owners use these attributes in their re-
encryption key policies, i.e., trees of AND/OR logic
gates, to specify which receivers are authorized to de-
crypt state and/or request data.
Reduce Computation Effort. Computational ef-
ficiency is an important factor for low-power and
battery-powered devices, as often found in IoT en-
vironments. Symmetric cryptography (e.g., AES) is
generally considered to be more efficient than asym-
metric encryption (e.g., KP-CPRE schemes). Ad-
ditionally, many processor manufacturers have inte-
grated hardware-support for AES, enabling very ef-
ficient use of this symmetric mechanism. Naturally,
KP-CPRE is employed in a hybrid encryption setting,

where KP-CPRE encrypts a newly generated sym-
metric key, which is then used to encrypt the actual
content. Our system’s computation effort for state
synchronization can be reduced by re-using the sym-
metric content encryption key for a limited time pe-
riod on data that would be encrypted for the same
set of attributes. Consequently, the more expensive
KP-CPRE operations to encrypt and decrypt the sym-
metric key only have to be performed once per time
period (also called epoch).

5.2 External Interaction

Instead of communicating with a device directly, the
requester interacts with the cloud-based digital twin,
which forwards the requests to the appropriate de-
vices at a suitable time, as detailed in 5 of Proto-
col 1. Initially, the requester needs to obtain con-
nection information to reach the digital twin and pub-
lic key material out-of-band, e.g., by scanning a QR
code, receiving a wireless announcement, or querying
discovery services. The requester uses KP-CPRE to
encrypt the request for the owner of the digital twin,
and includes the digital twin’s identity iddt as well as
the marker req as attributes. During setup or main-
tenance, the owner decided which device handles the
digital twin by generating a re-encryption key. The
cloud uses such re-encryption keys to route the re-
quest to the appropriate device. As multiple devices
could handle different aspects of one digital twin, re-
encryption keys with policies that also consider addi-
tional attributes may be used for further fine-grained
routing. The cloud makes the re-encrypted request
available to the device, either by pushing it directly or
offering it to be pulled by the device. Finally, the de-
vice is able to decrypt the request with its private key
and process the contents.
Request Filtering. Before re-encrypting requests, the
cloud may apply additional filtering logic to protect
the device and its resources, e.g., to minimize the im-
pact of denial-of-sleep attacks by enforcing rate- and
time-limits. Some filtering logic can be implemented
based on metadata that is available in plain (e.g., num-
ber and time of requests per digital twin), while more
elaborate logic depending on the request’s content re-
quires further processing (see Section 5.3).
Additional Request Content. Requests may also in-
clude information to protect further communication,
e.g., symmetric session keys that allow for more ef-
ficient cryptographic mechanisms in subsequent in-
teractions. Also, the requester may need to provide
authentication credentials or go through a subsequent
authentication process so that the device processes the
requests (out of scope).

SECRYPT 2021 - 18th International Conference on Security and Cryptography

154

1 Setup Device:

On device d, after receiving initial confiuration conf:
1 Extract and store from conf: initial state st,
owner’s public encryption key epko, owner’s signa-
ture verification key spko, id of the linked digital
twin iddt, and connectivity information for the owner’s
cloud account. 2 Generate an encryption key pair
(eskd,epkd)←PRE.KeyGen(1κ) and 3 a signature key
pair (sskd,spkd)← SIG.KeyGen(1κ).

On owner o: 4 Run 2 Control Access for device d with
policy P← sync∨ (req∧ iddt ∧Preq), where Preq may
define further limitations.

2 Control Access (toward entity x with policy P):

On owner o: 1 To enable sharing of data items
that satisfy policy P, generate a re-encryption key
rko→x;P ← PRE.RKGen(esko,epkx,P) and send it to
cloud. 2 To grant write permissions for process-
ing service, issue a write token wt ← (spkx, iddt),
σwt← SIG.Sign(ssko,wt).

3 Synchronize to Cloud:

On device d, upon observing change ∆i+1 in
the physical object: 1 Change the internal
state sti+1 ← Apply(sti,∆i+1), and 2 sign it as
σ∆i+1 ← SIG.Sign(sskd,∆i+1), where sskd are replaced
with ssko or sskps if run by the owner o or an autho-
rized processing service ps, respectively. 3 Set at-
tributes A ← sync ∧ A∆, where A∆ is derived from
the content of ∆i+1, and 4 encrypt the state change
as C ← PRE.Enc(epko,A,(∆i+1,σ∆i+1)). 5 Remem-
ber and re-use the SYM key and its PRE ciphertext for
the current timeframe and A, so that subsequently only
SYM encryption is necessary.

On cloud, receiving C: 6 Store encrypted state change
C.

4 Synchronize from Cloud:

Assumption: Owner o has performed 2 Control Access
for device d with a policy P on type sync.

On cloud: 1 Re-encrypt encrypted state change C for
device d as C′← PRE.ReEnc(rko→d,C), which applies
only for SYM keys of timeframes, if not yet available.

On device d, receiving C′: 2 Decrypt change
(∆i+1,σ∆i+1) ← PRE.Dec(eskd,C′). If the SYM key
for the timeframe is already available, only perform
SYM decryption. 3 Verify that state can be ac-
cepted with SIG.Verify(spkx,∆i+1,σ∆i+1) = 1, where
spkx has to be in the device’s trust store or is in-
cluded in a valid write token wt = (spkx, iddt) with
SIG.Verify(spko,wt,σwt) = 1. 4 Change the internal
state to sti+1← Apply(sti,∆i+1).

5 Interact:
Assumption: Owner o has performed 2 Control Access

for the device d with a policy P on type req and iddt.
On requester: 1 Obtain iddt of the twin and key of

its owner epko. 2 Encrypt and send request req as
Creq ← PRE.Enc(epko,A, req), where A includes req,
iddt and possibly further attributes, and req or PRE de-
fines the encryption key for the response.

On cloud, receiving Creq: 3 Optionally, analyze if the
request should be forwarded (e.g., via processing ser-
vice or rate limiting). 4 Route the request to the digital
twin’s devices by C′req ← PRE.ReEnc(rko→d;P,Creq),
where the policy P contains req and iddt.

On device d, receiving C′req: 5 Decrypt the re-
quest as req← PRE.Dec(eskd,C′req) and 6 process it
(resp,∆i+1)← Process(req,st). 7 If this resulted in a
state change ∆i+1, run 3 Synchronize to Cloud. 8 En-
crypt and return the response resp with key material
from the request, e.g., obtain the SYM key from the re-
quest or re-use the key obtained via PRE.

6 Processing (on Subset):
Assumption: Owner o has perfurmed 2 Control Access

for processing service ps with a policy P on type sync
for data with relevant attributes.

On cloud: 1 Identify the set of relevant state changes I
as (Ci)∀i∈I and 2 re-encrypt them for the processing
service yielding ∀i ∈ I : C′i ← PRE.ReEnc(rko→ps,Ci).
Re-encryption applies only to SYM keys of related time-
frames.

On processing service ps, receiving (C′i)∀i∈I from
one or multiple owners: 3 Decrypt the set of state
changes ∀i ∈ I : (∆i+1,σ∆i+1) ← PRE.Dec(eskps,C′i),
where decrypted SYM keys of same timeframes can
be re-used. 4 Optionally, verify their signatures by
SIG.Verify(spko,∆i+1,σ∆i+1) = 1. 5 Process the data.

M1 Change Access of Processing Service:
On owner: 1 To remove access rights of processing ser-

vice, instruct the cloud to delete rko→ps;P. 2 To grant
(reduced/extended) rights, generate and upload a new
rko→ps;P with policy P. 3 To revoke write access, in-
struct the cloud to remove/revoke write the token wt.

M2 Replace Processing Node:
On owner: 1 Remove access of old node n j by instruct-

ing cloud to delete rko→n j ;P and 2 grant access to new
node n′j by generating and uploading a new rko→n′j ;P
with policy P.

M3 Replace Device:
On owner and new device d′: 1 Remove access of

the old device d by instructing cloud to delete rko→d;P.
2 Run 1 Setup Device on new device d′ and same iddt.
3 To load previous state, mark old device’s signature
keys spkd as trusted or issue a write token for it.

On cloud and new device d′: 4 Run 4 Synchronize
from Cloud to load state of the old device.

Protocol 1: Main Phases of our ARMOREDTWINS System.

Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

155

Figure 3: Processing of Digital Twin Data with Secure Multi-Party Computation.

5.3 Data Processing

In the concept of digital twins, up-to-date data about
multiple digital twins of various owners is accumu-
lated in the cloud, which is a key enabler to perform
powerful computation. These computations include
running simulations, makeing predictions, develop-
ing optimizations, finding errors or defects (e.g., de-
viation from predicted behavior), integrating further
services (e.g., request filtering), etc. Unfortunately,
by encrypting the digital twins’ data to prevent the
cloud from learning the plaintext, the cloud is also
no longer able to perform these processing tasks. In
a naive approach, owners download and decrypt the
data of their digital twins and subsequently performs
the processing locally, e.g., on their device or a more
powerful computing system. However, this approach
falls flat once data from other owners is involved. Our
ARMOREDTWINS system supports two approaches that
differ in the level of provided privacy, which has an
impact on the required computation cost.
6 Processing on Subsets. In the first approach, own-
ers share subsets of digital twin data with process-
ing services that are sufficiently trusted or where the
owner made a conscious decision to exchange privacy
for other benefits (e.g., convenience or money). For
example, a car owner sells a subset of the car’s digital
twin data that has little privacy impact to the manu-
facturer, who uses it to optimize future models. Such
processing services could also act as intermediaries
that may learn the subset to compute a function before
only forwarding the result to a less-trusted consumer.

In this approach, the owners use KP-CPRE to
share subsets of their digital twins’ data with process-
ing services. Based on the ciphertexts’ attributes and
the re-encryption key’s policy, the owners are able to
selectively disclose only a subset of relevant state in-
formation. The processing service aggregates data

about digital twins from multiple owners, decrypts
them, and processes the subsets in plain. To ensure
authenticity, the processing service could also verify
the state’s signatures. This approach hands control to
the owners and enables them to make conscious shar-
ing decisions, but requires that the shared subset is not
considered too sensitive.
6+ Processing with MPC. The second approach can

be applied for sensitive data that owners would con-
tribute towards the result of a computation, but where
the input data must not be directly exposed. Exam-
ples include participating in a health-related simula-
tion without fearing a negative impact on insurance
rates or estimating whether a request is malicious
without revealing the actual content of the request to
a party to keep honest requests confidential.

This approach combines multi-party computation
(MPC) with end-to-end data sharing via KP-CPRE,
as illustrated in Figure 3 and further specified in Pro-
tocol 2. Initially, devices prepare their state data for
MPC by splitting it into multiple shares, one for each
processing node. The number of the share is then as-
signed as an attribute while encrypting the share (e.g.,
node- j). As in the first approach, the owner gen-
erates re-encryption keys, now also defining which
share number may be re-encrypted for which pro-
cessing node. After the shares are re-encrypted and
decrypted, the processing nodes engage with each
other in an MPC protocol to collaboratively compute
a function. To also ensure the shares’ authenticity,
they could be signed by the devices and verified on the
node before computation. Each processing node gen-
erates an output share, which is securely forwarded
to the final receiver, which combines the output share
and alone learns the function’s result. The process-
ing nodes learn neither the state data from their input
shares nor the result from the output shares, as long
as not more than a threshold of nodes collude.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

156

Processing Authorization. Of course, our system
needs to ensure that the computation function does
not violate the owners’ privacy and that only autho-
rized receivers learn the computation result. The re-
encryption keys explicitly specify which processing
node may obtain which shares of which data subset
per owner. Additionally, owners need to be able to
define which type of function may be computed and
with which receiver the processing nodes may share
the result. In our system, owners issue signed process
tokens that specify the data set, the admissible func-
tions, and the public key of the authorized receiver.
Each processing node verifies such process tokens be-
fore participating in the computation.
Selecting Processing Nodes. KP-CPRE enables
owners to change the set of processing nodes at a
later point, e.g., if a processing node is not sufficiently
trusted anymore, without having an impact on the pre-
viously created cipertexts or the way devices encrypt
data. However, two limitations of MPC have to be
accommodated: Firstly, a processing node must not
learn different shares of the same state data item, as
the node could then learn about the state. Therefore,
each owner has to ensure that no two re-encryption
keys map from different share numbers to the same
processing node. Alternatively, an interesting open
question would be to transform a set of encrypted
shares into a different set for the same secret, e.g.,
using homomorphic properties of PRE schemes. Sec-
ondly, per computation, the shares have to be pro-
cessed by the same set of processing nodes. While
this is easy to achieve for data from one owner, if the
data is aggregated from multiple owners, they have to
agree on one set of processing nodes. The receiver or
a marketplace may facilitate the negotiation process.

5.4 Maintenance and Recovery

A digital twin environment is rarely static, as e.g.,
actors interacting with the system change and new
processing service may offer valuable services, while
other actors lose the owner’s trust and devices break.
Therefore, our system needs to be dynamic as well,
i.e., it has to be able to accommodate changes in the
involved actors and trust relationships without exten-
sive effort for the owner, as specified in Protocol 1.
M1 Change Access of Processing Service. Owners

can revoke access by instructing the cloud to delete
re-encryption keys towards a receiver. Without the
cloud’s involvement (i.e., re-encryption), corrupted
receivers cannot learn data from stolen ciphertext. By
combining removal and generation of re-encryption
keys, owners can extend or reduce existing access
rights by adjusting the strength of the policy.

2+ Control Access (extends 2):
On owner o: 1 For each processing node n j, run 2

Control Access for processing node n j with a policy
P ← sync ∧ node- j ∧ Pr, where Pr selects relevant
items. 2 Issue a process token for processing service ps
as pt← (P,epkps,F), σpt←SIG.Sign(ssko,pt), where
F defines admissible functions.

3+ Synchronize to Cloud (extends 3):
On device d: 1 Split state changes into shares
(isi, j) j∈[n] ← MPC.Split(∆i+1, t,n), where n is the
number of processing nodes n j and t is the threshold.
2 Encrypt the input shares for the respective n j by
Ci, j←PRE.Enc(epko,A, isi, j), where A contains sync,
node- j, and further attributes derived from the content.
3 Upload encrypted shares (Ci, j) j∈[n] to the cloud.

6+ Processing (with MPC):
On cloud, for participating owners ok: 1 Identify set

of relevant changes I yielding shares (isi, j)∀ j∈[n],i∈I ,
which satisfy P of owner’s pt. 2 For each state change
i ∈ I, re-encrypt the shares for the respective n j by
C′i, j ← PRE.ReEnc(rkok→n j ;P,Ci, j). 3 For each node
n j , forward the respective set (C′i, j)i∈I with matching j.

On each processing node n j, receiving (C′i, j)∀i∈I from
various owners: 4 For each data set from different dig-
ital twins and owners, check there is a process token
pt=(P,epkps,F), SIG.Verify(spko,pt,σpt)= 1 for re-
ceiver ps and that the function f is admissible by F .
5 Decrypt the shares isi, j ← PRE.Dec(eskn j ,C

′
i, j) and

6 compute os j ← MPC.Compute((isi, j)i∈I ,(nk)∀k 6= j)

with the other nodes. 7 Encrypt the output share os j as
Cos j ← PKE.Enc(epkps,os j) and send it to receiver ps.

On processing service, given (Cos j)∀ j: 8 Decrypt the
output shares os j← PKE.Dec(eskps,Cos j) and 9 com-
bine them to the result res←MPC.Combine((os j)∀ j).

Protocol 2: Processing with Sec. Multi-Party Computation.

M2 Replace Processing Node. The owner may ap-
ply the above approach to change the set of process-
ing nodes, i.e., by removing the re-encryption key
towards an old processing node and generate a new
key for the replacement processing node. However,
two conditions need to be observed when selecting
the new processing node: Firstly, no processing node
must get access to different shares of the same state
data item. Secondly, to process data from multiple
owners, they need to agree on the same set of nodes.
M3 Replace Device. Due to various circumstances,

devices that maintain a digital twin of a physical ob-
ject may need to be replaced, e.g., if the device breaks,
gets vandalized, or is stolen. Initially, the owner re-
vokes old device’s access rights by instructing the
cloud to remove the corresponding re-encryption key.
Next, the owner sets up a replacement device with

Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

157

minimal configuration effort, e.g., without the need to
perform complex key management and distribution to
configure the device for various data sharing connec-
tions. Instead, the owner generates a re-encryption
key towards the replacement device with an appro-
priate policy (including the digital twin’s id iddt), so
that the replacement device is able to recover the state
of the old device via our synchronization mechanism.
Also, such a re-encryption key enables to seamlessly
route external requests to the new device. As our sys-
tem has been designed so that the old device’s keys do
not have to be extracted, backed up and re-used, these
keys can be provisioned in a hardware-protected mod-
ule, which protects them even if the device was stolen.
Recovery of Management Device. While the man-
agement device is a key enabler for the owner’s con-
trol, it may also become unavailable for various rea-
sons (e.g., it breaks or is stolen). The only crucial
data on the management device is the owner’s private
key, for which a recovery strategy has to be integrated.
Building on related research various approaches can
be integrated: (A) The private key is stored on a flash
drive or printed as QR code that is kept in a secure
location. (B) Password-based encryption is applied to
the key before uploading it to a storage server (e.g.,
our cloud service). (C) (Password-protected) secret
sharing techniques split the owner’s key into shares,
which are distributed to a set of the owner’s device,
trusted users, to a hierarchy of servers (Abdalla et al.,
2016; Hörandner and Rabensteiner, 2019).

6 EVALUATION

We implemented and evaluated our concept of AR-
MOREDTWINS to underline its practicability. Sec-
tion 6.1 focuses on the general system with processing
on data subsets shared via KP-CPRE. Section 6.2 in-
troduces privacy-preserving contact tracing as an ex-
ample use case for MPC, where highly sensitive data
is processed without revealing them to the nodes.

6.1 General System

This section focuses on KP-CPRE, as AES (used
as SYM), ECDSA (used as SIG), and ECIES (used
as PKE) are well-known mechanisms with well-
established performance characteristics. The col-
lected times allow to derive the overall compuation
effort for the individual phases of our system.
PRE Implementation. We instantiate the CCA-
secure KP-CPRE scheme of Zhao et al. (2010) with
SHA-256 as hash function. For all used schemes,
we have selected parameters to achieve 128bit secu-

Table 1: Execution Times (in ms) of our Implementation for
KP-CPRE. The attribute set A consists of the leaf values
L(P) of the policy P, which is a binary tree of AND gates.

|P| |A| KeyGen RKGen Enc1 ReEnc Dec2

PC (AMD Ryzen 5600X)

3 2 0.39 2.04 2.62 4.22 2.36
7 4 0.39 3.54 3.00 4.86 2.36

15 8 0.39 6.52 3.75 6.13 2.36

Phone (OnePlus 6T)

3 2 6.93 37.35 46.96 76.85 41.32
7 4 6.93 65.34 54.79 90.22 41.29

15 8 6.93 121.46 70.11 117.06 41.38

IoT Device (Raspberry Pi 4B)

3 2 12.81 70.27 88.41 143.72 78.50
7 4 12.81 123.03 102.48 167.70 78.36

15 8 12.75 228.59 131.16 215.82 78.18

rity according to recommendations from National In-
stitute of Standards & Technology (2016). Groups
for pairing-based curves are chosen following recent
recommendations by Menezes et al. (2016) and Bar-
bulescu and Duquesne (2019). Our implementation
builds upon the RELIC toolkit (Aranha and Gouvêa,
2021) and currently only uses a single thread, which
leaves room for future performance improvements.
Results. Table 1 shows average execution times of the
PRE algorithms (in milliseconds) for various sizes of
policies and attribute sets on three platforms: a PC, a
mobile phone, and an IoT device. The presented num-
bers are an average of 100 runs, while the standard de-
viation was <1.8% of each measurement. Initially, we
generate key pairs for two participants, as well as a re-
encryption key between them, with a policy P. Next,
the benchmark takes a 128bit AES key as payload,
encrypts the payload with an attribute set A for the
first participant, re-encrypts it with the re-encryption
key for the second participant, and finally decrypts the
payload with the second participant’s private key. The
policy P is shaped as a binary tree of AND gates. OR
gates only have a negligible impact on the execution
time, as our implementation finds a minimal but suf-
ficient match between ciphertext attributes and policy
nodes.The attribute set A consists of the leaves L(P)
of the policy P, so that P(A) = 1.

In our system, KP-CPRE encryption and decryp-
tion is performed once per epoch for the same at-
tribute set and requires <132ms and <42ms even for
large policies on a Raspberry PI 4B. Re-encryption is
performed on a powerful cloud to share items, once
per data set with the same attributes of an owner also
per epoch, which takes <7ms on our benchmark PC.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

158

6.2 Privacy-preserving Processing

As the performance of our privacy-preserving pro-
cessing is dictated by the function that should be eval-
uated, we cannot present generic numbers. Instead,
we use privacy-preserving contact tracing as an exam-
ple, which is based on location data that is collected
by a device as part of a person’s digital twin. Such
location data (over time) is sensitive information, as
it not only discloses the living and work address but
can also reveal movement patterns, behavior, relation-
ships (proximity to others), or even health status (stay
at a hospital). However, such sensitive information
can be very valuable. Our use case traces the contacts
of one reference person (e.g., infected patient) with
n other people by comparing the proximity of their
paths and calculating how often they were too close.
Building on MPC, this computation is possible with-
out the processing nodes learning the location of in-
volved people, which people were close to others, or
the number of contacts. Thus, users may contribute
data to computations without sacrificing their privacy.
MPC Instantiation. We build upon SCALE-
MAMBA as MPC framework (Aly et al., 2021), due
to its accessibility, which enables to define general-
purpose functions in a python-like programming lan-
guage. The benchmarks use SCALE-MAMBA’s de-
fault configuration (statistical security parameter of
40) and Shamir’s secret sharing with three nodes
(#nodes = 3) where one may be corrupted (t = 1).
Use Case Parameters. Our benchmark aims to cap-
ture the computational effort in relation to the number
of users (#users). Therefore, we fix the other param-
eters as follows: Each user uses their phone to col-
lect location data over time and synchronize it with
the user’s digital twin at the cloud (#devices/user = 1
and #devices = #users). They each record a series
of 50 location points that consist of an x and y co-
ordinate (#items/device = 50 ·2 = 100). The individ-
ual coordinates are split into one share per process-
ing node (#shares/device = #items/device · #nodes =
300). We further assume that each location point of a
user is recorded in a different timeframe (#epochs =
50). Each PRE ciphertexts is associated with three
attributes A = (sync,node- j,location), which are
used in a conjunction to form the policy P.
Use Case Process. The user’s phones (as devices)
periodically collect the current location and synchro-
nizes it with the user’s digital twin at a cloud (3+).
Users also use their phones (as management devices)
to authorize the processing nodes to perform com-
putations on their location information (2+). The
cloud forwards the designated shares to the individ-
ual processing nodes, which compute the function in

Table 2: Execution Times for Use Case (in Milliseconds).

2+ Control Access: per user, on phone (OnePlus 6T)

PRE.RKGen 53.99 × #devices/user × #nodes
SIG.Sign 1.44 × 1

UseCase-Σ = 163.39 (per user)

3+ Sync. to Cloud: per device, on phone (OnePlus 6T)

MPC.Split 163.39 × #items/device
AES.Enc <0.01 × #shares/device
PRE.Enc 51.13 × #epochs × #nodes

UseCase-Σ = 7672.41 (per user, over epochs)

6+ Processing: cumulated, on PC (AMD Ryzen 5600X)

PRE.ReEnc 4.52 × #devs. × #epochs × #nodes

SIG.Verify 0.19 × #users

on
each
node

PRE.Dec 2.35 × #devices × #epochs
AES.Dec <0.01 × #shares
MPC.Compute 6530.58 × #users +12433.61
PKE.Enc 0.18 × 1

PKE.Dec 0.12 × #nodes
MPC.Combine 0.08 × 1

UseCase-Σ = 8242.24 (per user) + 12433.61 (const.)

an MPC protocol and output the shares of the result
to the receiver (6+). The cloud, processing node, and
receiver are simulated on a desktop PC. This PC exe-
cutes all three processing nodes in parallel as Docker
containers, with 30ms round-trip time between them.
Results. Table 2 presents time measurements for
the individual phases and their cryptographic opera-
tions. While these measurements of the cryptographic
operations are generic, i.e., can be applied for var-
ious parameters, we also present sums according to
the parameters chosen for our use case. Our results
show that 2+ Control Access and 3+ Synchronize to
Cloud require little computational effort on the phone,
<200ms (once) and <8s (over a longer timespan), re-
spectively, and therefore also draw little power. The
privacy benefits of 6+ Processing (with MPC) obvi-
ously have a computational cost but enables process-
ing on sensitive data that might not be available oth-
erwise. We have measured the MPC computation on
a PC for various numbers of users (18 samples up to
100 users). The computation time grows linearly with
6.53s · #users+ 12.43s and 95% confidence intervals
of [6.40,6.65] and [8.39,16.48]. Adding the systems’
other cryptographic mechanisms, we have 8.24s per
user with a constant initialization offset of 12.43s. To
obtain the computational cost, the benchmarks mea-
sured single-threaded implementations. Performance
improvements could be achieved with parallelization
as well as by replacing the general-purpose and acces-
sible SCALE-MAMBA framework with other MPC
protocols, e.g., that are optimized for a given use case.

Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

159

7 CONCLUSION

In this work, we proposed ARMOREDTWINS: a secure
digital twin system that protects the data of digital
twins, so that it can also be employed for sensitive in-
formation. We build on KP-CPRE for flexible, fine-
grained, end-to-end encryption, which enables shar-
ing of data with its owner and other parties to review
the data or process it, e.g., in simulations. Further-
more, we integrated MPC to enable processing of sen-
sitive data that owners would not expose even par-
tially. Our system allows to compute functions on
shares of digital twin data so that neither the cloud
nor the processing nodes learn the input or result, but
only the designated receiver gets the outcome. Also,
the system offers protected interaction with external
requesters, processes to manage changing trust rela-
tionships, and strategies to recover from device and
key loss. Benchmarks show the feasibility and practi-
cability of our ARMOREDTWINS system. We evaluated
the MPC integration with privacy-preserving contact
tracing as an example use case, which scales linearly
with about 8.2s per user and 50 uploaded location
points each.

REFERENCES

Abdalla, M., Cornejo, M., Nitulescu, A., and Pointcheval,
D. (2016). “Robust Password-Protected Secret Shar-
ing”. In: ESORICS (2). Vol. 9879. LNCS. Springer,
pp. 61–79.

Aly, A, Cong, K, Cozzo, D, Keller, M, Orsini, E, Rotaru,
D, Scherer, O, Scholl, P, Smart, N., Tanguy, T, and
Wood, T (2021). SCALE–MAMBA v1.11: Documenta-
tion. https://homes.esat.kuleuven.be/∼nsmart/SCALE/
Documentation-SCALE.pdf. Accessed: 2021-02-12.

Aranha, D. F. and Gouvêa, C. P. L. (2021). RELIC is an
Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic. Accessed: 2021-02-12.

Ateniese, G., Fu, K., Green, M., and Hohenberger, S.
(2006). “Improved proxy re-encryption schemes with
applications to secure distributed storage”. ACM Trans.
Inf. Syst. Secur., 9(1), pp. 1–30.

Barbulescu, R. and Duquesne, S. (2019). “Updating Key
Size Estimations for Pairings”. J. Cryptol., 32(4),
pp. 1298–1336.

Barricelli, B. R., Casiraghi, E., and Fogli, D. (2019). “A
Survey on Digital Twin: Definitions, Characteristics,
Applications, and Design Implications”. IEEE Access,
7, pp. 167653–167671.

Blaze, M., Bleumer, G., and Strauss, M. (1998). “Divertible
Protocols and Atomic Proxy Cryptography”. In: EU-
ROCRYPT. Vol. 1403. LNCS. Springer, pp. 127–144.

Bogdanov, D., Niitsoo, M., Toft, T., and Willemson, J.
(2012). “High-performance secure multi-party compu-

tation for data mining applications”. Int. J. Inf. Sec.,
11(6), pp. 403–418.

Chen, X., Kang, E., Shiraishi, S., Preciado, V. M., and Jiang,
Z. (2018). “Digital Behavioral Twins for Safe Con-
nected Cars”. In: MoDELS. ACM, pp. 144–153.

Dietz, M., Putz, B., and Pernul, G. (2019). “A Distributed
Ledger Approach to Digital Twin Secure Data Shar-
ing”. In: DBSec. Vol. 11559. LNCS. Springer, pp. 281–
300.

Eckhart, M. and Ekelhart, A. (2018). “A Specification-
based State Replication Approach for Digital Twins”.
In: CPS-SPC@CCS. ACM, pp. 36–47.

Fuller, A., Fan, Z., Day, C., and Barlow, C. (2020). “Digi-
tal Twin: Enabling Technologies, Challenges and Open
Research”. IEEE Access, 8, pp. 108952–108971.

Gehrmann, C. and Gunnarsson, M. (2020). “A Digital Twin
Based Industrial Automation and Control System Secu-
rity Architecture”. IEEE Trans. Ind. Informatics, 16(1),
pp. 669–680.

Hörandner, F. and Rabensteiner, C. (2019). “Horcruxes
for Everyone - A Framework for Key-Loss Recovery
by Splitting Trust”. In: TrustCom/BigDataSE. IEEE,
pp. 50–57.

Huang, S., Wang, G., Yan, Y., and Fang, X. (2020).
“Blockchain-based data management for digital twin
of product”. Journal of Manufacturing Systems, 54,
pp. 361–371.

Kern, A. and Anderl, R. (2020). “Using Digital Twin Data
for the Attribute-Based Usage Control of Value-Added
Networks”. In: SDS. IEEE, pp. 29–36.

Kraft, E. M. (2016). “The Air Force Digital Thread/Digital
Twin - Life Cycle Integration and Use of Computa-
tional and Experimental Knowledge”. In: 54th AIAA
Aerospace Sciences Meeting.

Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang,
F., Liu, R., Pang, Z., and Deen, M. J. (2019). “A
Novel Cloud-Based Framework for the Elderly Health-
care Services Using Digital Twin”. IEEE Access, 7,
pp. 49088–49101.

Menezes, A., Sarkar, P., and Singh, S. (2016). “Challenges
with Assessing the Impact of NFS Advances on the
Security of Pairing-Based Cryptography”. In: Mycrypt.
Vol. 10311. LNCS. Springer, pp. 83–108.

National Institute of Standards & Technology (2016). SP
800-57. Recommendation for Key Management, Part 1:
General (Rev 4). Tech. rep. NIST.

Putz, B., Dietz, M., Empl, P., and Pernul, G. (2021).
“EtherTwin: Blockchain-based Secure Digital Twin In-
formation Management”. Inf. Process. Manag., 58(1),
p. 102425.

Qi, Q. and Tao, F. (2018). “Digital Twin and Big Data To-
wards Smart Manufacturing and Industry 4.0: 360 De-
gree Comparison”. IEEE Access, 6, pp. 3585–3593.

Yao, A. C. (1982). “Protocols for Secure Computations (Ex-
tended Abstract)”. In: FOCS. IEEE Computer Society,
pp. 160–164.

Zhao, J., Feng, D., and Zhang, Z. (2010). “Attribute-
Based Conditional Proxy Re-Encryption with Chosen-
Ciphertext Security”. In: GLOBECOM. IEEE, pp. 1–6.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

160

